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Background: Tuberculosis (TB), caused byMycobacterium tuberculosis (Mtb), is a
persistent infectious disease threatening human health. The existing diagnostic
methods still have significant shortcomings, including a low positivity rate in
pathogen-based diagnoses and the inability of immunological diagnostics to
detect active TB. Hence, it is urgent to develop new techniques to detect TBmore
accurate and earlier. This research aims to scrutinize and authenticate DNA
methylation markers suitable for tuberculosis diagnosis. Concurrently,
Providing a new approach for tuberculosis diagnosis.

Methods: Blood samples from patients with newly diagnosed tuberculosis and
healthy controls (HC) were utilized in this study. Examining methylation
microarray data from 40 whole blood samples (22TB + 18HC), we employed
two procedures: signature gene methylated position analysis and signature
region methylated position analysis to pinpoint distinctive methylated
positions. Based on the screening results, diagnostic classifiers are
constructed through machine learning, and validation was conducted through
pyrosequencing in a separate queue (22TB + 18HC). Culminating in the
development of a new tuberculosis diagnostic method via quantitative real-
time methylation specific PCR (qMSP).

Results: The combination of the two procedures revealed a total of
10 methylated positions, all of which were located in the promoter region.
These 10 signature methylated positions facilitated the construction of a
diagnostic classifier, exhibiting robust diagnostic accuracy in both cross-
validation and external test sets. The LDA model demonstrated the best
classification performance, achieving an AUC of 0.83, specificity of 0.8, and
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sensitivity of 0.86 on the external test set. Furthermore, the validation of signature
methylated positions through pyrosequencing demonstrated high agreement with
screening outcomes. Additionally, qMSP detection of 2 potential hypomethylated
positions (cg04552852 and cg12464638) exhibited promising results, yielding an
AUC of 0.794, specificity of 0.720, and sensitivity of 0.816.

Conclusion: Our study demonstrates that the validated signature methylated
positions through pyrosequencing emerge as plausible biomarkers for
tuberculosis diagnosis. The specific methylation markers in the TSPAN4 gene,
identified in whole blood samples, hold promise for improving tuberculosis
diagnosis. This approach could significantly enhance diagnostic accuracy and
speed, offering a new avenue for early detection and treatment.
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1 Introduction

Tuberculosis is a persistent infectious ailment arising from Mtb
infection. It is estimated that in 2022, globally, 10.6 million people
(95% UI: 9.9–11.4 million) suffer from tuberculosis. In the same year,
7.5 million new cases of tuberculosis were diagnosed worldwide,
resulting in 1.3 million fatalities. The estimated global incidence of
tuberculosis in 2022 was 133 new cases per 100,000 population (95%
UI: 124–143). The net reduction in the global number of deaths
caused by TB from 2015 to 2022 was only 19%, far from the WHO
End TB Strategy milestone of a 75% reduction by 2025. Swift
identification and diagnosis of Mtb infection can effectively curb
tuberculosis transmission. Presently, there exists a substantial
disparity between the reported tuberculosis cases and the estimated
total of tuberculosis infections, indicating the inadequacy of
tuberculosis diagnosis. Based on the annual decline rate of the
total number of existing cases, achieving the WHO End TB target
by 2035 is extremely challenging without new technologies.

In recent years, despite progress in tuberculosis diagnosis, more
than a third of clinical tuberculosis cases still lack effective and
prompt identification. There is an urgent need to discover
biomarkers for a more sensitive and earlier diagnosis of
tuberculosis. Pathogen-based diagnosis, in use for a century,
remains the established method for tuberculosis diagnosis.
Despite rapid advancements in molecular pathogen-based
diagnostic techniques, the positive rate of such diagnosis in
tuberculosis patients is only around 60%, causing substantial
diagnostic delays and contributing to social transmission. An
increasing number of laboratories are turning their focus towards
selecting and applying host diagnostic markers. However, the
current emphasis is predominantly on the development of RNA
and protein biomarkers (McNerney et al., 2012; Guo et al., 2022;
Nogueira et al., 2022). Yet, the instability of RNA and the
requirement for antigen stimulation in protein diagnosis often
lead to diagnoses at later stages, thus limiting diagnostic
effectiveness. Recognizing that DNA serves as the most upstream
regulator, any disease-related changes in DNA can be leveraged for
early diagnosis (Ziegler et al., 2012).

In recent years, DNA methylation has gained popularity in the
realm of disease diagnosis. DNA methylation modifications can
either silence or activate the expression of pertinent host genes
(Baylin and Jones, 2011; Dawson and Kouzarides, 2012). Abnormal

methylation modifications in the genome occur at CpG sites in early
disease promoter regions, making them valuable for early diagnosis.
In addition, numerous studies focus on the area adjoining the
transcription start site (TSS) of the promoter. Furthermore,
compared to other biomarkers, DNA methylation markers
exhibit higher stability and are detectable in blood (Portela and
Esteller, 2010; Ziegler et al., 2012; Papanicolau-Sengos and Aldape,
2022). For instance, in lung cancer patients, the methylation of
SHOX2/PTGER4/RASSF1A in plasma DNA has been employed as a
biological marker for identifying lung cancer and has found practical
applications in clinical settings (Kneip et al., 2011; Weiss et al., 2017;
Malpeli et al., 2019). Beyond lung cancer, methylation detection
technology has found widespread use in clinically diagnosing
various solid tumors (Han et al., 2019; Tang et al., 2019;
Papanicolau-Sengos and Aldape, 2022; Chang et al., 2023). With
the advancement of computational biology, several studies have
utilized DNA methylation microarrays or methylation profiles to
develop machine learning diagnostic classifiers. These classifiers can
assist in disease diagnosis and have demonstrated effective
diagnostic outcomes (Hao et al., 2017; Capper et al., 2018; Li
et al., 2022b). Regarding infectious diseases, DNA methylation
has exhibited substantial diagnostic potential in the diagnosis of
chronic hepatitis B and cirrhosis patients (Zhao et al., 2014).
Additionally, the methylation of the RASSF1A and
TIMP3 promoter regions can be utilized to diagnose S.
haematobium infection (Zhong et al., 2013). This undeniably
underscores the immense potential of DNA methylation as a
biomarker for disease diagnosis.

In the domain of tuberculosis diagnosis, there is a scarcity of
research on DNA methylation biomarkers, and existing studies
either lack methylation microarray analysis or concentrate solely
on specific cells. The prevalent methods employed, such as Next-
Generation sequencing, possess evident limitations for clinical
application (Chen et al., 2014; Lyu et al., 2022). Presently, there
are no widely applicable DNAmethylation biomarkers or diagnostic
methods for tuberculosis in clinical practice. Hence, this study is
centered on screening and validating clinical samples for DNA
methylation biomarkers associated with tuberculosis. The
objective is to authenticate potential methylated positions using
pyrosequencing, devise qMSP methods for their detection, and
formulate potential tuberculosis diagnostic biomarkers alongside
novel diagnostic methods suitable for clinical implementation.
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2 Materials and methods

2.1 Study subjects

Clinical samples were collected from the Third People’s
Hospital of Shenzhen City. In the TB group, inclusion criteria
were positive results in pathogen diagnosis (sputum smear,
bacterial culture or GeneXpert MTB/RIF) or immunological
diagnosis (γ-interferon release assay). All patients were
initially diagnosed with TB and received anti-tuberculosis
drug treatment for less than 7 days. Patients with pneumonia,
pulmonary fungal infections, HIV and HBV infections were
excluded by clinical CT imaging, blood testing. For the HC
group, inclusion criteria were a negative γ-interferon release
assay, no clinical symptoms related to tuberculosis, no
previous history of tuberculosis, and normal chest X-ray
findings. DNA extraction from whole blood samples was
performed using the QIAamp DNA Blood Mini Kit (Qiagen,
Hilden, Germany), and DNA concentration was quantified with a
spectrophotometer. The samples were stored at −80°C until use.

The study design was conducted in accordance with the
principles of the Declaration of Helsinki and approved by the
National Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College (ethical
approval number: IPB-2017-1).

2.2 Acquisition and processing of raw data

Firstly, we integrated 22 methylation microarray data from our
laboratory (10TB + 12HC) with the methylation microarray data
from GSE118469 (12TB + 10HC) to form the training set. Secondly,
This training set, together with the gene chip GSE83456, was
employed to identify signature methylated positions. Finally, The
training set was used to train machine learning models, and the
methylation microarray data GSE145714 (7TB + 12HC) was utilized
as an external test set to evaluate the generalization capability of the
machine learning models.

The methylation microarray data from 22 samples in the
training set were acquired using the Illumina
HumanMethylation450 BeadChip in our laboratory. Gene chip
dataset GSE83456, GSE118469 in methylation microarray
training set, and external test set GSE145714 were obtained from
the Gene Expression Omnibus (GEO) database. All samples utilized
in the aforementioned analysis must adhere to the inclusion criteria
for TB and HC. Detailed dataset information is available in
Supplementary Table S1. Raw data analysis involved the R
package “ChAMP” for data import, batch effect processing, pre-
processing, filtering, and differential and enrichment analysis
(Morris et al., 2014; Tian et al., 2017). Enrichment analysis
visualization was conducted using the R packages “Circlize” and
“ComplexHeatmap” (Gu et al., 2014; Gu et al., 2016). Gene chip raw
data import, pre-processing, and differential analysis were
performed using the R package “limma” (Ritchie et al., 2015).
Selection criteria for DMPs were Padjust <0.05, |Δβ| > 0.1;
selection criteria for DMRs were p-value <0.025,
minpositions >7, and maxgap <200; and selection criteria for
DEGs were Padjust <0.05, |logFC| > 0.5.

2.3 Identification of signature genes

The WGCNA package was employed for sample clustering
(Langfelder and Horvath, 2008). Following outlier removal, the
adjacency matrix was transformed into a topological overlap
matrix (TOM). Subsequently, gene clustering, dynamic shearing
module identification, similar module clustering, and merging were
sequentially performed. The relationship between gene modules and
tuberculosis was assessed using gene significance (GS) values and
module membership (MM) values to identify key modules. Gene
modules highly correlated with the TB phenotype and differentially
expressed and methylated genes in the TSS region were used to
construct a protein-protein interaction (PPI) network. The PPI
network was queried from the STRING online database, with
interactions having a score >0.4 considered statistically significant
(Szklarczyk et al., 2019). The resulting PPI network was visualized
using Cytoscape (Shannon et al., 2003), and hub genes of the PPI
network were identified using the maximum clique centrality
(MCC) in the CytoHubba15 plugin (Chin et al., 2014).

2.4 Identification of potential
methylated positions

Once candidate hub genes were determined, the corresponding
differentially methylated positions were identified in the
methylation microarray data. The Least Absolute Shrinkage and
Selection Operator (LASSO) were then utilized to screen potential
methylated positions, employing the “glmnet” package (Tibshirani,
1997). For differentially methylated regions (DMRs), we selected
differentially methylated positions (DMPs) in the TSS region and
used Support Vector Machine Recursive Feature Elimination (SVM-
RFE) to screen potential methylated positions, implemented via the
“e1071”package (Lin et al., 2012; Xia et al., 2021; Chen et al., 2022a).
The predictor variable used in LASSO and SVM-RFE are the beta
values from methylation microarray data, while the response
variable corresponds to the phenotypic group information of
the samples.

2.5 Construction of diagnostic classifier

All signature methylated positions selected are used to construct
a classifier through various machine learning algorithms. All
methods are performed through four-fold cross-validation and
evaluated using ROC_AUC. The optimal hyperparameters are
identified through grid search, and the efficacy of the classifier is
tested using the external test set GSE145714. Data import and
preprocessing are implemented using numpy and pandas in
python 3.11.4. Machine learning algorithms were all
implemented using sklearn, and the matplotlib library was used
for result visualization.

2.6 Pyrosequencing

Pyrosequencing, a sequence analysis technology, was employed
to quickly detect methylation frequency and qualitatively and
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quantitatively detect methylated positions in samples. In the
investigation of pyrosequencing conducted in this study,
verification was carried out using separate cohorts of 40 samples,
including 22 TB and 18 HC samples. Primers were designed and
evaluated using PyroMark Assay Design SW 2.0 (Qiagen) software.
The samples of DNAwere subjected to bisulfite conversion using the
EZ DNA Methylation-Gold™ Kit (D5006, Zymo Research,
California, United States). Subsequently, the PyroMark PCR Kit
(Qiagen) was utilized for the polymerase chain reaction process,
with a DNA input of 20 ng and a primer final concentration of
0.4 μM. The reaction involved three steps: initial denaturation at
98°C for 10 s, annealing at 55°C for 30 s, and extension at 72°C for
30 s, repeated for 35 cycles, followed by a final extension at 72°C for
1 min. Finally, the methylation level of the samples was analyzed on
the PyroMark Q48 real-time quantitative pyrosequencing
instrument (Qiagen). The plot was generated using R software
(v.4.2.2) packages “ggpubr” (v0.4.0) and “ggplot2” (v3.4.2)
through Hiplot Pro (https://hiplot.com.cn/), a comprehensive
web service for biomedical data analysis and visualization (Li
et al., 2022a). The pyrosequencing primers are listed in
Supplementary Table S4.

2.7 Quantitative real-time methylation
specific PCR (qMSP)

DNA samples were subjected to sulfite transformation using the
EZ DNA Methylation Gold Kit (ZYMO RESEARCH, D5006, Los
Angeles, CA, United States), following the manufacturer’s
guidelines. The DNA concentration was measured using a
spectrophotometer, and samples were stored at −20°C. The qMSP
experiment involved 99 samples, including 49 TB and 50 HC
samples, with an input of around 10 ng per sample. Primers and
probes were designed based on the specific sequence of signature
methylated positions, with ACTB serving as the reference gene. A
20 μL reaction system was prepared using Taq Pro HS Master Mix
(Vazyme, Nanjing, China), and each sample was placed in triplicate
wells. In this system, the final concentration of the primer is 0.2 μm,
while the final concentration of the probe is 0.1 μm. The
QuantStudio 7 Flex Real-Time PCR System (Applied Biosystems,
Foster City, CA, United States) was used for sample amplification,
employing a two-step PCR amplification program: predenaturation
at 95°C for 30 s; 95°C for 10 s, 60°C for 30 s, repeated for 45 cycles.
The specifics of the primers and probes are available in
Supplementary Table S4. The details of the standard plasmid can
be found in Supplementary Table S5.

2.8 Statistic analysis

The ΔCt value was utilized to determine the methylation level of
candidate methylated positions in tissue samples. This value
represents the normalized difference between the Ct value of the
target position and the reference gene (ACTB) and the amount of
DNA in the whole blood sample, i.e., ΔCt = Ct (target)–Ct (ACTB).
Ct (target) and Ct (ACTB) are the average Ct values of three
replicate wells in the qMSP results. A higher ΔCt value indicates
a lower methylation level at the target position. The Ct value of the

reference gene ACTB was used to verify the sample’s quality. If the
Ct value of ACTB in the well exceeded 35, the sample was considered
invalid. Differential analysis, AUC, specificity, and sensitivity
calculations were all performed using SPSS 29.

3 Results

We amalgamated our own measured methylation microarray
data with GSE118469 methylation microarray data from the Gene
Expression Omnibus (GEO) database, totaling 40 blood samples’
methylation data, including 22 TB samples and 18 HC samples. The
specific details of all datasets utilized in this article are available in
Supplementary Table S1. To comprehensively investigate potential
methylated positions, we employed two selection processes. Given
that the TSS region constitutes the central segment of the promoter,
our study concentrated on methylated positions situated in the TSS
region. The flowchart of the research plan is shown in Figure 1.

3.1 Analysis process of potential gene
methylated positions (process A)

To identify potential methylated positions on tuberculosis-
associated genes, we executed process A. The outcomes reveal
that the analysis of differentially methylated positions (DMPs)
identified a total of 4939 DMPs, comprising
4623 hypomethylated positions and 316 hypermethylated
positions (Figure 2A). This indicates that tuberculosis is
primarily characterized by hypomethylation. Among the
identified DMPs, 894 are located in the transcription start site
(TSS) region, corresponding to 651 differentially methylated
genes (DMGs). Subsequently, differentially gene expression
analysis using data from the GEO database GSE83456 unveiled
891 differentially expressed genes (DEGs), with 357 genes exhibiting
low expression and 534 genes exhibiting high expression
(Figure 2B), suggesting that tuberculosis is primarily
characterized by high gene expression.

Moreover, we illustrated the distribution of differential
methylated positions in the gene region (Figure 2C). The results
of the enrichment analysis for biological processes (BP) indicate that
the genes containing DMPs are predominantly involved in immune-
related biological processes, particularly enriched in pathways such
as cell-cell adhesion, positive regulation of cytokine production, and
positive regulation of T cell activation. Molecular function (MF)
enrichment analysis reveals that DMPs in tuberculosis are mainly
enriched in energy metabolism pathways like GTPase regulator
activity and nucleoside-triphosphatase regulator activity. Notably,
among the top 8 pathways, there is also enrichment of the ubiquitin-
like protein ligase binding pathway, which plays a significant role in
tuberculosis. Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis shows that DMPs in tuberculosis are primarily
enriched in pathways such as Th17 cell differentiation, Tuberculosis
and Chemokine signaling pathway (Figure 2D).

Through Weighted Correlation Network Analysis (WGCNA),
all gene expression data were organized into 12 modules, and the
correlation of each module with the TB phenotype was calculated
(Figure 3A). The results revealed that MEblue (P = 8e-32, cor = 0.86)
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and MEturquoise (P = 2e-18, cor = −0.73) exhibited the highest
correlation with TB, signifying them as key modules associated with
TB. The detailed information of WGCNA can be found in
Supplementary Figure S1. The MEblue module comprises
840 genes, and the MEturquoise module comprises 1,820 genes,
summing up to 2,660 genes in these two modules. The intersection
of key module genes, DEGs, and DMGs in the TSS region resulted in
59 intersecting genes (Figure 3B). Through Protein-Protein
Interaction (PPI) analysis, the top 20 feature genes were selected
(Figure 3C), corresponding to 23 key methylated positions in the
TSS region. Utilizing the machine learning algorithm Lasso for
variable selection, we identified 4 potential methylated positions:

cg23213327 (RSAD2), cg17984638 (TXK), cg11554335(UBE2L6),
cg07839457(NLRC5) (Figure 3D).

3.2 Analysis process of signature region
methylated positions (process B)

To identify potential methylated positions on tuberculosis-
associated methylated regions, we implemented process B. The
analysis of differentially methylated regions revealed a total of
69 DMRs, with 67 located on specific genes (Figure 4A), and the
remaining two situated in intergenic regions (IGR). Among the

FIGURE 1
Research flowchart The term “signature methylated positions” in this study refers to a group of potential methylated positions identified through a
stepwise screening process based on methylation microarray data. These methylated positions are considered to be closely associated with the
phenotypes of tuberculosis, representing characteristic methylation patterns of tuberculosis. Abbreviations: DMPs, differentially methylated positions;
DMRs, differentially methylated regions; LASSO, Least Absolute Shrinkage and Selection Operator; SVM-RFE, Support Vector Machine—Recursive
Feature Elimination.
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DMRs, there are a total of 472 methylated positions in the TSS
region. By intersecting the methylated positions in the TSS region
selected from the DMRs with the differentially methylated positions
(DMPs), we ultimately obtained 59 hub methylated positions
(Figure 4B). Utilizing the Support Vector Machine-Recursive
Feature Elimination (SVM-RFE) machine learning algorithm for
variable selection, we determined that the model exhibited the
smallest Root Mean Squared Error (RMSE) when only
2 methylated positions remained. These 2 positions, cg04552852
(TSPAN4) and cg09313705 (HOXB2), are considered as potential
methylated positions and are located on two different DMRs.

Additionally, based on the density of differentially methylated
positions, we identified the optimal differentially methylated region,

containing the most 4 DMPs within 70bp (cg21805118, cg11804414,
cg19529732, cg14094409). The 4 methylated positions in this region
are considered as potential methylated positions and are situated on
the DIABLO gene locus (Figure 4C). In conclusion, a total of
6 potential methylated positions were obtained from 3 DMRs
through process B.

3.3 Construction of diagnostic classifier
based on signature methylated positions

To assess the classification efficiency of the 10 signature
methylated positions derived from two screening processes, a

FIGURE 2
Differential analysis and enrichment analysis of TB and HC (A) Volcano plot of differentially methylated positions. (B) Volcano plot of differentially
expressed genes. (C) Pie chart illustrating the regions of differentially methylated positions. (D) Top 16 pathways enriched in Biological Processes (BP), top
6 pathways enriched in Molecular Functions (MF), and top 8 pathways enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG). The circles
represent the serial number of the enrichment pathway, the enrichment p-value, the total number of genes in the pathway, the number of
upregulated and downregulated genes, and the enrichment factor size.
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machine learning classifier was constructed. Detailed information
about these positions is provided in Supplementary Table S2. Eight
machine learning algorithms were applied for diagnostic classifier
construction, and optimal model hyperparameters were determined
through cross-validation and grid search, as outlined in
Supplementary Table S3. Receiver Operating Characteristic
(ROC) curves were utilized to assess diagnostic efficiency, and
the areas under the ROC curves, along with specificity and
sensitivity scores, were calculated. Cross-validation results
demonstrated that the AUC of all classifiers exceeded 0.8, with

both sensitivity and specificity surpassing 0.8 (Figure 5A), indicating
the model’s high diagnostic value.

The performance of the classifiers was further evaluated using an
external test set, GSE145714. Results indicated that, except for the
KNN and Bagging classifiers, the AUC of the remaining classifiers
surpassed 0.7, with both specificity and sensitivity exceeding 0.7,
except for the GaussianNB and Bagging classifiers (Figure 5B).
Notably, the LDA classifier exhibited robust diagnostic
capabilities in both the training and external test sets, with
AUC = 0.95, specificity = 1, and sensitivity = 1 in cross-

FIGURE 3
Signature gene methylated positions analysis (A) Clustered modules of WGCNA. (B) Venn plot showing the interaction between key module genes,
differentially expressed genes (DEGs), and differentially methylated genes (DMGs) in the Transcription Start Site (TSS) region. (C) Top 20 feature genes in
maximumclique centrality (MCC). (D) LASSO regularization path diagram, depicting the fitting effect of themodel corresponding to different values of the
regularization parameter (λ).
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FIGURE 4
Signature region methylated positions analysis (A) Differentially methylated regions (DMRs) located on specific genes. “Number” denotes the
quantity of methylated positions, “Not Significant” indicates the absence of a significant difference at the signature, “Hypomethylation” signifies notably
decreased methylation at the signature, while “Hypermethylation” signifies notably increased methylation at the methylation. (B) The term “Variable
Number” indicates the count of preservedmethylated positions in the model, while RMSE (Cross-Validation) represents the Root Mean Square Error
derived from cross-validation. (C) Data concerning all methylated positions within the optimal differentially methylated region, identifying positions 3, 4,
5, and 6 as the four potential methylated positions. The “TB Sample” and “HC Sample” denote the β values associated with each sample point in the
methylation microarray data for tuberculosis (TB) and healthy control (HC) groups. “TB Mean” and “HC Mean” indicate the average β value for each
methylation position in the TB and HC groups, respectively. The regions labeled “Body,” “TSS200,” and “TSS1500”correspond to themethylation positions
within the DIABLO gene. Additionally, “Shore” designates the location of differentially methylated regions on CpG islands.
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validation; and AUC = 0.83, specificity = 0.80, and sensitivity =
0.86 in the external test set. Following this, the SVC, utilizing the
radial basis kernel (rbf) function, demonstrated AUC = 0.95,
specificity = 1, and sensitivity = 1 in cross-validation; and
AUC = 0.79, specificity = 0.70, and sensitivity = 0.86 in the
external test set. These findings suggest that the classifier, built
on the 10 signature methylated positions, provides effective
diagnostic classification, holding promise as a clinical tool for
tuberculosis diagnosis.

3.4 Pyrosequencing validates signature
methylated positions

We employed an additional 40 clinical samples (22TB and
18HC) to validate the screening outcomes through pyrosequencing
and evaluated the methylation levels at signature methylated

positions in whole blood. In this part, pyrosequencing
confirmed 11 methylated positions, with 8 of them being
among the previously screened 10 signature methylated
positions (two of which were excluded from pyrosequencing
due to the failure to design specific primers). The length of
pyrosequencing being approximately 60 base pairs resulted in
the detection of 3 additional methylated positions. These
positions could potentially serve as methylation biomarkers for
tuberculosis.

The pyrosequencing results indicated that, after analyzing four
potential gene methylated positions (process A), 3 out of 4 exhibited
significant differences in both TB and HC groups, excluding
cg07839457 (NLRC5) was unable to have effective specific
primers designed. Notably, cg17984638 (TXK) displayed
significantly higher methylation, with an average methylation rate
of 78.57% ± 8.5% for TB and 68.64% ± 7.38% for HC, while
cg23213327 (RSAD2) and cg11554335 (UBE2L6) demonstrated

FIGURE 5
Construction of machine learning diagnostic classifier (A) Cross-validation results of 8 machine learning diagnostic classifiers. (B) Test results of the
external test set GSE145714. QDA: Quadratic discriminant analysis. LDA: linear discriminant analysis. KNN: K-Nearest Neighbor. MLP: Multilayer
perceptron. GaussianNB: Gaussian Naive Bayes. SVC: Support Vector Classification. Bagging: Bootstrap aggregating.
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significantly lower methylation, with average rates of 31.45% ±
8.27% and 41.6% ± 9.57% for TB, and 41.25% ± 7.72% and
51.17% ± 6.77% for HC, respectively. Furthermore, the observed
trends in these three positions aligned with the methylation
microarray data (Figure 6A).

Based on the analysis process of signature region methylated
positions (Process B), 2 distinct potential methylated positions were
identified (cg04552852 and cg09313705). cg04552852 (TSPAN4)
exhibited significant differences in both the TB and HC groups,
but cg09313705 (HOXB2) was unable to have effective specific
primers designed. Furthermore, upon detecting cg04552852
(TSPAN4), the 9-bp spaced cg12464638 (TSPAN4) is
simultaneously identified, both of which are located within the
TSS region of TSPAN4. Both of these positions showed
significantly lower methylation in the TB group, with average
rates of 34.52% ± 7.65% and 37.37% ± 6.74% for TB, and
41.57% ± 5.33% and 42.94% ± 5.90% for HC,
respectively (Figure 6B).

Furthermore, 2 additional methylated positions were detected in
addition to the four positions identified in the optimal DMR. These
2 positions, not designed on the methylation microarray,
demonstrated significantly high methylation in the TB group,
consistent with the other four positions. The average methylation
level of these 6 methylated positions in the TB group was 8.73% ±
0.45% higher than in the HC group (Figure 6C).

3.5 Verification of potential methylated
positions by qMSP

To validate the screening results and ascertain the methylation
levels of distinctive methylated positions in whole blood, we
employed qMSP to detect the methylation of cg04552852
(TSPAN4) and cg12464638 (TSPAN4) in 49 cases of TB and
50 cases of HC. Table 1 lists the main information of sample. To
verify the specificity of methylation detection, a test was carried out

FIGURE 6
Pyrosequencing results (A) potential methylated positions obtained from the analysis of signature gene methylated positions. (B) Potential
methylated positions obtained from the analysis of signature region methylated positions. (C) Potential methylated positions of the optimal differentially
methylated region; cgxxxxxxx1 and cgxxxxxxx2 represent positions not designed in the methylation microarray. The differential analysis of
Pyrosequencing results was uniformly conducted using t-tests. *p < 0.05, **p < 0.01, ***p < 0.001.
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using the methylation probe. Synthetic methylated and
unmethylated plasmids served as templates for the amplification
process. The results indicated successful amplification of the
methylated plasmid template and a lack of amplification for the
unmethylated plasmid template. As a result, the methylation probe
demonstrates high specificity (Figure 7A). TheΔCt value was used to
indicate the methylation level at the position, with lower ΔCt values
indicating higher methylation levels. The results demonstrated that
the methylation level of cg04552852 and cg12464638 from TSPAN4
in TB was significantly lower than that in HC (p < 0.0001)
(Figure 7B). This finding aligns with the results of methylation
microarray and pyrosequencing. Furthermore, the area under the
ROC curve (AUC) was 0.794 (95%CI 0.700-0.881), with a sensitivity

of 81.6% and a specificity of 72% (Figures 7C, D). The positive
predictive value (PPV) is 74.07%, the negative predictive value
(NPV) is 80%, and the accuracy is 76.77%.

4 Discussion

Tuberculosis is a long-lasting infectious ailment due to Mtb
infection, posing a significant threat to human health. The number
of identified tuberculosis cases falls notably short of the estimated
patient count (incident cases), underscoring the limitations of
current diagnostic approaches. Methylation, an emerging
diagnostic technique, is increasingly gaining traction in cancer

TABLE 1 Clinical sample details.

Group Characteristics TB HC

Methylation microarray data Number 10 12

Gender

Male 6 6

Female 4 6

Age (year)

<40 4 6

40–60 6 6

>60 0 0

Diagnostic results

Pathogen diagnosis/Immunological diagnosis Positive Negative

Pyrosequencing Number 22 18

Gender

Male 15 12

Female 7 6

Age (year)

<40 6 7

40–60 6 5

>60 10 6

Diagnostic results

Pathogen diagnosis/Immunological diagnosis Positive Negative

qMSP Number 49 50

Gender

Male 26 34

Female 23 16

Age (year)

<40 15 13

40–60 15 16

>60 19 21

Pathogen diagnosis/Immunological diagnosis Positive Negative
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early detection. Various studies have devised methylation
biomarkers for diverse cancers like lung, colorectal, cervical, and
bladder cancers, which find application in clinical diagnosis (Han
et al., 2019; Tang et al., 2019; Roy and Tiirikainen, 2020; Chang et al.,
2023), such as the three-gene methylation biomarker (SHOX2/
RASSF1A/PTGER4) for lung cancer (Kneip et al., 2011; Weiss
et al., 2017; Malpeli et al., 2019). Although methylation’s
potential as a biomarker exists in infectious diseases, no
applicable diagnostic method for clinical use has been
established. Given tuberculosis’s nature as a chronic immune
ailment, sharing similarities with lung cancer in the immune
microenvironment (Ramakrishnan, 2012; Mayer-Barber and
Barber, 2015; Cohen et al., 2022), methylation likely holds
promise for tuberculosis diagnosis. The diagnostic method qMSP,
employed in clinical, can potentially be adapted for tuberculosis
diagnosis. Accordingly, this study utilized methylation microarray
data for two screening processes: signature gene methylated position
analysis and signature region methylated position analysis, leading

to the identification of 10 signature methylated positions. Multiple
machine learning algorithms were employed to formulate a
tuberculosis diagnostic classifier, subsequently validated for
diagnostic efficiency using the external test set GSE145714. The
results indicate commendable specificity and sensitivity in the
diagnostic classifier, presenting it as a potential clinical
diagnostic tool. Furthermore, pyrosequencing validated the
10 signature methylated positions, detecting 8 successfully and
uncovering 3 additional positions. All 11 positions exhibited
significant differences between TB and healthy control (HC)
groups, consistent with methylation microarray results,
affirming their potential as tuberculosis diagnostic biomarkers.
Lastly, qMSP detected methylation of cg04552852 and
cg12464638 from TSPAN4 in 99 whole blood samples, with an
AUC of 0.794, specificity of 0.720, and sensitivity of 0.816,
illustrating the efficacy of assessing the methylation status of
cg04552852 and cg12464638 in whole blood for
tuberculosis diagnosis.

FIGURE 7
Quantitative real-time methylation specific PCR results (A) Amplification curve illustrates the qMSP results on triplicated samples. Blue lines
represent the amplification of methylated plasmid templates, while green lines represent the absence of the amplification of unmethylated plasmid
templates. (B) Differential analysis of ΔCt results between TB and HC. (C) ROC curve and AUC of TB and HC. (D) Confusion matrix, specificity, and
sensitivity of TB and HC. Differential analysis of ΔCt results between TB and HC based on Mann-Whitney U test. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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Methylation diagnostic markers, an evolving diagnostic
approach, offer distinct advantages in disease detection: 1) Early
detection is feasible as methylation modifications precede gene
expression; 2) DNA methylation alterations demonstrate relative
stability; 3) The examination is safe, non-invasive, and devoid of
trauma or side effects; 4) The procedure is straightforward, typically
involving peripheral blood extraction without the need for special
preparation (Ziegler et al., 2012; Yu et al., 2022).

DNA methylation modifications in promoter regions play a role
in regulating downstream gene expression, demonstrating a negative
correlation (Klose and Bird, 2006; Héberlé and Bardet, 2019; Isbel
et al., 2022). Among the pyrosequencing-validated positions in this
study, excluding the four potential methylated positions in the
optimal differentially methylated region, all others adhere to this
characteristic, for further details, please refer to the Supplementary
Figures S2–S4. Notably, cg11554335, situated on the UBE2L6 gene,
exhibits low methylation in tuberculosis (TB) and elevated gene
expression. UBE2L6, an E2 ubiquitin-conjugating enzyme, has been
identified as a biomarker for active tuberculosis, displaying
heightened expression in the whole blood of tuberculosis patients
(Gao et al., 2021). UBE2L6 can also influence the tuberculosis
immune response by post-translationally modifying phagosome-
associated proteins through ubiquitination (Zhang et al., 2023),
suggesting potential regulation by methylation. Enrichment
analysis results reveal that differentially methylated positions in
this gene are enriched in the ubiquitin-like protein ligase binding
pathway, with 63 genes in this pathway displaying significant
hypomethylation. Recent studies indicate that tuberculosis
proteins may exploit the host ubiquitination system to suppress
immunity (Wang et al., 2015; Wang et al., 2020; Chai et al., 2022).
Consequently, the ubiquitination modification pathway in the
human body may be regulated by methylation, potentially
impacting tuberculosis development. We are presently enhancing
the design of the probe and the PCR methodology, specifically
customized for this target location, anticipating successful detection
in the immediate future.

The 2 distinctive methylated positions, cg04552852 and
cg12464638, reside on the TSPAN4 gene, displaying reduced
methylation and heightened expression in TB. This suggests that
the TSPAN4 gene may undergo regulation via methylation
modifications. Recent studies link the TSPAN4 gene to the
formation of migrasomes, known to recruit monocytes and
stimulate angiogenesis (Zhang et al., 2022). Given the relevance
of angiogenesis to tuberculosis, where anti-angiogenic drugs
effectively reduce bacterial burden in granulomas (Oehlers et al.,
2015), TSPAN4 may play a role in tuberculosis development.

Current investigations into tuberculosis methylation primarily
focus on regulatory mechanisms. Several studies reveal that Mtb
induces host methylation modifications through methyltransferases,
enabling evasion of the host’s immune system (Sharma et al., 2015;
Yaseen et al., 2015; Sharma et al., 2016). However, limited efforts
have been made in advancing diagnostic markers for tuberculosis.
Research suggests that abnormal methylation in the promoter
regions of TLR2 or genes related to vitamin D metabolism in
peripheral blood is associated with tuberculosis risk (Chen et al.,
2014; Wang et al., 2018; Chen et al., 2022b). Furthermore, two
differentially methylated regions (DMRs), chr3: 195635643-
195636243 and chr6: 29691631-29692475, exhibit an AUC of

0.838, sensitivity of 0.645, and specificity of 0.903 in TB and HC
(Lyu et al., 2022). Existing studies either lack methylation
microarray analysis or focus on specific cells. Moreover, current
studies employ Next-Generation Sequencing for validation, a
process entailing significant expense and complexity, posing
constraints in clinical applications. Consequently, we have, for
the first time, utilized qMSP technology in tuberculosis diagnosis.
The gold standard for tuberculosis diagnosis is pathogen diagnosis
(including Xpert MTB/RIF and AFB), with qMSP testing showing
high consistency with it. The diagnostic agreement rates with Xpert
MTB/RIF and AFB are 95% and 95.2%, respectively. Methylated
detection offers a shorter processing time compared to pathogen
diagnostic methods and eliminates the need for special preparation
before testing. It does not require fresh whole blood or overnight
culture compared to immunological diagnosis. Cost estimation
suggests that methylated detection is more cost-effective than
pathogen and immunological testing, requiring only an RT-PCR
instrument for quantification without the need for advanced
laboratory facilities or specialized equipment. This could be
significant for tuberculosis diagnosis in economically
disadvantaged areas. Furthermore, methylated detection may be
effective in detecting tuberculosis patients with co-infections such as
HIV/AIDS and those with autoimmune diseases, although further
exploration is needed. These findings indicate its considerable
potential in clinical diagnosis.

In this study, we effectively identified methylation differences
in cg04552852 and cg12464638 from TSPAN4 using qMSP.
However, focusing solely on the detection of two methylated
positions may limit the accuracy of the diagnosis. To overcome
this limitation, we plan to optimize the methods and probes to
effectively validate the screened methylation positions. The
validation of individual methylated positions presents a
challenge due to the absence of other methylation positions
within a 30bp proximity, making it difficult to ensure probe
specificity. To overcome these challenges, it is essential to
optimize probe design and PCR methods to achieve precise
targeting of individual methylation positions. Nonetheless, a
study has demonstrated an effective qMSP method for single
methylated position specificity (Yu et al., 2019), and employing
Locked Nucleic Acid (LNA) modifications is also a viable approach
to enhance specificity (Petersen and Wengel, 2003). Thus,
combining these methods to design positions recognizing single
methylated position and using a multiplex qMSP system with
multiple positions can enhance the accuracy of tuberculosis
methylation marker diagnosis. In addition, in this study, the
sample numbers for external test sets and clinical validation
remain limited, which may impact the generalizability and
statistical accuracy of this method. Therefore, further
recruitment is warranted to validate the specificity, sensitivity,
and robustness of the experimental results. Next, we will also focus
on optimizing the qMSP method and its reaction system, while
investigating potential biases and the clinical applicability in
various settings.

In summary, DNA methylation serves as a biomarker for
tuberculosis diagnosis, with whole blood DNA methylation status
detection proving effective. Additionally, methylation acts as a
regulatory marker for immunopathology (Chen et al., 2020;
Khadela et al., 2022), and it holds potential as a therapeutic and
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prognostic marker in various diseases (Gampenrieder et al., 2018;
Guo et al., 2019; Chen et al., 2020; Liang et al., 2022), with the
possibility of future application in tuberculosis. Optimization and
application of methylation detection methods are beneficial for
diagnosing tuberculosis in high-incidence and economically
challenged regions. Furthermore, further exploration of
methylation detection may aid in diagnosing tuberculosis co-
infected patients, such as those with HIV or autoimmune
diseases. In conclusion, methylation detection can facilitate early
diagnosis, monitoring, and treatment of tuberculosis patients, finally
meeting the requirements of ending TB strategy.

5 Conclusion

We have identified 10 signature methylated positions, from
which a diagnostic classifier has been developed as a potential
tool for clinical diagnosis. Furthermore, we have successfully
validated 11 methylated positions using pyrosequencing,
potentially serving as biomarkers for tuberculosis diagnosis.
Importantly. We have introduced a novel method for detecting
the TSPAN4 TSS region (cg04552852 and cg12464638) in whole
blood samples, offering an effective means for
tuberculosis diagnosis.
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