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Introduction: The incidence and mortality of female breast cancer remain high,
and the immune microenvironment of breast cancer has undergone significant
alterations. However, the impact of blood immune cell levels on the risk of breast
cancer is not fully understood. Therefor this study aims to investigate the causal
relationship between blood immune cell levels and the risk of breast cancer.

Methods: A Mendelian randomization (MR) analysis was employed to assess the
causal relationship between immune cells and the risk of breast cancer, as along
with their potential mediating factors. Genetic statistics of metabolites breast
cancer and immune cells were obtained from the GWAS Catalog, while the
genome-wide association study (GWAS) statistics of breast cancer were
extracted from the UK biobank. Two-sample MR analysis were performed
using inverse-variance weighted (IVW) to ascertain the causal association
between immune cells and the risk of breast cancer. Furthermore,
1,400 metabolites were analyzed for their mediating role between immune
cells and the risk of breast cancer.

Results: MR analysis through IVW method revealed that genetically predicted
CD24+ CD27+ B cells were associated with a decreased risk of breast cancer
(OR = 0.9978, 95% CI: 0.996–0.999, p = 0.001), while IgD- CD38+ B cells were
linked to an increased risk of breast cancer (OR = 1.002, 95% CI: 1.001–1.004, p =
0.005). Additional CD14+ CD16+ monocytes were associated with an increased
risk of breast cancer (OR = 1.000, 95% CI: 1.000–1.001, p = 0.005). Mediation
analysis revealed a positive causal relationship between IgD- CD38+ B cells and
Glycerate levels, with the latter also exhibiting a positive causal relationship with
the risk of breast cancer (p < 0.05). Conversely, IgD- CD38+ B cells displayed a
negative causal relationship with Succinoyltaurine levels, and the latter also
demonstrated a negative causal relationship with the risk of breast
cancer (p < 0.05).

Conclusion: This MR study provides novel genetic evidence supporting a causal
relationship between IgD- CD38+ B cells and the risk of BC. Moreover, it is
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identified that IgD- CD38+ B cells contribute to an increased risk of BC through
both positive and negative mediation effects involving Glycerate and
Succinoyltaurine.

KEYWORDS

immune cell, Mendelian randomization study, breast cancer, causal effect,
metabolites mediator

1 Introduction

Breast cancer (BC) has emerged as the most prevalent
malignancy among women worldwide, with a mortality rate
that ranks second only to lung cancer. It is estimated that
there will be approximately 43,170 deaths (6.6%) in the
United States in 2023 (Siegel et al., 2023). From 2008 to 2022,
the global incidence of BC experienced a significant increase of
20%, while the mortality rate rose by 14% (Sher et al., 2022). This
alarming trend is reflected in the estimated global burden of BC,
which surged to 2.26 million new cases in 2020, a substantial
increase from the nearly 1.7 million cases recorded in 2012 (Torre
et al., 2017; Sung et al., 2021).

A growing body of research highlights the critical role of the
tumor microenvironment (TME) in the development and
progression of BC (Denkert et al., 2018; Pruneri et al., 2018). The
TME is a complex ecosystem composed of tumor cells, stromal cells,
immune cells, metabolites, and secreted proteins. Recent advances in
TME research have revealed that the remodeling of metabolism
within TME also plays a pivotal role in suppressing tumor
immunity. For instance, the excessive production of metabolic
by-products can disrupt the metabolic rewiring of T cells, thereby
impairing their anti-tumor function (Park et al., 2023). Therefore,
investigating the immune cells and metabolites that causal influence
the risk of BC is of paramount importance. Such exploration is
essential for elucidating the mechanisms underlying the immune
microenvironment in the progression of BC.

Traditionally, meticulously planned randomized controlled
trials (RCTs) have been considered as the gold standard for
establishing causal relationships between exposure factors and
outcomes. However, their implementation often requires ethical
approval and extensive follow-up, making them complex and
resource-intensive (Smylie et al., 2024). To efficiently identify
potential disease-exposure relationships during the exploratory
stage, Mendelian randomization (MR) analysis has emerged as a
powerful epidemiological tool. MR is commonly employed to assess
the causal relationship between exposure factors and outcomes by
utilizing genetic variants, known as single nucleotide
polymorphisms (SNPs), as instrumental variables (IVs) (Birney,
2022). These IVs act as effective proxies for observed exposures,
providing more robust estimates of causality compared to
traditional observational studies (Fang et al., 2024). Recent MR
studies have demonstrated that SNPs related to immune cells can
serve as exposure factors influencing tumor development (Bouras
et al., 2022; Yu et al., 2022; Aru et al., 2023; Yin et al., 2023).
However, the relationship between immune cells, metabolites, and
BC has not been explored using MR.

In this study, MR was employed to identify immune cells
significantly impacting BC incidence. Subsequently, reverse MR

was applied to determine that BC did not affect the levels of
these immune cells. Next, the SNPs related to metabolites were
selected as intermediaries. Finally, through mediation analysis, we
discovered that IgD- CD38+ B cells could elevate the risk of BC by
influencing Succinoyltaurine and Glycerate.

2 Materials and methods

2.1 Datasets acquisition

The datasets utilized in this study are summarized in Table 1.
The summary genome-wide association study (GWAS) statistics of
immune cells were obtained from the MRCEU open database
(accession numbers ranging from GCST90001391 to
GCST90002121) (Elsworth et al., 2020; Orrù et al., 2020). These
data encompass 731 immune cells with different trait types (details
in Suplementary Table S1), including absolute count (n = 118),
median fluorescence intensities (MFI, n = 389), morphological
parameters (n = 32), and relative count (n = 192). The GWAS
statistics for BC were acquired from the UK Biobank, which includes
10,303 BC cases and 452,630 healthy controls, encompassing total
9,851,867 SNPs (Rusk, 2018; Elsworth et al., 2020).

We accessed metabolites GWAS statistics to investigate its
mediating effect. Summary GWAS statistics for metabolites were
retrieved from the GWAS Catalog, identified with accession
numbers ranging from GCST90199621 to GCST90201020 (Chen
et al., 2023). A total of 1,400 metabolites were included in our study,
as outlined in Suplementary Table S2. By integrating data from these
diverse sources, we aimed to obtain a comprehensive dataset for
our research.

2.2 Identification of instrumental variables

To identify instrumental variables (IVs) significantly
influencing the risk of BC, we implemented the following
strategies. SNPs were selected based on their correlation with
the exposure (immune cells or metabolites) using the following
criteria: p < 1e-5, distance greater than or equal to 10,000 kbp,
and exclusion of SNPs with linkage disequilibrium (r2 < 0.001).
This process yielded 18,621 SNPs for immune cells and
34,843 SNPs for metabolites (Figure 1A) (Pierce et al., 2011).
We found that when we set the threshold of P at 5e-8, we got too
few SNPs to support our further research. We set our threshold at
1e-5 with reference to the standards in previous studies (Yu et al.,
2021; Guo et al., 2022; Wang and Zhang, 2024).

Furthermore F-test was employed to eliminate weak IVs, with a
threshold of 10. SNPs with an F-value less than 10 were excluded
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(Burgess et al., 2011). The F-value was calculated as follows: F =
R2(N−2)/(1−R2) (where R2 is the variance and N is the sample size of
exposure data). The formula for calculating the R2 value is as follows:
R2 = 2 × (1−MAF) × MAF × β2 (where MAF is the minor allele
frequency and β is the effect size on the exposure). By implementing
these filtering criteria, we aimed to select highly informative and
reliable IVs for our MR analysis.

2.3 Mendelian randomization analysis

MR analysis was conducted to assess the causal relationship
between immune cells and the risk of BC. For significant findings, we
performed reverse MR analysis to address potential reverse causality
(Figure 1B). In the exposure-outcome analysis, we used MR with at
least two SNPs as IVs. Five MR methods were employed to estimate
the causal relationship: MR Egger, Weighted Median, inverse-
variance weighted (IVW), Simple Mode, and Weighted Mode.
IVW is widely recognized for its robustness in causal inference
and was selected as the primary method for estimating the causal
effect (Bowden et al., 2017).

Simultaneously, Cochran’s Q test was used to detect
heterogeneity of MR results, with p > 0.05 indicating the
absence of heterogeneity (Hemani et al., 2018). Horizontal
pleiotropy was assessed using the MR Egger intercept test, and
a p > 0.05 indicated the absence of horizontal pleiotropy (Shu
et al., 2022). Sensitivity analysis was performed through the
“leave-one-out” method to evaluate whether the causal
relationship between exposures and outcomes was influenced
by any single SNP (Jin et al., 2023). All the aforementioned MR
analysis processes were conducted using the “TwoSampleMR”
and “gwasglue” packages in R version 4.3.2.

2.4 Analysis of mediating effect

To investigate potential mediating effects of metabolites in the
relationship between immune cells and risk of BC, we conducted a
metabolite-mediated mediation analysis within the MR framework.
This analysis allowed us to estimate the mediating effect of
metabolites and evaluate the hypothesis of indirect causation. We
utilized the aggregate correlation statistics of immune cells,

TABLE 1 Datasets sources.

Phenotypes Datasets source Phenotype code Cases/Controls Ancestry

Breast cancer UK Biobank Rusk (2018) ukb-b-16890 10303/452630 European

Immune cells Cucca et al. Orrù et al. (2020) GCST0001391 to GCST0002121 European

Metabolites Richards et al. Chen et al. (2023) GCST90199621 to GCST90201020 European

FIGURE 1
(A) Flowchart of Mendelian Randomization analysis conducted in this study. (B) Schematic representation of mediation analysis.
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metabolites, and the risk of breast cancer to estimate and assess the
mediation effect (Figure 1B). The methods employed were based on
Huang et al. (Chen et al., 2022). Then, we analyzed the causal
relationship between the 1,400 metabolites’ levels and the risk of BC.
This analysis identified eight metabolites with significant causal
relationships with the risk of BC. We Further investigated the causal
relationships between these three immune cells and eight
metabolites identified in the previous step. This analysis revealed
significant causal relationships between one immune cell and two
metabolite levels.

3 Results

3.1 Study design

The MR analysis workflow is depicted in Figure 1A. We began
by screening the GWAS statistics of immune cells using SNPs. Next
we conducted an MR analysis to assess the relationship between
immune cells and the risk of BC, identifying three immune cells with
a causal effect on the risk of BC. Subsequently, directional MR
analysis was employed, revealing that BC has no significant causal

FIGURE 2
Mendelian randomization analyses for immune-cell traits and risk of breast cancer. (A,B)CD24+ CD27+ B cells. (C,D) IgD- CD38+ B cells. (E,F)CD14+

CD16+ monocytes.
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effect on the levels of these three immune cells. Therefore, we
introduced metabolites as potential mediators and conducted MR
analysis with BC after SNPs screening, identifying eight metabolites
with a causal relationship with the risk of BC. Finally, we utilized the
SNPs of these three immune cells as exposure factors and the levels
of the eight metabolites as outcome factors for MR analysis. Our
findings indicated that one immune cell could collectively increase
the risk of BC by elevating the level of one metabolite and reducing
the level of another metabolite (Figure 1B).

3.2 Selection of instrumental variables

Following established quality control criteria, SNPs associated
with immune cells were selected as instrumental variables (IVs)
(18,621 SNPs for 731 immune cells, details in Supplementary Table
S3). Similarly, 34,843 SNPs associated with 1,400 metabolites were
chosen as IVs (details in Supplementary Table S4). The F-test results
for these SNPs exceeded the threshold of 10, indicating their strong
representation of immune cells and metabolites in the MR analysis.
This suggested that the selected IVs were informative and
dependable for estimating causal effects.

3.3 Causal estimates of the genetic
susceptibility to immune cells and
breast cancer

We conducted MR analysis on 731 immune cells associated with
BC. Out of the 731 causal pairs examined, three of these
demonstrated statistically significant casual relationships (p <
0.01). The IVW method indicated that genetically predicted
CD24+ CD27+ B cells were associated with a decreased risk of BC
(OR = 0.9978, 95% CI: 0.996–0.999, p = 0.001, Figures 2A, B). As
shown in Figures 2C, D, the IVW method revealed that genetically
predicted IgD- CD38+ B cells were linked to an increased risk of BC
(OR = 1.002, 95% CI: 1.001–1.004, p = 0.005). Additionally, in
Figures 2E, F, the IVW method demonstrated that genetically
predicted CD14+ CD16+ monocytes were also associated with an
increased risk of BC (OR = 1.000, 95% CI: 1.000–1.001, p = 0.005).
Subsequently, three sets of statistically significant samples were
utilized to perform a reverse MR study, mitigating the impact of
reverse causation.

Furthermore, MR-Egger regression and weighted median
analyses supported the consistency of these casual
relationships. Reverse MR analysis did not indicate reverse
causality (p > 0.05). In the Cochran’s Q test, p-values were all
greater than 0.05 in all 3 MR analyses (Table 2). This
heterogeneity among IVs justified the use of the random effect
model in these cases. It is worth noting that the intercept of the
MR-Egger regression did not deviate from 0, indicating that there
was no evidence of pleiotropic IVs level related to immune cells
and risk of BC (p > 0.05, Table 2). Additionally, the analysis of
Leave-one-out analysis confirmed that no single IV significantly
influenced causal inferences (Supplementary Figure S1). In
summary, These robustness and sensitivity analyses support
the reliability of the observed causal relationships between the
three immune cell traits and risk of BC.T
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3.4 Identification of metabolites with
mediating effects

Following the establishment of a unidirectional causal
relationship between the three immune cells and the risk of BC,
we sought to identify metabolites with mediating effects. Initially, we
performedMR analysis to screen metabolites exhibiting a significant
causal relationship with the risk of BC. Ultimately, eight metabolites
were identified based on the following MR screening criteria: 1)
IVW analysis method, p < 0.01; 2) Cochrane Q test, p > 0.05; 3)
pleiotropic test and sensitivity analysis, all meeting the requirements
of p > 0.05 (Figure 3; Supplementary Figure S2). Following this, we
investigated the casual effects of the three immune cells on the levels
of these eight metabolites. Notably, IgD- CD38+ B cells exhibited
causal relationships with Succinoyltaurine and Glycerate (p < 0.05 in
IVW method, Figure 4). Importantly, these SNPs also satisfied the
criteria for heterogeneity, pleiotropic tests, and sensitivity analysis
(p > 0.05, Supplementary Figure S3).

Moreover, a positive causal relationship was identified between
IgD- CD38+ B cells and Glycerate levels, with the latter also exhibiting a
positive causal relationship with the risk of BC (p < 0.05 in IVW

method, Figure 5). In contrast, IgD- CD38+ B cells displayed a negative
causal relationship with Succinoyltaurine levels, and the latter also
demonstrated a negative causal relationship with the risk of BC. These
findings suggest that that IgD- CD38+ B cells increased the risk of BC by
elevating Glycerate levels and reducing Succinoyltaurine
levels (Figure 5).

Gene Otology enrichment analysis and Protein-Protein
Interactions (PPI) map of the genes corresponding to SNPs in
mediating effect were also worth mentioning (Supplementary
Figure S4) through Metascape (Zhou et al., 2019).

4 Discussion

With the increasing focus on tumor immunity, researchers are
paying growing attention to the role of the Tumor
Microenvironment (TME) in tumorigenesis. The alterations in
TME extend beyond changes in infiltrated immune cells to
include variations in various metabolite levels resulting from the
metabolic reprogramming of cells within the TME. Metabolic
reprogramming occurs not only in tumor cells but also in

FIGURE 3
Mendelian randomization analyses for metabolite traits and risk of breast cancer. (A,I) Docosapentaenoate (n6 DPA; 22:5n6). (B,J) Pipecolate. (C,K)
Succinoyltaurine. (D,L) Glycerate. (E,M) Tetrahydrocortisol glucuronide. (F,N) Betaine. (G,O) Isoleucine to phosphate ratio. (H,P) X-19438.
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stromal cells, including immune cells, within primary tumor tissues.
This metabolic reprogramming leads to a TME characterized by
increased acidity, nutrient deficiencies, and hypoxia. These
conditions not only exacerbate metabolic reprogramming in
tumor cells and immune cells but also contribute to the creation
of an immunosuppressive microenvironment. This, in turn,
regulates immune cells differentiation of and promotes tumor
progression (Zheng et al., 2009; Lian et al., 2022). Consequently,
further exploration is warranted to better understand the role of
metabolic reprogramming in immune cells during the processes of
tumorigenesis and tumor progression.

MR relies on three key assumptions. Genetic variants must 1)
strongly associate with the exposure factor; 2) not associate with
any confounding factors; 3) influence the outcome only through
the exposure factor and not through any direct causal pathway. If
the assumption 1) is not met, MR analysis cannot be performed; If
the assumptions 2) or/and 3) are not satisfied, it may lead to false
positive results (Larsson et al., 2023). In this research, we employed

a similar approach to the previous studies on SNPs of immune cells
and metabolites to obtain IVs for MR analysis and ensure the
validity of these three assumptions (Figure 1) (Wang et al., 2024;
Wang and Zhang, 2024). In this investigation, we initially
identified a causal relationship between IgD- CD38+ B cells and
an increased risk of BC, whereas no significant causal link was
observed between the risk of BC and IgD- CD38+ B cells.
Subsequently, through an exploration of the mediating effects of
metabolites, we uncovered a negative causal association between
IgD- CD38+ B cells and Succinoyltaurine levels. Simultaneously,
there was a negative causal relationship between Succinoyltaurine
levels and the risk of BC. Conversely, a positive causal relationship
was noted between the levels of IgD- CD38+ B cells and Glycerate,
and likewise, a positive causal link existed between Glycerate levels
and the risk of BC. In summary, we inferred that IgD- CD38+

B cells could contribute to an increased risk of BC through both
positive and negative mediating effects involving Glycerate and
Succinoyltaurine.

FIGURE 4
Mendelian randomization analyses for immune-cell traits and metabolite levels. (A,B) IgD- CD38+ B cells to Succinoyltaurine levels. (C,D) IgD-
CD38+ B cells to Glycerate levels.
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BC is infiltrated by various immune cells, typically found in the
extracellular matrix or in direct contact with cancer cells (Salgado
et al., 2015). Among these immune cells, adaptive immunity
mediated by lymphocytes plays a crucial role in eliciting an
effective anti-tumor response (Galon et al., 2013). While T
lymphocytes primarily fulfill an anti-tumor immune function,
recent research has highlighted the increasingly recognized role
of infiltrating B lymphocytes in BC, with CD20+ B lymphocytes
serving as a notable representative (Hussein and Hassan, 2006).
CD20+ B lymphocytes contribute to an anti-tumor response by
generating antibodies against BC antigens, releasing immunogenic
cytokines and chemokines, and presenting antigens to T cells
(Brown et al., 2014; Sarvaria et al., 2017). Nonetheless, a subset
of B cells exists that fosters tumor growth by promoting
inflammation and immunosuppression. This is achieved through
the secretion of anti-inflammatory and angiogenic mediators, as well
as interactions involving immune complexes and complement
activation (Yuen et al., 2016). The IgD- CD38+ B cells identified
in our study belong to a subtype of inhibitory B cells that can elevate
the risk of BC through mediating effects (with metabolites as
mediators). It has been observed that the heightened infiltration
levels of IgD- CD38+ B cells were associated with increased

inflammation (Wang et al., 2022). In regulatory B cells (Bregs)
with IL10+ IgD- CD38+, PPARδ was significantly upregulated.
However, the immunosuppressive function of IL10+ IgD- CD38+

Bregs could be blocked, and cancer immunotherapy enhanced, by
using PPARδ inhibitors (Chen et al., 2023b). Overall, research on
IgD- CD38+ B cells is still limited at present, and further in-depth
study is required to fully understand its function and role in
tumorigenesis and tumor immunity.

Single nucleotide polymorphisms (SNPs) play a pivotal role in
BC. Existing research indicated a close association between the
polymorphism at SNPs and the risk of BC (Jupe et al., 2001;
Arancibia et al., 2021). These variations may influence gene
expression, thereby impacting crucial biological processes such as
cell proliferation, differentiation, and apoptosis (Morales-Pison
et al., 2021). SNPs variations could lead to alterations in protein
structure or function, consequently disrupting the normal regulation
of cellular signaling pathways and promoting the occurrence and
progression of BC (Noguchi et al., 2009). Moreover, SNPs may
influence the response of patients with BC to treatment. Some SNPs
could affect the activity of drug-metabolizing enzymes, thus
impacting drug concentrations and efficacy in vivo, ultimately
affecting treatment effects and prognosis for patients with BC

FIGURE 5
Mediation analyses for the association between IgD- CD38+ B cells and risk of breast cancer. (A)Mediator: Succinoyltaurine. (B)Mediator: Glycerate.
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(Noguchi et al., 2009; Duong et al., 2023; Oliva et al., 2023). These
genes as mentioned, which could be influenced by SNPs and had an
impact on the pathogenesis and treatment of BC, include non-
coding genes and genes encoding protein, such as those in our
research. In summary, SNPs play a significant role in the occurrence,
development, and treatment of BC. Further in-depth research into
the mechanisms of action of these SNPs will contribute to a better
understanding of the pathophysiological processes of BC, providing
a theoretical basis and clinical guidance for personalized treatment
approaches.

Although we endeavored to enhance the objectivity and credibility
of our research during the design stage, we acknowledge certain
limitations and shortcomings. Despite utilizing genetic statistics
from the open GWAS database, it is important to note that these
data might not encompass all ethnic groups and populations, as our
focus was primarily on the European population. Since the current
GWAS datasets of immune cells and metabolites were only from
European population, to ensure the same genetic background, we
chose breast cancer GWAS data from European population. We also
expect more GWAS datasets of other people (such as Asians, Africans,
etc.) to verify our results in the future. MR analysis provides robust
evidence of causality, but it relies on pivotal assumptions, including the
absence of genetic confounding factors. Any violation of these
assumptions may impact the accuracy of the results. Moreover, our
research assumes a linear relationship between exposures and
outcomes. However, we cannot assess potential nonlinear
relationships. Although our analysis identified Succinoyltaurine and
Glycerate as mediating factors, the regulation and influence of
metabolic levels were intricate, implying the possible existence of
other unconsidered mediating factors. While our study revealed a
causal relationship between IgD- CD38+ B cells and the risk of BC,
these results should be cautiously interpreted in the clinical context.
Further research is needed to validate our findings and determine the
clinical implications. Lastly, our study aims to generate new hypotheses
rather than definitive conclusions, and there is a risk of false positives if
multiple tests are not corrected. Therefore, our results should be viewed
as preliminary and require further validation in future research.

5 Conclusion

This MR study provides novel genetic evidence supporting a
causal relationship between IgD- CD38+ B cells and the risk of BC.
Through mediation analysis, we identified that IgD- CD38+ B cells
contribute to an increased risk of BC through both positive and
negative mediation effects involving Glycerate and
Succinoyltaurine. Overall, these findings suggest the potential
for clinicians to assess the risk of BC in patients by measuring
the levels of blood IgD- CD38+ B cells. Nevertheless, further
clinical research and experiments are warranted to validate
these findings in the future.
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