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Introduction: Developing effective breast cancer survival prediction models is
critical to breast cancer prognosis. With the widespread use of next-generation
sequencing technologies, numerous studies have focused on survival prediction.
However, previous methods predominantly relied on single-omics data, and
survival prediction using multi-omics data remains a significant challenge.

Methods: In this study, considering the similarity of patients and the relevance of
multi-omics data, we propose a novel multi-omics stacked fusion network
(MSFN) based on a stacking strategy to predict the survival of breast cancer
patients. MSFN first constructs a patient similarity network (PSN) and employs a
residual graph neural network (ResGCN) to obtain correlative prognostic
information from PSN. Simultaneously, it employs convolutional neural
networks (CNNs) to obtain specificity prognostic information from multi-
omics data. Finally, MSFN stacks the prognostic information from these
networks and feeds into AdaboostRF for survival prediction.

Results: Experiments results demonstrated that our method outperformed
several state-of-the-art methods, and biologically validated by Kaplan-Meier
and t-SNE.
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1 Introduction

According to the Global Cancer Statistics 2020, 2.26 million new cases of breast cancer
were diagnosed in 2020, and the deaths from breast cancer were in the fifth rank of all
cancers (Sung et al., 2021). Breast cancer has become the most prevalent cancer in the world
(Arnold et al., 2022). Survival prediction is an essential part of cancer prognosis. It aims to
predict the survival risk of cancer patients and provide recommendations for pathologists
and doctors in treatment (Hagerty et al., 2005). Accurate and reliable survival prediction can
provide doctors with scientific guidance and improve the survival rate of patients. More
importantly, the survival prediction tools could formulate reasonable treatment strategies
for patients, avoid unnecessary pain caused by over-treatment, and improve the quality of
life of patients. Meanwhile, it reduces the burden of doctors and avoids the wastage of
medical resources (Deepa and Gunavathi, 2022). Therefore, developing accurate and
reliable survival prediction methods is vital for the treatment and prognosis of breast cancer.
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With the widespread application of next-generation sequencing
technologies and the accumulation of medical data on cancers,
plenty of survival prediction methods have been developed,
including (i) statistical survival analysis methods and (ii)
machine learning-based methods. Statistical survival analysis
methods such as CoxPH and LogRank test use survival data and
a few covariates to predict patient survival (Michaelson et al., 2002).
However, these methods are difficult to model and not applicable to
analyzing large amounts of data. Machine learning-based methods
effectively address these limits of statistical survival analysis
methods. Algorithms such as Support Vector Machines (SVM),
Random Forest (RF) and Logistic Regression (LR) obtain prognostic
features from large amounts of cancer data to predict survival (Xu
et al., 2012). However, machine learning-based methods require
researchers to perform laborious and complex feature
engineering work.

In recent years, deep learning methods have provided scientists
with powerful tools for extracting high-quality prognostic
information from massive omics data and have been proven
effective in survival prediction (LeCun et al., 2015; Deepa and
Gunavathi, 2022). For instance, Ching et al. (2018) developed a
neural network model Cox-nnet with a Cox regression layer to
predict survival using RNA-Seq data. Katzman et al. (2018)
proposed DeepSurv to predict patient survival and the effect of
covariates on patient survival risk by combining DNN and Cox-PH.
However, the human genome is extremely complex, and various
factors influence cancer pathogenesis (Lujambio and Lowe, 2012).
Multi-omics data contains a wealth of information, providing an
unprecedented opportunity to investigate the occurrence and
progression from multiple perspectives (Arjmand et al., 2022).
But the deep learning survival prediction methods described
above are inapplicable to multi-omics data. Therefore, deep
learning methods based on multi-omics data have risen to
prominence in survival prediction (Herrmann et al., 2021; Kang
et al., 2022).

One kind of survival prediction research predicts patients’
survival risk (survival rate) based on their survival time and
survival status. For example, Cheerla et al. proposed introducing
the COX loss function in the deep learning model to fusion
clinical data, gene expression data, microRNA expression data,
and WSIs (Whole Slide Images) to predict the survival rate of
patients with 20 cancers (Cheerla and Gevaert, 2019). Li et al.
(2022) proposed HFBSurv to predict patient survival by
employing a factorized bilinear model to fuse gene expression,
CNV, and pathology image features step by step. Another
survival prediction research predicts the long and short
survival of cancer patients. For instance, Sun et al. proposed
MDNNMD, a survival prediction model that integrates clinical,
CNV, and gene expression data of breast cancer by fusing three
DNNs with different weights (Sun et al., 2018). AMDN extracts
prognostic features of clinical and gene expression data using
NMF matrix decomposition combined with attention
mechanisms to predict breast cancer survival (Chen et al.,
2019). Subsequently, Arya et al. proposed a stacked
integration model STACKED RF to overcome the limitation
that MDNNMD requires manual adjustment of fusion weights
(Arya and Saha, 2020). In the follow-up research, they introduced
a gated attention mechanism into STACKED RF to enhance the

prediction performance, named SiGaAtCNN (Arya and Saha,
2021). However, previous survival prediction studies based on
multi-omics data focus on extracting prognostic features from
various multi-omics data, rather than patient similarity and
correlation of multi-omics data.

To address these issues in classification prediction studies of
long and short survival, we propose a novel Multi-omics Stacked
Fusion Network (MSFN) for breast cancer survival prediction. First,
we construct a patient similarity network using multi-omics data.
Then, we employ ResGCN to obtain similarity information of
patients and correlation information of multi-omics data.
Simultaneously, we construct CNNs for each omics data to
obtain the specificity information. Finally, we stack the
prognostic information from the hidden layers of the networks
and utilize AdaboostRF for survival prediction. The superiority of
MSFN is to comprehensively consider the specificity information of
multi-omics data, the similarity information of patients, and the
correlation information of multi-omics data, stacking these
information to achieve more accurate and reliable survival
prediction. The contributions of this work are summarized
as follows:

• We propose a novel multi-omics stacked fusion network
framework that comprehensively obtains survival-related
information from multi-omics data for survival prediction.

• We integrate multi-omics data with Similarity Network Fusion
(SNF) that sufficiently utilizes the similarity between patients
and the correlation of multi-omics data to generate a
comprehensive patient similarity network.

• We use ResGCN to extract the prognostic information of the
patient similarity network, leveraging its residual connectivity
to achieve a deeper network structure while effectively
addressing gradient vanishing.

2 Materials and methods

2.1 Datasets and preprocessing

To investigate the performance of our method, we conducted
comprehensive and rigorous experiments on the BRCAmulti-omics
dataset from TCGA (The Cancer Genome Atlas). We obtained this
dataset from the UCSC Xena platform (http://xena.ucsc.edu/) and
removed samples and features with missing values above 20%.
1048 patient samples were finally selected, each sample contained
clinical, gene expression, CNV, and survival data. This is because

TABLE 1 Overview of the dataset.

Description Value

Threshold (years) 5

Total patients 1048

Long-time survivors 248

Short-time survivors 800

Average survival (months) 42.34
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clinical, gene expression and CNV data are highly associated with
cancer occurrence and progression, and they have been used
extensively in previous survival prediction studies (Shlien and
Malkin, 2009; Li et al., 2017; Kalafi et al., 2019). Then, we
divided patients into long-term and short-term survivors using a
threshold of 5-year survival, with long-term survivors labeled as
1 and short-term survivors labeled as 0. The overview description of
the dataset is shown in Table 1.

For the clinical data, we first removed not reported data and
features and samples with more than 20% missing values. Then,
we removed irrelevant text descriptions, markers, and years
from the clinical data. Subsequently, according to the data
processing procedure in the study by Sun et al. (2018); Arya
and Saha (2020); Arya and Saha (2021), we screened clinical
features such as age, tumor size, and TNM stage, and performed

label coding and binarization for the categorical features.
Finally, we obtained 33 features as clinical features. Since
there were no missing values in the gene expression and CNV
data, we only estimated missing values for clinical data.
Specifically, we divided the 33 clinical features into
24 discrete-valued features and 9 continuous-valued features.
For continuous features, we use the k-Nearest Neighbor
algorithm (KNN) for interpolation then normalized them
using the min-max normalization with the range set to [0,1]
(Troyanskaya et al., 2001; Patro and Sahu, 2015). For the discrete
features we used the mode interpolation (García-Laencina et al.,
2015). For gene expression data, we also used the max-min
normalization for normalization with the range set to [0,1]. For
CNV data, we directly use the discretized raw data. The gene
expression and CNV data for each patient in the dataset has
60,488 and 19,729 features. This high dimensionality of data
leads to the “dimensionality catastrophe” that negatively affects
the performance of deep learning methods (Berisha et al., 2021).
Therefore, we used the renowned mRMR algorithm for feature
selection (Peng et al., 2005). Then, we searched the optimal
number of gene expression and CNV features in steps of 100
(Arya and Saha, 2020; Arya and Saha, 2021). Finally, we selected
400 gene expression features, 200 CNV features, and all
33 clinical features as model inputs, as shown in Table 2.

TABLE 2 Feature selection.

Data type Total features Selected features

Clinical 190 33

Gene Expression 60,488 400

CNV 19,729 200

FIGURE 1
The framework of MSFN.
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2.2 Methods

The proposed MSFN consists of three components. In the
first component, MSFN constructs patient similarity networks
using SNF and employs ResGCN to obtain similarity information
of patients and correlation information of multi-omics data. In
the second component, MSFN constructs CNNs for each omics
data to obtain the specificity prognostic information. The last
component is extracting and stacking the prognostic information
of ResGCN and CNNs, feeding them into AdaboostRF for
survival prediction. The framework of MSFN is briefly shown
in Figure 1. The implementation of our method is available at
https://github.com/AckerMuse/MSFN.

2.2.1 A: Features extraction by ResGCN
2.2.1.1 Construction of patient similarity network

In order to construct the patient similarity network, we employ
the similarity network fusion (SNF) to construct the patient
similarity network (Wang et al., 2014). SNF can integrate multi-
omics data from clinical, CNV and gene expression data to generate
a comprehensive patient similarity network for fully leverages
patients’ similarities and the correlation of multi-omics data.
Assuming there are n patients, each patient has m types of data.
We denote the patient similarity network as a graph G � (V, E),
where V represents the set of patients,i.e.,{x1, x2, x3, . . . , xn}. The
edge E corresponds to the similarity relation between vertices v ∈ V
in the graph. The weights of these edges are represented by an n × n
similarity matrix W, which is computed by Eq. 1:

W i, j( ) � exp −ϑ
2 xi, xj( )
λεi,j

⎛⎝ ⎞⎠ (1)

where λ is the hyperparameter, ϑ(xi, xj) is the euclidean distance
between patients xi and xj, and εi,j is used to eliminate the scaling
problem (Wang et al., 2014). Then, the similarity matrix is
normalized by Eq. 2:

Pi,j �
Wi,j

2∑k≠iWi,k
, j ≠ i

1/2, j � i

⎧⎪⎪⎨⎪⎪⎩ (2)

Suppose Ni is the set of neighbor nodes of xi. We can calculate
the similarity matrix L of the single omics data by Eq. 3:

Li,j �
Wi,j∑k∈Ni

Wj,k
, j ∈ Ni

0, otherwise

⎧⎪⎪⎨⎪⎪⎩ (3)

Let P(v)
t denote the similarity matrix after normalization of the

v-th omics data (0< v≤m) in the t-th iteration. Update P(v)
t

according to Eq. 4:

P v( )
t+1 � L v( ) ∑k≠vP

k( )
t

m − 1
( ) L v( )( )T (4)

where the L(v) denotes the local similarity matrix of the v-th omics data.
Through continuous iterative fusion, the SNF ultimately generates a
patient similarity network containing correlation information from all
omics data. In this work, the patient similarity network is combined
with ResGCN for cancer survival prediction.

2.2.1.2 Similarity and correlation features extraction
by ResGCN

Since the patient similarity network constructed by SNF is
graph-structured data, we employ ResGCN to obtain the survival
prediction features from it (Li et al., 2019). ResGCN modifies the
data transmission mechanism in graph neural networks to
mitigate the gradient vanishing problem and overcome the
limitation that graph neural networks cannot construct deep
networks. As shown in Figure 2, ResGCN takes the feature
matrix of multi-omics data and the patient similarity network
as input. After the residual graph convolution operation, outputs
the feature matrix of the node. The propagation mechanism of
ResGCN can be first represented as Eq. 5:

G N( ) � f G N − 1( ), A( ) � σ AG N − 1( )W N( )( ) (5)
where G(N) is the output of the N-th layer, and W(N) is the
weight matrix of N-th layer. f() denotes the graph convolution
operation. σ() denotes the nonlinear activation function.
However, this propagation mechanism only considers the
feature vectors of all neighboring nodes, and ignores the nodes
themselves. Therefore, self-connection is added to A to overcome
this problem, defined as Â � A + E, where E denotes the identity
matrix. Moreover, to avoid changes in the scale of the
eigenvectors during the multiplication operation, D−1

2AD−1
2 is

defined to normalize A, where D is the diagonal node degree
matrix. Therefore, the propagation mechanism is redefined as
Eq. 6.

G N( ) � f G N − 1( )( ) � σ ~D
−1
2 ~A ~D

−1
2G N − 1( )W N( )( ) (6)

Theoretically, deeper networks possess more excellent learning
capabilities than shallow neural networks to capture feature
representations from more complex data (Bianchini and Scarselli,
2014). Furthermore, deeper neural networks are typically able to
achieve outstanding performance with relatively less training data.
These are particularly significant for multi-omics data, which are
often complex and challenged with limited sample sizes (Picard
et al., 2021; Zhang et al., 2021). ResGCN uses residual connections to
improve the information flow in the network to alleviate the gradient
vanishing problem and allow ResGCN to build deep networks
(Li et al., 2019). Thus, the new propagation mechanism can be
defined as Eq. 7:

G N + 1( ) � f G N( ), A( ) + G N( ) � G N + 1( )res + G N( ) (7)
After G(N) is transformed by f, vertex-wise addition is

performed to obtain G(N + 1). The residual mapping f learns
to take the patient similarity network as input and outputs a
residual graph representation G(N + 1)res for the next layer.
After several layers of residual convolution, the fusion and
MLP modules are used to fuse the data processed by multiple
residual blocks and output the prediction results. Then, we
extract features representing patient similarity information
and multi-omics correlation information from the fusion layer
in the trained ResGCN. In summary, ResGCN mitigates the
gradient vanishing by residual connection mechanism, which
improves data transmission in the network and allows for deeper
network architecture to fit complex multi-omics data to obtain
survival prediction information.

Frontiers in Genetics frontiersin.org04

Zhang et al. 10.3389/fgene.2024.1378809

https://github.com/AckerMuse/MSFN
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1378809


2.2.2 B: Features extraction by CNN
To obtain specificity features for each omics data, we

construct CNN for each omics data. Each CNN consists of an
input layer, a convolutional layer, a fully connected layer, and an
output layer, as shown in Figure 3. After the omics data is fed
into the CNN, the convolution layer performs a convolution
operation to generate the feature map and adds padding to the
convolutional layer to control the feature map size.
Subsequently, the flattening operation maps the output of the
convolutional layer to a fully connected layer containing
150 units for survival prediction. In addition, the glorot
initialization technique is used to generate random numbers
to initialize the convolutional kernel (Glorot and Bengio, 2010).
We also applied dropout and L2 regularization techniques to
prevent overfitting during training (Cortes et al., 2012;
Poernomo and Kang, 2018). Finally, we extract specificity
features representing each omics data from the fully
connected layers of the three trained CNNs.

2.2.3 C: Stack integration and survival prediction
Stacking hidden layer features of deep learning networks is an

effective strategy for integrating multi-omics data for survival
prediction (Arya and Saha, 2020; Arya and Saha, 2021). It allows
flexible integration of feature representations from different neural
network models to integrate correlation prognostic and specificity
prognostic information. Moreover, this strategy allows integration
in conditions that all neural network modules achieve optimal
performance, rather than training all modules simultaneously.
We stack the hidden layer features extracted from ResGCN and
the three CNNs according to Eq. 8.

Fstacked � FPSN ⊕ FClin ⊕ FExpr ⊕ FCNV (8)

where FPSN represents the feature representation obtained from the
ResGCN hidden layer, FClin, FExpr, and FCNV represent the feature
representation obtained from the CNN hidden layer of each omics
data, respectively. Fstacked represents the obtained stacked feature
representation, and ⊕ is the matrix concat operation. Then, based on

FIGURE 2
Feature extraction process by ResGCN.

FIGURE 3
Feature extraction process by CNN.

Frontiers in Genetics frontiersin.org05

Zhang et al. 10.3389/fgene.2024.1378809

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1378809


Yifan et al. and Arya et al. we used Fstacked to train the AdaBoostRF
for the final breast cancer survival prediction (Arya and Saha, 2020;
Yifan et al., 2021).

3 Results

3.1 Evaluation metrics and
experiment settings

To comprehensively evaluate ourmodel, we use the AreaUnder the
Curve (AUC), accuracy, precision, Recall, F1-score, and Matthew’s
correlation coefficient (Mcc) as performance evaluationmetrics (Goutte
and Gaussier, 2005; Huang and Ling, 2005; Chicco and Jurman, 2020).
The definitions of these metrics are shown in Eqs 8–14:

AUC �
∑ pi, nj( )

pi > nj
P × N

(9)

where P is the number of positive samples. N is the number of
negative samples. pi is the positive sample prediction score. nj is the
negative sample prediction score.

Accuracy � TP + TN

TP + TN + FP + FN
(10)

Precision � TP

TP + FP
(11)

Recall � TP

TP + FN
(12)

F1 − Score � 2 × Recall × Precision

Recall + Precision
(13)

Mcc � TP × TN − FP × FN��������������������������������������������
TP + FN( ) × TP + FP( ) × TN + FN( ) × TN + FP( )√

(14)
where TP, FP, TN, and FN represent true positives, false
positives, true negatives, and false negatives in the confusion
matrix, respectively.

To overcome the variance problem caused by the limited sample
size and sample imbalance, we used 10-fold cross-validation to

evaluate the performance of MSFN (Rodriguez et al., 2009; Jiang
and Wang, 2017). The 1048 patients were divided into 10 subsets,
9 of which were combined as the training set while the remaining
1 subset was used as the test set. The final performance was the
average of the model’s performance on the test set. MSFN was
implemented using Pytorch. The experiments were executed on a
PC with a 2.90 GHz Intel Core i7-10700 processor and NVIDIA
GeForce RTX 3070 GPU.

3.2 Comparison with previous studies

To demonstrate the effectiveness of MSFN. We uniformly used
10-fold cross-validation to evaluate and compare it with several
machine learning-based methods and deep learning-based methods.
Specifically, we selected three widely used machine learning-based
models as the baseline: LR (Logistic Regression) (Jefferson et al.,
1997), RF (Random Forest) (Nguyen et al., 2013) and SVM (Support
Vector Machine) (Xu et al., 2012). Then, we compared MSFN with

TABLE 3 Performance comparison of MSFN and comparison methods.

Methods Accuracy AUC Precision Recall F1-score Mcc

LR 0.837 0.788 0.548 0.707 0.615 0.523

RF 0.803 0.736 0.452 0.629 0.521 0.413

SVM 0.821 0.757 0.613 0.633 0.618 0.506

MDNNMD 0.697 0.736 0.313 0.233 0.267 0.128

PregGAN 0.814 0.756 0.617 0.580 0.597 0.477

Stacked RF 0.905 0.956 0.831 0.754 0.790 0.731

SiGaAtCNN RF 0.943 0.981 0.873 0.891 0.882 0.845

Heterogeneous stacked RF 0.891 0.826 0.807 0.695 0.758 0.688

MSFN 0.978 0.991 0.932 0.964 0.944 0.930

Bold values represent the highest performance of the model on this metric in the experiment.

FIGURE 4
Impact of different ResGCN layers on the model performance.
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five current state-of-the-art deep learning-based models. Below are
brief descriptions of deep learning-based methods:

• MDNNMD (Sun et al., 2018): MDNNMD is a DNN-based
cancer survival prediction method. It integrates multi-
omics data through multiple DNNs and predicts breast
cancer survival by setting different weights for
network fusion.

• Stacked RF (Arya and Saha, 2020): Stacked RF is a CNN-based
cancer survival prediction method. It trains RF to predict breast
cancer survival by stacking three CNN networks’ hidden layer
feature representations.

• SiGaAtCNN RF (Arya and Saha, 2021): SiGaAtCNN RF is an
improved method of Stacked RF. It introduces the gated
attention mechanism for better feature representation and
stacks hidden layer feature representations of gated

TABLE 5 Performance comparison of different omics data.

Data type Accuracy AUC Precision Recall F1-score Mcc

Clin 0.919 0.954 0.863 0.819 0.834 0.787

CNV 0.765 0.770 0.464 0.438 0.431 0.272

Expr 0.804 0.827 0.658 0.407 0.481 0.371

Multi-omics 0.978 0.991 0.932 0.964 0.944 0.930

Bold values represent the highest performance of the model on this metric in the experiment.

FIGURE 5
Impact of different ResGCN layers on the model performance.

TABLE 4 Performance comparison between different variants of MSFN.

Accuracy AUC Precision Recall F1-score Mcc

MSFN/-ResGCN 0.902 0.964 0.869 0.735 0.770 0.726

MSFN/-CNNs 0.960 0.975 0.924 0.932 0.928 0.904

MSFN/-RF 0.965 0.951 0.921 0.909 0.937 0.919

MSFN 0.978 0.991 0.932 0.964 0.944 0.930

Bold values represent the highest performance of the model on this metric in the experiment.
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attention CNNs for training RF to predict breast
cancer survival.

• PregGAN (Zhang et al., 2022): PregGAN is a CGAN-based
survival prediction method. It generates high-quality pseudo-
samples based on limited samples for reliable survival
prediction.

• Heterogeneous stacked RF (Jadoon et al., 2023): Heterogeneous
stacked RF is a heterogeneous ensembled classification
prediction model that integrates CNN and DNN to predict
breast cancer patient survival.

The prediction results are shown in Table 3. From the results,
MSFN achieves AUC value of 0.9787 and accuracy of 0.991, which is
superior to other methods. Other evaluation metrics are also
obviously improved. Specifically, MSFN achieves superior
prediction performance compared to SiGaAtCNN RF, Stacked
RF, Heterogeneous stacked RF, and MDNNMD because the
patient similarity information and multi-omics data correlation

information from the patient similarity network provide more
comprehensive and wealthy prognostic information for survival
prediction. MSFN achieves significant performance improvement
compared to traditional machine learning methods and PregGAN
which directly integrate multi-omics data. This demonstrates the
effectiveness and superiority of the stacked integration strategy in
multi-omics data fusion compared to direct data integration.

3.3 Performance comparison of different
survival cohorts

To further validate the prediction performance of MSFN, we
compared its performance in different survival cohorts. We used the
ten-fold cross-validation for the experiments and displayed the
results in Figure 4. It is obvious that MSFN presents a better
prediction performance in both long and short survival cohorts,
and the gap between the prediction performance of the two cohorts

TABLE 6 The results of incremental feature number selection.

CNV Gene expression Accuracy AUC Precision Recall F1-score Mcc

100 100 0.892 0.970 0.853 0.740 0.760 0.709

100 200 0.968 0.989 0.904 0.908 0.910 0.925

100 300 0.960 0.980 0.927 0.948 0.951 0.949

100 400 0.962 0.984 0.906 0.936 0.919 0.894

100 500 0.966 0.985 0.932 0.962 0.950 0.928

200 100 0.969 0.990 0.931 0.936 0.946 0.923

200 200 0.962 0.989 0.931 0.960 0.941 0.929

200 300 0.951 0.983 0.896 0.924 0.908 0.88

200 400 0.978 0.991 0.932 0.964 0.944 0.930

200 500 0.971 0.990 0.932 0.960 0.943 0.930

300 100 0.956 0.979 0.944 0.960 0.940 0.934

300 200 0.950 0.988 0.916 0.888 0.899 0.873

300 300 0.960 0.987 0.942 0.956 0.948 0.931

300 400 0.965 0.991 0.937 0.954 0.951 0.928

300 500 0.971 0.990 0.929 0.952 0.947 0.930

400 100 0.960 0.987 0.950 0.960 0.948 0.946

400 200 0.949 0.982 0.889 0.920 0.896 0.883

400 300 0.973 0.989 0.940 0.952 0.948 0.933

400 400 0.974 0.991 0.931 0.961 0.939 0.926

400 500 0.904 0.972 0.870 0.744 0.777 0.731

500 100 0.960 0.989 0.935 0.960 0.938 0.946

500 200 0.971 0.991 0.931 0.956 0.934 0.923

500 300 0.912 0.976 0.890 0.740 0.785 0.753

500 400 0.972 0.987 0.935 0.964 0.950 0.918

500 500 0.960 0.992 0.924 0.924 0.914 0.900

Bold values represent the highest performance of the model on this metric in the experiment.
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is very small. This is attributed to that MSFN incorporates the
prediction information from different deep learning modules,
considering both correlation prognostic information and
specificity prognostic information.

3.4 Ablation study

We verify how different modules of MSFN affect the
performance through an ablation study and design three variants:
i) MSFN/-CNNs: MSFN without CNN modules. ii) MSFN/-
ResGCN: MSFN without ResGCN module. iii) MSFN/-RF:
MSFN without AdaboostRF, and the prediction results are output
by MLP. We compared MSFN with the variants described above. As
can be seen from Table 4, both MSFN/-ResGCN and MSFN/-CNN
perform lower than MSFN. Such results can be attributed to the
incomplete prediction features obtained by MSFN/-ResGCN and
MSFN/-CNN. This also reflects the importance of integrating
prognostic information. Furthermore, MSFN performs better
than MSFN/-RF. This is because the AdaboostRF is an ensemble
machine learning algorithm with better feature learning ability than
simple MLP and effectively deals with complex feature
representations of multi-omics data.

3.5 Effect of multi-omics data

To validate the effect of multi-omics data, we constructed MSFN
using each omics data, respectively. Then, we compared them with
MSFN constructed using multi-omics data. As shown in Table 5, Clin,
CNV, and Expr represent the MSFN constructed with clinical, CNV,
or gene expression data, respectively. The accuracy and AUC only
reach a maximum of 0.919 and 0.954 when using single-omics data.
MSFN achieves the best performance with multi-omics data, with all
evaluation metrics significantly better than single-omics data. This
indicates that MSFN can obtain comprehensive prognostic
information from multi-omics data and significantly improve
prediction performance.

3.6 Effect of ResGCN layers

To explore the effect of different ResGCN layers on the model
performance, we evaluated the performance of MSFN by changing
the layers of ResGCN. As can be seen in Figure 5, the performance of
MSFN gradually improves as the number of ResGCN layers
increases. Several metrics achieved their maximum when the
layer is set to 2. This demonstrates that the deep ResGCN
constructed by residual concatenation can properly fit the multi-
omics data, bringing performance improvement to the entire model.
However, all metrics fluctuate and gradually decrease as the number
of layers increases. This may be because ResGCN with too many
layers makes the model structure too complex, leading to overfitting
of the model during training.

3.7 Effect of the number of features

To explore the effect of the number of features on model
performance, we used the incremental method based on previous
studies to conduct experiments. Specifically, We employed the
mRMR algorithm to select the top 500 features from CNV and
gene expression data. Then, we searched with a step size of 100 to
evaluate the performance of MSFN under different combinations
of feature numbers (Sun et al., 2018; Arya and Saha, 2020). Since
only 33 features were available in clinical data, we used all the
clinical features. The final results are presented in Table 6. It is
evident that the model’s performance gradually improves as the
number of features increases. MSFN achieves the best accuracy,
AUC, and Recall when the number of CNV and gene expression
features is set to 200 and 400. However, as the number of features
increases, the model’s performance remains relatively stable and
then gradually decreases. This shows that too many features
inevitably introduce noisy information, reducing the model’s
focus on valuable features and leading to performance
degradation. Consequently, we selected the top 200 CNV and
top 400 gene expression features along with all 33 clinical features
as model inputs.

FIGURE 6
The Kaplan-Meier curves for MSFN.

FIGURE 7
The t-SNE plot of stacked feature classification via MSFN.
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3.8 Survival analysis

To further validate the survival prediction performance of
MSFN, we performed survival analyses on the classification
results of MSFN. We plotted Kaplan-Meier curves to evaluate the
performance of MSFN in predicting long-term and short-term
survivors Rich et al. (2010), illustrated in Figure 6. The Kaplan-
Meier survival curves explicitly demonstrated a statistically
significant difference (p-value <10e-26) between long-term and
short-term survivors predicted by MSFN. This result proves that
MSFN effectively distinguishes between long-term and short-
term survivors.

To validate the predictive ability of the stacked feature
representations obtained in MSFN, we utilized the t-SNE
algorithm to visualize the prediction results of the stacked feature
representations. t-SNE attempts to minimize the difference between
the conditional probabilities or similarities in the high and low
dimensional spaces to map the data in the low-dimensional space
(Van der Maaten and Hinton, 2008; Wattenberg et al., 2016). The
visualization result is shown in Figure 7, a clear demarcation
between the two groups at dimension 1 of about 25 indicates the
excellent survival prediction ability of the hidden layer features
extracted by MSFN.

4 Conclusion

Breast cancer is the most prevalent cancer worldwide and poses a
major threat to women’s health. Survival prediction can avoid the
suffering caused by over-treatment and the waste of medical resources,
which is significant for cancer treatment and prognosis. In this study, we
propose a novel stacked fusion network (MSFN) for breast cancer
survival prediction. MSFN integrates patient similarity, correlation, and
specificity information of multi-omics data, providing a more
comprehensive insight for survival prediction and effectively
enhancing the prediction ability. First, MSFN constructs a patient
similarity network and obtains patient similarity information and
correlation of multi-omics data through ResGCN. Meanwhile,
MSFN obtains the specificity information of multi-omics data
through CNN. Finally, MSFN uses the stacking strategy to
ingeniously integrate prognostic information and predict patient
survival with AdaboostRF. Experiments on TCGA’s breast cancer
dataset showed that MSFN outperformed state-of-the-art methods in
survival prediction. In future work, we will focus on exploring the
survival regression issues. Furthermore, we will explore the
interpretability of the survival prediction model to understand the
decision-making process of the models and the interpretation of
the results.
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