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Introduction: DNA methylation is a critical epigenetic modification involving the
addition of a methyl group to the DNA molecule, playing a key role in regulating
gene expression without changing the DNA sequence. The main difficulty in
identifying DNA methylation sites lies in the subtle and complex nature of
methylation patterns, which may vary across different tissues, developmental
stages, and environmental conditions. Traditional methods for methylation site
identification, such as bisulfite sequencing, are typically labor-intensive, costly,
and require large amounts of DNA, hindering high-throughput analysis.
Moreover, these methods may not always provide the resolution needed to
detect methylation at specific sites, especially in genomic regions that are rich in
repetitive sequences or have low levels of methylation. Furthermore, current
deep learning approaches generally lack sufficient accuracy.

Methods: This study introduces the iDNA-OpenPrompt model, leveraging the
novel OpenPrompt learning framework. Themodel combines a prompt template,
prompt verbalizer, and Pre-trained Language Model (PLM) to construct the
prompt-learning framework for DNA methylation sequences. Moreover, a
DNA vocabulary library, BERT tokenizer, and specific label words are also
introduced into the model to enable accurate identification of DNA
methylation sites.

Results and Discussion: An extensive analysis is conducted to evaluate the
predictive, reliability, and consistency capabilities of the iDNA-OpenPrompt
model. The experimental outcomes, covering 17 benchmark datasets that include
various species and three DNA methylation modifications (4mC, 5hmC, 6mA),
consistently indicate that our model surpasses outstanding performance and
robustness approaches.
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1 Introduction

DNA methylation is essential for numerous biological processes and is associated with
multiple diseases, particularly cancer (Maegawa et al., 2010; Yehudit and Howard, 2013).
Accurately identifying DNA methylation sites is necessary for comprehending gene regulation
and the mechanisms of diseases. Deep learning approaches have recently emerged as a
significant tool in recognizing DNA methylation sites, demonstrating encouraging
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outcomes. Presently, three extensively studied DNA methylation types
include N6-methyladenine (6mA), 5-hydroxymethylcytosine (5hmC),
and N4-methylcytosine (4mC) (Manavalan et al., 2019; Yingying
et al., 2021).

The field has recently witnessed notable advancements in
integrating deep learning methodologies. Regarding the prediction of
DNA methylation sites of 4-mC species, in 2019, introducing two
remarkable algorithms, 4mCCNN (Khanal et al., 2019) and 4mCPred-
SVM (Leyi et al., 2019), marked a leap in 4-mC prediction capabilities.
4mCCNNused a CNN-based framework, whereas 4mCPred-SVMwas
developed using support vector machine (SVM) techniques.
Additionally, Quanzhong et al. (2020) crafted DeepTorrent, a
composite model fusing CNN and BiLSTM, to identify 4-mC sites
(Quanzhong et al., 2020). Deep4mC, another innovative algorithm,
validated the effectiveness of a CNN-only approach in delivering
impressive 4-mC prediction outcomes (Haodong et al., 2020).
Hyb4mC introduced a unique approach, integrating an elastic net
with a capsule network for smaller datasets while emphasizing the
prowess of CNN for larger datasets (Ying et al., 2022). Moreover, Zeng
et al. introduced a novel two-layer deep learning structure named
Deep4mcPred, based on ResNet with long short-termmemory (LSTM)
(Rao and Minghong, 2020). Xia et al. (2023) presented the
DRSN4mCPred model, a variant based on the deep residual
network, and it can enhance the model’s capability to assimilate
intricate data characteristics (Xia et al., 2023).

The research focusing specifically on recognizing 5hmC sites is
comparatively limited. Tran TA et al. applied a unique feature
extraction approach using k-mer embeddings obtained from a
pre-trained language model (Duong et al., 2021). The BiLSTM-
5mC model leveraged one-hot encoding and nucleotide property
and frequency (NPF) techniques for representing nucleotide
sequences. It then integrated a bidirectional long short-term
memory (BiLSTM) model with a fully connected network to
forecast methylation sites (Xin et al., 2021).

The field has seen considerable research in identifying 6-mA
methylation sites. For instance, the sNNRice6mA algorithm adopted a
two-dimensional one-hot encoding approach for DNA sequences,
using a convolutional neural network (CNN) to identify 6-mA sites
(Haitao and Zhiming, 2019). Ying et al. (2021) incorporated an
attention mechanism into their model, enhancing the identification
of critical features for more accurate detection of epigenetic changes in
DNA (Ying et al., 2021).Mehedi et al. (2020) developedMeta-i6mA, a
cross-species predictive framework for 6-mA sites in plant genomes,
leveraging informative features in a comprehensive machine learning
methodology (Mehedi et al., 2020). Juntao et al. (2021) introduced
DeepM6ASeq-EL, an advanced method combining LSTM with
ensemble learning to predict human m6A sites in RNA with high
accuracy (Juntao et al., 2021). This fusion of techniques significantly
boosts the model’s prediction accuracy, offering a powerful tool for
m6A site identification in the human genome. Sho et al. (2022) used
word to vector (word2vec) and Bidirectional Encoder Representations
from Transformers (BERT) for developing BERT6mA, a deep
learning framework that showed exceptional performance in
predicting 6-mA modifications (Sho et al., 2022). Ue et al. (2022)
proposed a CapsuleNet-based DNAm6A site recognition framework,
proving its precision in methylation site prediction (Ur et al., 2022).
Sho et al. (2022) demonstrated that BERT-based models could
significantly enhance the accuracy of predicting 6-mA sites in

DNA, effectively handling interspecies variations and serving as a
valuable asset for plant genome studies and epigenetic research (Sho
et al., 2022).

Although the methods mentioned earlier have achieved varying
degrees of progress, they are all specifically designed to identify one
type of DNA methylation. Conversely, there are only a few
techniques that address all three previously mentioned
methylation categories (Lv et al., 2020; Yingying et al., 2021;
Junru et al., 2022), with notable examples being iDNA-ABT
(Yingying et al., 2021), iDNA-ABF (Junru et al., 2022), and
iDNA-MS (Lv et al., 2020). Typically, DNA methylation datasets
appropriate for deep learning contain shorter sequences per sample,
with sequences of 41 base pairs (bp) being predominantly prevalent.

Many studies indicate a growing interest in using deep learning
to predict DNA methylation, achieving significant progress in
enhancing prediction accuracy (Wang et al., 2023). However,
current deep learning-based models have not completely
exploited the capabilities of learning features. Acknowledging
this gap, the genomic sequences can be viewed as biological
texts, and the sequences’ bases can be considered biological
words (Zou et al., 2019; Dai et al., 2022). Considering this, we
propose the iDNA-OpenPrompt model, an OpenPrompt learning
approach (Ding et al., 2021) for DNA methylation sequences. The
model combines a prompt template, prompt verbalizer, and pre-
trained language model (PLM) to construct a prompt
learning framework.

Moreover, a DNA vocabulary library, BERT tokenizer, and
specific label words are also introduced into the model to enable
accurate identification of DNA methylation sites. An extensive
analysis is conducted to evaluate the predictive performance,
reliability, and consistency of the iDNA-OpenPrompt model. The
results, which include 17 benchmark datasets covering a variety of
species and three types of DNA methylation modifications (4 mC,
5 hmC, and 6 mA), consistently reveal that our model surpasses
other outstanding methods in both performance metrics and overall
robustness.

The primary contribution of this article is that the iDNA-
OpenPrompt model can learn biological contextual semantics. In
contrast to the existing approaches, iDNA-OpenPrompt brings the
following contributions:

(1) Our model creates a DNA vocabulary library and integrates it
with the BERT tokenizer for DNA methylation sequences to
develop the prompt template.

(2) Our model constructs label words specific to DNA
methylation sequences and integrates them with the BERT
tokenizer to establish a prompt verbalizer.

(3) Our model constructs an OpenPrompt learning model that
can be used for identifying DNA methylation sites.

2 Materials and methods

2.1 Dataset

For the iDNA-OpenPrompt model’s evaluation, the datasets
are selected from the iDNA-MS web server (iDNA-MS, 2020),
including training and independent testing subsets, as detailed in
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Table 1. There are 4mC, 5hmC, 6mA methylation sequences,
totaling 17 datasets, encompassing 501,200 DNA sequences.
The length of each sample in the datasets is 41 base pairs. It is
worth mentioning that in the 6mA samples, the methylated
adenine (A) is always found in the central position, and
similarly, methylated cytosine (C) is prominent in the 5hmC
and 4mC samples. Indeed, such central position characteristics
are also present in the negative samples.

Table 1 includes a “dataset” column, which lists the names of the
various datasets. Within these names, the part before the “-”
separator signifies the methylation modification type, and the
segment following the separator denotes the species type. The
“training” and “testing” columns provide detailed information
about the quantity of positive and negative samples within
each dataset.

2.2 Overview of iDNA-OpenPrompt

Figure 1 displays the overall structure of the iDNA-
OpenPrompt model. The core module of the iDNA-
OpenPrompt model (prompt model) mainly consists of three
parts: the prompt template, prompt verbalizer, and PLM. The
prompt template part involves building a DNA vocabulary library
and training it in the transformer’s BERT tokenizer to form the
prompt template. In the prompt verbalizer part, label words for
DNA methylation sequences are created, and the constructed label
words, along with the transformer’s BERT tokenizer, are used to

build a prompt verbalizer in the manual verbalizer method of
OpenPrompt learning. The BERT model, which can capture
bidirectional contextual information in the text, is used for the
PLM part. Below, the key technologies of the iDNA-OpenPrompt
model will be introduced.

2.3 Prompt learning

In a standard prompt learning setting, like in natural language
processing (NLP) tasks, input sentences are structured through a
natural language template. This process frames text classification
tasks as cloze-style tasks (Zhu et al., 2023). For example, in a task of
classification, the goal is to categorize the sentence x into various
topics, such as “I must reduce the budget” into the label. y1 �
BUSINESS or y2 � SPORTS, and the template could be expressed
as Eq. (1):

xp � CLS[ ]x, a MASK[ ]question. (1)

Given an input x � x1, x2,/, xn{ }, categorized into a label y from
the set of labels Y, the corresponding label word set is represented as
Vy � y1, y2,/, yn{ }. Here, Vy is a subset of the vocabulary V and
associated with the y category. In PLMs, denoted as P, the
probability of each word v in Vy being used to fill in the
[MASK] is represented by p([MASK] � v ∈ Vy|xp). As a result,
the text classification task is reformulated by calculating the
probabilities of label words. This computation is formulated as
Eq. (2):

TABLE 1 Overview of datasets.

ID Dataset Training Independent testing

Positive Negative Positive Negative

1 4mC_C.equisetifolia 183 183 183 183

2 4mC_F.vesca 7,899 7,899 7,898 7,898

3 4mC_S.cerevisiae 990 990 989 989

4 4mC_Tolypocladium 7,664 7,664 7,663 7,663

5 5hmC_H.sapiens 1,172 1,172 1,172 1,172

6 5hmC_M.musculus 1840 1840 1839 1839

7 6mA_A.thaliana 15,937 15,937 15,936 15,936

8 6mA_C.elegans 3,981 3,981 3,980 3,980

9 6mA_C.equisetifclia 3,033 3,033 3,033 3,033

10 6mA_D.melanogaster 5,596 5,596 5,595 5,595

11 6mA_F.vesca 1,551 1,551 1,551 1,551

12 6mA_H.sapiens 9,168 9,168 9,167 9,167

13 6mA_R.chinensis 300 300 300 300

14 6mA_S.cerevisiae 1893 1893 1893 1893

15 6mA_T.thermophile 53,800 53,800 53,800 53,800

16 6mA_Tolypocladium 1,690 1,690 1,689 1,689

17 6mA_Xoc BLS256 8,608 8,608 8,607 8,607
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p y ∈ Y
∣∣∣∣x{ }( ) � p MASK[ ] � v ∈ Vy

∣∣∣∣xp( ). (2)

In this example, if the determined probability for
V1 � business{ }, corresponding to y1 � BUSINESS, exceeds that
of V2 � sports{ } for y2 � SPORTS, it suggests that the sentence x
belongs to the BUSINESS category.

2.4 OpenPrompt

OpenPrompt (Ding et al., 2021) is an open-source toolkit
designed for prompt learning, offering both ease of use and
extensibility. It effectively modularizes the entire prompt learning
framework and considers the interactions between various modules.
OpenPrompt enables the versatile integration of different task
formats, PLMs, and prompting modules. An instance of this
flexibility is the straightforward adaptation of prefix-tuning (Li
and Liang, 2021) for text classification tasks within OpenPrompt.
This capability allows users to evaluate the broad applicability of
their prompt learning models across different tasks rather than just
focusing on performance in specific tasks.

In OpenPrompt, the template class is specifically used to create
or define textual or soft-encoding templates encapsulating the
original input. The templates are pivotal in constructing and
formatting input data for effective interaction with PLMs (Han
et al., 2021). They can wrap original text data into a format that

aligns with the structure of PLMs. Templates can add extra
contextual information to aid the model in more effectively
comprehending and handling the input data. The verbalizer
bridges PLMs and specific task requirements, offering a flexible
and effective way to customize model outputs.

2.5 Prompt template

The prompt template is to construct a prompt framework, which
involves formatting the original input data (such as sentences or
paragraphs) into a specific structure, making it more suitable for
understanding and processing by PLMs. One or more mask tokens
are often inserted (for example, the [MASK] token used in BERT).

Various studies have explored different types of templates. For
instance, there are manually written templates (Schick and
Schütze, 2020) and purely soft templates (Lester et al., 2021).
Liu et al. (2023) demonstrated effective results by keeping
manual tokens unchanged while fine-tuning a smaller portion
(Liu et al., 2023). Han et al. (2022) used contextualized
templates, necessitating the addition of specific entities to create
complete templates. Additionally, their approach to loss
calculation involved using outputs from various positions (Han
et al., 2022). Logan IV et al. (2021) introduced an empty template, a
straightforward combination of the input data, and a subsequent
[MASK] token (Logan IV et al., 2021).

FIGURE 1
Overall architecture of the iDNA-OpenPrompt Model.
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Within the iDNA-OpenPrompt model, the manual template,
which is trainable using task-specific datasets, is used. This manual
template enables the precise construction of templates based on
one’s understanding of the task and specific requirements, and it can
simplify the model training process and reduce the demand for
computational resources. The template mainly consists of two
modules: creating a DNA vocabulary library and the
BERT tokenizer.

2.5.1 Creation of the DNA vocabulary
When creating a vocabulary library for DNA methylation

sequences, unlike in traditional NLP tasks, the presence of one, two,
or even three nucleobases in a sequence does not necessarily indicate a
DNAmethylation site. Considering the categories of DNAmethylation
(4 mC, 5 hmC, and 6 mA) and the nucleobase composition for each, we
propose using DNA vocabulary for DNAmethylation sequences in the
prompt template. Here, the length of nucleobase sequences (A, T, G,
and C) is defined as kmer = 1, 2, 3, 4, 5, and 6, to form the DNA
methylation sequence vocabulary. For example, at kmer = 1, the
template includes four nucleobase words: A, T, G, and C. At
kmer = 2, there are 16 nucleobase words, such as AA, AT, AG, . . .,
and CC. Similarly, for kmer = 3, there are 64 nucleobase words; for
kmer = 4, there are 256 nucleobase words; for kmer = 5, there are
1,024 nucleobase words; and for kmer = 6, there are 4,096 nucleobase
words. The maximum k-mer value in this prompt template is set to
6 because, in DNA methylation sequences, 6 mA methylation involves
attaching a methyl group to the sixth nitrogen atom of the adenine
nucleobase. Therefore, the DNA vocabulary library contains a total of
5,460 nucleobase words. After creating the vocabulary library, the BERT
tokenizer is used to generate the tokenizer of the iDNA-
OpenPrompt model.

2.5.2 BERT tokenizer
BERT tokenizer is designed explicitly for the BERT model

and is pivotal in NLP tasks. The DNA vocabulary processed by
the BERT tokenizer enables the raw text to be transformed into
a format effectively handled by OpenPrompt learning. It breaks
down basic text strings into smaller units, tokens, words,

subwords, or symbols. To accommodate the needs of the
BERT model, the BERT tokenizer automatically adds unique
tokens such as the start of the sequence token [CLS], separator
token [SEP], and padding token [PAD]. It creates an attention
mask to indicate which tokens are meaningful and which are
for padding. The BERT tokenizer provides essential text
processing capabilities for the use of the iDNA-
OpenPrompt model.

2.6 Prompt verbalizer

In OpenPrompt, the verbalizer plays an important role,
especially when applying PLMs to downstream tasks. The
primary function of the verbalizer is to map labels to the
vocabulary; the verbalizer maps task-specific labels (such as
category labels in classification tasks) to words within the pre-
trained model’s vocabulary. This mapping allows the model to
associate its outputs with specific labels.

Like prompt templates, prompt verbalizer classes derive from a
shared base class featuring necessary attributes and essential abstract
methods. Beyond the manually defined verbalizer, OpenPrompt
includes automated options like the automatic verbalizer and
knowledgeable verbalizer (Hu et al., 2021). Critical processes such as
calibrations (Zhao et al., 2021) are also incorporated in OpenPrompt. In
the iDNA-OpenPrompt model, a manual verbalizer is chosen for the
prompt verbalizer; the manual verbalizer mainly consists of two
modules: label words and BERT tokenizer.

2.6.1 Label words
Labeling words is a crucial attribute in the manual verbalizer

component within the OpenPrompt framework. These words or
phrases are labeled words to interpret and transform the
model’s output.

In this study, the method for constructing label words is as
follows: for DNA methylation sequences and non-methylation
sequences, centering around the 21st nucleobase of the
sequences, kmer = 6 encoding is performed on the nucleobase

FIGURE 2
Schematic diagram of label_words for DNA methylation sequences.
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FIGURE 3
Representing samples before and after using the iDNA-OpenPrompt model with UMAP. (A) UMAP visualization of samples before and after
processing with the iDNA-OpenPrompt model for the species 5hmC_M.musculus and 5hmC_H.sapiens. (B) UMAP visualization of samples before and
after processing with the iDNA-OpenPrompt model for the species 4mC_cerevisiae and 4mC_C.equisetifolia. (C) UMAP visualization of samples before
and after processing with the iDNA-OpenPromptmodel for the species 6mA_F.vesca and 6mA_Tolypocladium. In Panels (A–C) (a-1) and (b-1) show
the samples before processing with the model, while (a-2) and (b-2) show the samples after processing with the model.
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sequences on both sides of the central nucleobase and the encoded
words as label words. In all 4-mC sequences (including positive and
negative samples), the 21st nucleobase is always C; in all 5-hmC
sequences, it is C, and in all 6-mA sequences, it is A.

The words encoded from the positive samples in the DNA
methylation sequence dataset are used as positive-sample label
words. In contrast, those encoded from the negative samples are
used as negative-sample label words.

For example, it is taking a positive sample from the 4-mC
category of the 4 mC_F.vesca species, “GAAGCAAAAATCGGA
AAACCCA . . . CTTTTGGTT”: the possible positive sample label
words that can be constructed are as follows: “GAAGCA, AAGCAA,
AGCAAA, GCAAAA, . . ., AAAACC, AGAAAA, GAAAAT,
AAAATT, . . ., TTGGTT”. Similarly, a negative sample was taken
from the 4-mC category of the 4 mC_F.vesca species, “TGCATA
CTTTCAGTAGTTTTCAAT . . . ATGGCAGT”: the negative
sample label words that can be constructed are as follows:
“TGCATA, GCATAC, CATACT, ATACTT, . . ., AGTTTT,
AATGCA, ATGCAT, TGCATT, . . ., GGCAGT”. To understand
the process of constructing label_words for DNA methylation
sequences, Figure 2 illustrates its schematic diagram.

2.7 PLM

The PLM of iDNA-OpenPrompt is the BERT model. The
application of the BERT model in OpenPrompt follows the
fundamental principles and structure of the BERT model (Devlin

et al., 2018) while adapting and extending it within the framework of
prompt learning. The core of the BERT model is the encoder part of
the transformer, which comprises multiple encoder layers, each
containing self-attention mechanisms and feed-forward neural
networks. One of the primary attributes of BERT is its ability to
generate bidirectional contextualized word embeddings, signifying
that it considers the context of the entire sentence when processing
each word. To learn deep language representations, the BERTmodel
undergoes pre-training on an extensive corpus, including tasks like
the masked language model (MLM) and next sentence
prediction (NSP).

2.7.1 Attention calculation
The scalar product between the query vector (Q) and key vector

(K) is computed, followed by scaling down of the result to prevent
overly large attention scores, while a scaling factor (commonly the
inverse square root of the key vectors’ dimension) is also factored in.
The attention scores are then subjected to a softmax operation for
normalization into attention weights. A weighted sum over the value
vectors (V) is then performed using these weights, resulting in the
final attention representation. The formulaic representation of self-
attention is expressed as Eq. (3) and (4):

Q � XWQ

K � XWK,
V � XWV

⎧⎪⎨⎪⎩ (3)

Self − attention Q,K,V( ) � softmax
QKT
dk

√( )V. (4)

FIGURE 3
Continued.
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In this context, X ∈ RL*dm symbolizes the embedding output
obtained from the embedding module, where dm indicates the
embedding dimension and L represents the input sequence’s length.
Q, K, and V ∈ RL×dk correspond to the matrices of the query, key, and

value, respectively. These matrices are derived from X through a linear
transformation usingWQ,WK, andWV, each existing in the real space
Rdm*dk . Here, dk denotes the size of the query, key, and value vectors.
dm and dk are both regarded as hyperparameters.

FIGURE 4
Comparing Performance of iDNA-OpenPrompt with other outstanding methods. (A) the ACC of iDNA-OpenPrompt with other outstanding
methods, (B) the SN of iDNA-OpenPrompt with other outstanding methods, (C) the SP of iDNA-OpenPrompt with other outstanding methods, (D) the
AUC of iDNA-OpenPrompt with other outstandingmethods, (E) the MCC of iDNA-OpenPrompt with other outstandingmethods. The evaluationmetrics
displayed above (ACC, SN, SP, AUC, MCC) are the results of testing the iDNA-OpenPrompt, iDNA-ABT, iDNA-ABF, iDNA-MS, and MM-6mAPred
models on datasets of 17 species.
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2.7.2 Multi-head attention
The computation of the attention head specified by index “i” is

as shown in Eq. (5), (6) and (7):

Qi � XWQ
i ,Ki � XWK

i ,Vi � XWV
i , i � 1,/, h, (5)

Headi � Self − attention Qi, Ki, Vi( ) (6)
MultiHead − Attention Q,K,V( ) � Concact Head1,Head2,/,Headh( )WO.

(7)

WQ
i , W

K
i , and WV

i ∈ Rdm×dk are the query, key, and value matrices for
the i-th head, respectively. The parameter ‘h’ denotes the count of heads.
The multi-head attention is used for Q, K, and V by concatenating ‘h’
individual heads, with each performing self-attention relevant to the
input sequence. Furthermore, Wo ∈ Rdm×dk acts as a linear
transformation matrix, adjusting the dimensions of the multi-head
attention’s output to align with the input dimensions of the encoder
block. This enables a skip connection, where the input for the encoder
block is linked to the output from the multi-head attention mechanism.

In OpenPrompt, the BERT model is commonly used with
templates and verbalizers. Prompt templates are designed to
construct input formats suitable for processing by BERT. In
contrast, prompt verbalizers are used to map the output of
models to specific task labels by leveraging the advanced
language understanding capabilities of the BERT model, which
can strengthen the function of OpenPrompt models within a
variety of NLP tasks.

3 Performance metrics

The performance of the iDNA-OpenPrompt model, along with
other DNA methylation recognition models (Zeng and Liao, 2021;
Li F. et al., 2023; Li Q. et al., 2023), is evaluated using the following
five commonly used metrics: accuracy (ACC), sensitivity (SN),
specificity (SP), Matthews’ correlation coefficient (MCC), and
area under curve (AUC). The equations for these measurements
are expressed below Eq. 8 to Eq. 12:

ACC � TP + TN
TP + FN + TN + FP

, (8)

SN � TP
TP + FN

, (9)

SP � TN
TN + FP

, (10)

MCC � TP × TN − FP × FN
TP + FN( ) TP + FP( ) TN + FP( ) TN + FN( )√ , (11)

AUC �
∑

i∈pos
ranki − numpos numpos+1( )

2

numposnumneg
. (12)

Here, TP, FN, TN, and FP denote the counts of true positive,
false negative, true negative, and false positive instances,
respectively. ACC and MCC are both used for gauging the
model’s comprehensive performance. SN pertains to the ratio
of accurately predicted samples correctly identified as methylated
with the predictor, while SP quantifies the proportion of
accurately predicted non-methylated samples with the
predictor. The AUC is determined as the region enclosed
between the receiver operating characteristic (ROC) curve and

the coordinate plane, where the false positive rate (FPR) is plotted
on the x-axis, and the true positive rate (TPR) is plotted on the
y-axis. In total, an increase in these metrics signifies an improved
model performance.

4 Results

4.1 The visualization of UMAP for samples of
iDNA-OpenPrompt

To visually demonstrate the iDNA-OpenPrompt’s
performance, Uniform Manifold Approximation and
Projection (UMAP) (Junru et al., 2022) displays the
distribution of samples with and without methylation sites.
UMAP is a sophisticated non-linear method for reducing
dimensionality that effectively maps high-dimensional data
into a more manageable two-dimensional space, preserving
local and global data point structures.

As seen in Figure 3, blue corresponds to non-DNA methylation
(negatives), while red corresponds to DNA methylation (positives).
The figures of (a-1) and (b-1) display the visualization of DNA
methylation and non-methylation sequence samples without model
processing; positive and negative samples appear mixed. The figures
of (a-2) and (b-2) exhibit the visualization of DNA methylation and
non-methylation sequence samples after iDNA-OpenPrompt model
processing; and the positive and negative samples distinctly separate
into well-defined groups. This separation visually confirms the
model’s capacity to differentiate between DNA methylation and
non-DNA methylation samples effectively.

4.2 Comparison of iDNA-OpenPrompt’s
performance with other
outstanding methods

To evaluate the performance of iDNA-OpenPrompt, the
comparative study is conducted against four outstanding
predictors, including iDNA-ABT (Yingying et al., 2021), iDNA-
ABF (Junru et al., 2022), iDNA-MS (Lv et al., 2020), and MM-
6mAPred (Pian et al., 2020). iDNA-ABT, iDNA-ABF, and iDNA-
MS are designed for various methylation prediction tasks, whereas
MM-6mAPred was initially tailored for 6-mA site prediction. This
comparison highlights iDNA-OpenPrompt’s adaptability and its
capability, not just limited to 6 mA but also extending to 5hmC
and 4 mC. Each of these predictors is independently trained on
17 distinct training datasets encompassing three methylation types,
and then, its corresponding test dataset is evaluated (details are
provided in Table 1). The outcomes, encompassing metrics such as
ACC, SN, SP, AUC, and MCC, are depicted in Figure 4A–E. The
data clearly show that the proposed model consistently surpasses the
performance of four other exceptional predictors across all
17 datasets. The effectiveness of the proposed model can be
attributed to its utilization of the OpenPrompt learning
framework, which has proven to be highly effective in enhancing
its performance, along with the outstanding performance of the
prompt template and prompt verbalizer specifically designed for
DNA methylation sequences.
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4.3 Successful cross-species
validation results

To assess the proposedmodel’s adaptability across different species,
it is imperative to gauge a model’s ability to be trained on data from one
species and then used to detect modification sites in others. With this
goal in mind, we have developed distinct models, each customized for a
specific species; the effectiveness of these models is ascertained by
applying them to other species for 4mC, 5hmC, 6mAmodification. The
outcomes of this validation procedure across different species are
visually represented in Figure 5.

Considering the significant discrepancy in the quantity of
training and testing samples for various species, with some
species having only a few hundred samples and others reaching
over a hundred thousand, we aim for fairness in cross-validation.
Therefore, from the datasets of all species, we randomly selected
365 samples for the model’s cross-validation. This selection
comprised 183 positive samples and 182 negative samples. The
cross-validation outcomes are depicted in Figure 5.

Figure 5A reveals the results of cross-species validation of 5hmC_
H. sapiens and 5hmC_M. musculus. Specifically, the accuracy rate
attained for 5hmC_H: sapiens and 5hmC_M. musculus is 98.09%,

FIGURE 5
The heat map of cross-validation. (A) The cross-validation accuracy results for DNA methylation 5hmC in two species. (B) The cross-validation accuracy
results for DNAmethylation 4mC in four species. (C) The cross-validation accuracy results for DNAmethylation 6mA in eleven species. In the figures, the species
datasets indicated on the horizontal axis are used for training, and the species datasets indicated on the vertical axis are used for testing.

Frontiers in Genetics frontiersin.org10

Yu et al. 10.3389/fgene.2024.1377285

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1377285


underscoring the success of the proposed method. Figure 5C reveals
that in the 6mA_R.chinensis model’s cross-validation, the accuracy
for 6mA_R.chinensis is less than that for 6mA_T.thermophile
indicates suboptimal results. However, the cross-validation of other
species was performed satisfactorily. We can confidently deploy the
proposed model, assuring its high-quality performance in identifying
DNA methylation sites across different species, indicating that the
proposed model has strong cross-validation performance.

4.4 The impact of the DNA vocabulary and
label_words on model accuracy

To verify the algorithm’s effectiveness proposed in this
article, the length of the DNA vocabulary library in the
prompt template and the nucleotide length of the words in the

label_words of the prompt verbalizer are changed to test their
impact on the proposed model. In the following experiments, the
nucleotide length in the DNA vocabulary refers to the length,
encompassing all possible combinations of nucleotides ranging
from 1, 2, . . ., up to that maximum length. For instance, if the
nucleotide length is 6, then the DNA vocabulary includes
nucleotide words that contain all combinations of nucleotides
with lengths of 1, 2, 3, 4, 5, and 6.

4.4.1 The impact of the number (length) of
nucleotides in the DNA vocabulary library on
the model

By changing the length of the nucleotide vocabulary in the
DNA vocabulary while keeping the nucleotide length of the words
in the label_words of the prompt verbalizer at 6, tests are
conducted on all species across three categories (4mC, 5hmC,
6mA) with the nucleotide numbers (lengths) of individual words in
the DNA vocabulary library being 2, 3, 4, 5, 6, 7, and 8. The test
results show that, with the nucleotide length of the words in the
label_words of the prompt verbalizer unchanged, the highest
model accuracy is achieved when the number of nucleotides of
individual words in the DNA vocabulary is 6. Taking the 4mC
species as an example, the model’s accuracy is illustrated
in Figure 6.

4.4.2 The impact of the number (length) of
nucleotides in the label_words of the prompt
verbalizer on the model

In this experiment, by changing the length of the nucleotide
vocabulary in the label_words of the prompt verbalizer while
keeping the nucleotide length of the words in the DNA
vocabulary of prompt template at 6, tests are conducted on all
species across three categories (4mC, 5hmC, 6mA) with the
nucleotide numbers (lengths) of individual words in the label_
words being 2, 3, 4, 5, 6, 7, and 8. The test results indicate that, with the
nucleotide length of the words in the DNA vocabulary of the prompt
template unchanged, the highest model accuracy is achieved when the

FIGURE 6
Impact of the number (length) of nucleotides in the DNA
vocabulary library on the iDNA-OpenPrompt model.

FIGURE 7
Accuracy of the number (length) of nucleotides in the label_
words of the prompt verbalizer on the iDNA-OpenPrompt model.

FIGURE 8
Accuracy of simultaneously changing the DNA vocabulary library
and label_words of the iDNA-OpenPrompt model.
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number of nucleotides of individual words in the label_words of the
promptmarker is 6. Taking the 6mA_F.vesca species as an example, the
model accuracy is illustrated in Figure 7.

4.4.3 The accuracy of simultaneously changing the
DNA vocabulary library and label_words of the
iDNA-OpenPrompt model

In this experiment, the extent of their impact on model
performance is assessed by modifying the length of nucleotide
vocabularies in both the DNA vocabulary of the prompt template
and within the label_words of the prompt verbalizer. When the
maximum length of nucleotide vocabularies in the DNA
vocabulary and within the label_words is set to 2, 3, 4, 5, 6,
and 7 for testing across multiple species within three methylation
categories, the results reveal that the model’s accuracy peaked
when both the maximum nucleotide vocabulary length in the
DNA vocabulary and the nucleotide length within the label_
words are 6. The performance does not improve further when the
lengths are extended to 7, and the risk of overfitting the model
increases when both lengths reach 8. Taking the 6mA species as
an example, the model’s accuracy across various maximum
lengths of nucleotide vocabularies in the DNA vocabulary and
within the label_words of the prompt marker is illustrated
in Figure 8.

5 Conclusion

The proposed iDNA-OpenPrompt model used the innovative
OpenPrompt learning approach and combines a prompt
template, prompt verbalizer, and PLM to construct the prompt
learning framework. Moreover, a DNA vocabulary library, BERT
tokenizer, and specific label words are also introduced into the
model to enable accurate identification of DNA methylation sites.
An extensive analysis is conducted to evaluate the model’s
predictive capability, reliability, and consistency of the iDNA-
OpenPrompt model. The experimental outcomes, covering
17 benchmark datasets that include various species and three
distinct DNA methylation modifications, namely, 4mC, 5hmC,
6mA, consistently indicate that our model surpasses existing
outstanding approaches regarding performance and robustness.
The limitation to this model lies in that the DNA vocabulary in the
prompt template is manually generated, and applying
bioinformatics to other RNA sequences or other biological
information sequences requires manual generation of their
vocabularies anew. In future work, making vocabulary generation
automatic and adaptable to other biological information sequences is
one of the future research directions.
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