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The functional performance of immune cells relies on a complex transcriptional
regulatory network. The three-dimensional structure of chromatin can affect
chromatin status and gene expression patterns, and plays an important regulatory
role in gene transcription. Currently available techniques for studying chromatin
spatial structure include chromatin conformation capture techniques and their
derivatives, chromatin accessibility sequencing techniques, and others.
Additionally, the recently emerged deep learning technology can be utilized as
a tool to enhance the analysis of data. In this review, we elucidate the definition
and significance of the three-dimensional chromatin structure, summarize the
technologies available for studying it, and describe the research progress on the
chromatin spatial structure of dendritic cells, macrophages, T cells, B cells, and
neutrophils.
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Introduction

Chromatin 3D structure

The 3D chromatin structure is essential for gene regulation and cellular function.
Studying the three-dimensional structure of chromatin can help us understand the spatial
relationship between distal regulatory elements and target genes (Ling et al., 2022),
including how the protein factors associated with enhancers [Enhancers are non-coding
sequences in the genome that can activate the expression of target genes transcribed by RNA
polymerase II (RNAPII) (Panigrahi and O’Malley, 2021)] promote chromatin interactions,
the effect of enhancer-promoter interaction on gene expression, and the importance of
histone modifications and transcription factors in the regulation of chromatin accessibility.
Therefore, in-depth research on the three-dimensional structure of chromatin can reveal
the mechanism of gene expression regulation, thereby pinpointing disease genes that are
candidates for novel therapeutics at the genome spatial level.

The 3D chromatin structure refers to the spatial organization formed by the DNA and
proteins in the nucleus of the genome. The genome is divided into chromosomal territories,
A/B compartments, topologically associating domains (TADs) and chromatin loops
through the three-dimensional folding of chromosomes (Figure 1) (Deng et al., 2022).
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Chromosomal territories refer to the distinct regions occupied by
different chromosomes within the cell nucleus, which are often
independent and non-overlapping (Cremer et al., 1993). According
to the level of transcriptional activity, chromatin is divided into A/B
compartments. The A compartment mainly consists of open
chromatin, with significantly higher levels of activating histone
modifications and transcriptional activity compared to the B
compartment (Mohanta et al., 2021). Additionally, the I
compartment (Vilarrasa-Blasi et al., 2021; Cuartero et al., 2023)
is a highly dynamic intermediate compartment independent of the A
and B compartments, and is rich in chromatin structures with stable
promoters and repressive chromatin, capable of interacting with the
A and B compartments. The compartments contain chromatin
interaction domains formed by loop extrusion, known as TADs
(Dixon et al., 2012; Rajderkar et al., 2023), and TADs are conserved
across species and cell types (Winick-Ng et al., 2021). The
boundaries of TADs are primarily maintained by CCCTC-
binding factor (CTCF), condensin, cohesin, and histone
modifications to ensure stability (Rajderkar et al., 2023). CTCF is
a transcriptional regulatory protein that is widely present in
eukaryotes. It plays an important role in maintaining the
insulation of TAD boundaries. Cohesin can cooperate with CTCF
to participate in the formation and regulation of chromatin loops,
and it can also regulate the binding and functional effects of CTCF
on chromatin (Li et al., 2020). TADs are the fundamental structural
units of chromatin and the basic regulatory units of the genome, and
they are enriched with various regulatory elements and their target
genes internally (Lupianez et al., 2016; Barrington et al., 2019; Wang
et al., 2022). New research has found that DNA double-strand
breaks damage certain TADs, and these damaged TADs
aggregate to form a new chromatin compartment-D
compartment, which is targeted by active transcription protein

markers within other undamaged TADs (Arnould et al., 2023).
Chromatin loops are ring-like structures formed by proteins and
other molecules mediating, folding, and encapsulating chromatin.
Chromatin loops can facilitate the spatial binding [This binding may
be dynamic (Xiao et al., 2021; Zuin et al., 2022)] of promoters and
distal regulatory elements, such as enhancers, to regulate gene
expression levels (Figure 1) (Mohanta et al., 2021). In addition,
long-range loop interactions between promoters and enhancers are
common means of regulating gene expression levels, and their
activity is associated with a specific combination of colocalization
of post-translational histone modifications, also known as
“chromatin state.” Current research indicates that active
promoters are enriched with H3K27ac and H3K4me2/3, while
active enhancers are enriched with H3K27ac and H3K4me1/2
(Miko et al., 2021; Guo and Wang, 2022). In addition,
Schoenfelder and Fraser proposed the
“selecting–facilitating–specifying” model of chromatin in 2019,
which provides a more dynamic explanation for the interactions
between enhancers and promoters. This model involves two layers
of regulatory processes. The first layer involves the activity of
molecules such as transcription factors, which select cell-specific
regulatory elements by increasing the accessibility of chromatin
regions and depositing marks. The second layer involves
compartments, TADs, and loops that bring spatial proximity to
regulatory elements with similar activity states and facilitate the
contact between enhancers and promoters. These two layers of
regulatory mechanisms work together to ensure the specificity
and stability of gene expression within the cell (Schoenfelder and
Fraser, 2019).

The above classifications of chromatin 3D structure were
identified using techniques such as Hi-C. In addition, researchers
have also used DamID (Dam identification) or chromatin

FIGURE 1
Chromatin 3D structure diagram. The 3D structure of the genome in the cell nucleus can be hierarchically organized into chromosomal territory, A/
B compartments, TADs, and chromatin loops. Each chromatin domain represents a non-overlapping and independent region of each chromosome. The
A/B compartments are mainly composed of A and B compartments, where the A compartment has a more open chromatin state with higher gene
activity, while the B compartment has a more compact chromatin state with lower gene activity. Topologically associating domains (TADs) serve as
the basic structural and regulatory units of the genome, and are enriched with various regulatory elements and their target genes. Chromatin loops are
typically formed by long-range interactions between promoters and enhancers, and are regulated by the binding of histones and transcription factors to
the loop, with the maintenance of the loop often involving the cooperative action of CTCF and cohesin.
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immunoprecipitation (ChIP) techniques to identify genomic regions
that closely interact with the nuclear lamina (NL), known as lamina-
associated domains (LADs) (van Steensel and Belmont, 2017).
Through comparison and identification, LADs correspond to the
B compartment, while inter-LADs correspond to the A
compartment. Furthermore, LADs and TADs are very similar,
and both contribute to the organization of chromatin’s
topological structure (Briand and Collas, 2020). Recent studies
have redefined chromatin functional units, namely RAMs,
through chromatin immunoprecipitation assays. RAMs reflect the
modular organization of the 3D genome and are the functional units
of chromatin spatial organization (Zheng and Wang, 2022).
Compared to the TADs defined by Hi-C technology, RAMs have
a higher proportion of promoter-enhancer clusters, loop anchors,
and super-enhancer [Super-enhancers are regulatory regions on
chromatin with unusually strong enrichment for the binding of
transcriptional co-activators (Pott and Lieb, 2015)] clusters. In
addition, the RAMs boundary has high inhibitory histone
modifications, such as H3K9me3 and H3K27me3, and the
disruption of the RAMs boundary may be closely related to the
occurrence of cancer (Zheng and Wang, 2022).

The 3D chromatin structure plays an important role in the
regulation of gene expression, cell differentiation and disease
progression (Zheng and Xie, 2019). In terms of transcriptional
regulation, the formation of chromatin loops and interactions
within chromatin regions ensure the proximity of regulatory
elements to genes. The formation of compartments and TADs
ensures the precision of gene regulation. In terms of genetic
stability, the spatial organization of chromatin, particularly the
formation of TAD boundaries, to some extent can prevent the
occurrence of genetic abnormalities (Hsieh et al., 2020; Zhao
et al., 2023). The deletion, inversion, duplication, or
misalignment of TAD boundaries will affect its insulation degree
and connectivity (Barrington et al., 2019; Watt et al., 2021), and may
change the genome structure, so that the enhancers adjacent to TAD
will ectopically activate genes, leading to gene misexpression and
disease. Congenital limb malformations such as syndactyly,
brachydactyly, polydactyly, Liebenberg syndrome, and autosomal
dominant adult-onset demyelinating leukodystrophy (ADLD) are
all associated with the loss or misregulation of TAD boundaries
(Lupianez et al., 2016). Research on the pathogenesis of dilated
cardiomyopathy (DCM) indicates that the overexpression of the
transcription factor HAND1 leads to a significant increase in
enhancer-promoter interactions, causing widespread chromatin
reprogramming, ultimately resulting in transcriptional
dysregulation and the onset of DCM (Feng et al., 2022).
Additionally, in acute myeloid leukemia (AML), the loss of
CTCF binding sites induced by high methylation leads to the loss
of TAD insulation, enhancing chromatin interactions in AML,
which may be associated with AML induction (Xu et al., 2022).
Research on pancreatic tumors has found that the chromatin
accessibility is increased near the active genes of mutated kras
cells in malignant tumors, significantly increasing their epigenetic
plasticity and driving tumorigenesis (Burdziak et al., 2023).
Researchers have also observed the reorganization of the A, B,
and I compartment in samples of colorectal cancer. These
topological changes suppress the tumor’s stemness and invasive
programs while inducing the expression of anti-tumor immune

genes, thus inhibiting malignant tumor progression (Johnstone
et al., 2020).

Advances in 3D chromatin structure
technology

At present, there are a variety of methods to study the 3D
chromatin structure, and they are also developing and improving.
The earliest technology used by researchers was DNA FISH (Price,
1993), which allows for the direct detection of interactions between a
small number of loci within individual cells. This technology is
currently developing rapidly, and when combined with super-
resolution microscopy, the resolution is greatly improved.
Additionally, the probe design and signal intensity have been
enhanced. However, the standardization of this technology is
relatively poor, and image analysis requires experienced and
highly skilled personnel (Wagner and Haider, 2012; Prudent and
Raoult, 2019). Later, with the continuous advancement of
technology, 3C (Chromosome Conformation Capture), Capture-
C, 4C (Circular Chromosome Conformation Capture) and 5C
(Chromosome Conformation Capture Carbon Copy) technologies
have emerged one after another.

3C (Dekker, 2006) is a technique used to detect the interaction
frequency between different DNA fragments in chromatin. But the
3C technology requires rigorous operation to obtain correct 3C data.
The three quality controls in the middle include: PCR efficiency,
assessing the level of background random collisions, and data
normalization (Dekker, 2006). Moreover, when the 3C
technology is applied, the detection of the interaction fragment is
limited to specific genomic intervals. In order to screen candidate
fragments for interaction with target fragments without preference
on a genome-wide scale, the 4C technique was developed by
researchers (Simonis et al., 2006). 4C technique uses specific
primers to enrich DNA fragments that interact with the target
locus, enabling the study of interactions between a specific locus
and the rest of the genome (Simonis et al., 2006; Göndör et al., 2008).
Subsequently, researchers developed the 5C technique based on 3C,
which expanded the scope of 3C applications and can be used tomap
the cis and trans interactions of large-scale genomic elements, as well
as for deeper studies of chromosomal structures (Dostie et al., 2006).
In this context, Hi-C technology came into being in 2009
(Lieberman-Aiden et al., 2009) and has become an advanced
technology for studying the 3D chromatin structure, and has
been widely used. Although the techniques in the 3C family are
continually being upgraded and improved, their core
methodological steps remain the same: crosslinking, restriction
digest, and proximity ligation (McCord et al., 2020).

Furthermore, the interaction between enhancers and promoters
is crucial for gene regulation. In addition to chromatin contacts,
open chromatin regions can also facilitate this interaction (Bendl
et al., 2022). Chromatin accessibility techniques and methods to
study protein-chromatin interactions are of great significance for
studying the spatial 3D structure of chromatin. High-throughput
chromatin accessibility sequencing technology has become an
important tool for studying open chromatin regions, such as
ATAC-seq, DNase-seq, MNase-seq, scATAC-seq, etc. Among
them, ATAC-seq can efficiently label and sequence open regions
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on chromatin by utilizing the action of Tn5 transposase (Grandi
et al., 2022). DNase-seq uses DNase I, an endonuclease, to cleave
DNA sequences and obtain information about open regions of
chromatin through sequencing analysis (Lv et al., 2023). MNase-
seq, similar to DNase-seq, uses MNase, an enzyme, to obtain
chromatin accessibility information. In addition, ATAC-seq
combined with single-cell sequencing technology gave birth to
scATAC-seq, which is characterized by the determination of
chromatin accessibility and genomic sequences within a single
cell. The biggest difference between this technique and
conventional ATAC-seq is that individual cells need to be labeled
to ensure specificity for each cell (Wang et al., 2023). Techniques for
identifying specific protein binding sites include ChIP-seq and

CUT&Tag. ChIP-seq is a genome-wide high-throughput
sequencing technique to study the binding of proteins to target
DNA sequences, providing a method for epigenetic studies such as
transcription factors and histone modifications (Nakato and Sakata,
2021). CUT&Tag is a novel technology that has been improved
based on ChIP-seq, significantly enhancing the signal-to-noise ratio
of histone marks by utilizing the activity of Tn5 transposase, while
also offering the advantages of low cost and high efficiency (Kaya-
Okur et al., 2020). Of particular note, CUT&Tag technology has the
capability to handle low-cell-number samples, thus holding broad
potential for applications in single-cell chromatin analysis, offering a
new avenue for studying chromatin organization. In addition, the
ABC computational model can be used to calculate the contact

FIGURE 2
TheWorkflow and Techniques Used in Hi-C Data Analysis. Themain steps in theHi-C analysis workflow involve constructingmatrices and detecting
chromatin interactions using the paired-end sequencing data obtained from two FASTQ files. The detected chromatin structural variations can be further
analyzed using multi-omics methods, and deep learning techniques can enhance Hi-C interaction matrices to improve matrix resolution.
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frequency between cell-specific gene promoters and enhancers, and
can predict the connections between enhancers and genes (Fulco
et al., 2019; Nasser et al., 2021). The above-mentioned tools can be
used to reveal mechanisms of changes in gene expression levels.
Additionally, direct techniques for detecting gene expression levels
include RNA-seq (Wang et al., 2009), among others.

Furthermore, recently developed single-cell multi-omics
detection methods, such as Paired-Tag and scREG (Zhu et al.,
2021; Duren et al., 2022), have emerged. Both of these techniques
enable integrated analysis of the transcriptome and chromatin
accessibility within single cells (Figure 2).

Hi-C and its derivative technologies

Hi-C is a technology based on 3C and utilizes high-throughput
sequencing to detect chromatin interactions across the entire
genome (Lafontaine et al., 2021). Hi-C technology can unveil the
intricate folding structure of chromatin, which is closely linked to
the proportion of cells in a population that experience specific
contacts. Additionally, this method allows for the study of
interactions within chromatin at a nanometer-scale distance.
However, Hi-C is limited in its ability to determine only the
relative distance and interaction frequency between different
regions on the chromosome. As a result, the data can only
represent the relative contact frequency between these regions.
Furthermore, the lack of standardization within Hi-C hinders the
comparison of data across different conditions and cell types. At the
same time, the standard Hi-C method can only be used to detect the
interaction between two specific regions on the chromosome, and
cannot reveal whether multiple regions simultaneously or mutually
repel each other (McCord et al., 2020).

Hi-C includes a biotinylation step between digestion and
ligation, giving Hi-C a better ability to enrich for ligated
junctions compared to 3C, making it more favorable for the
analysis of chromosomal spatial structure. In 2012, the DNase
Hi-C technology was developed (Duan, 2021). Compared to Hi-
C, the major improvement of this technique lies in the use of DNase
I for chromatin cleavage, overcoming the limitations of low
digestion efficiency and accuracy associated with the traditional
Hi-C method (Ma et al., 2015). In 2013, Micro-C was proposed as a
complementary method to Hi-C. This technique uses micrococcal
nuclease instead of the restriction enzyme used in Hi-C to fragment
chromatin, and is suitable for short-range analysis of nucleosome
fiber folding (Hsieh et al., 2015). In 2013, single-cell Hi-C was used,
which is able to visualize the three-dimensional structure of
chromatin within a single cell with specificity (Nagano et al.,
2013). However, this technique cannot reveal the interactions
between each restriction fragment and all of its spatially proximal
loci, as bulk Hi-C does (Nagano et al., 2013). This problem can be
addressed by the Multiplex-GAM technology mentioned later in the
text (Beagrie et al., 2023). In 2014, the concept of In situ Hi-C was
proposed, which reduces false positive results, improves the signal-
to-noise ratio, and shortens the experimental cycle compared with
Hi-C (Rao et al., 2014). In 2017, DLO Hi-C technology was
developed. Compared to Hi-C, this technique offers the
advantages of lower cost, simplified library construction, shorter
processing time, and higher yield of effective data (Zhang et al.,

2020a). Also in 2017, Hi-C 3.0 was utilized (Akgol Oksuz et al.,
2021). Compared to Hi-C, this technique offers higher resolution
and improved reproducibility, allowing for the detection of
thousands of loops. In addition, Capture-C is also a high-
resolution technique based on 3C for detecting chromatin
interactions, which allows for the extraction of restriction
fragments of interest from in situ 3C material, such as
promoters, enhancers, and super-enhancers (Downes et al.,
2022). The emergence of these emerging technologies enables
scientists to identify interaction patterns between different genes,
transcription factors, and regulatory elements, uncover key genes or
transcription factors, and further interpret gene function (Zhang
et al., 2013).

In recent years, many new studies have demonstrated further
optimized techniques related to chromatin conformation capture.
Micro-Capture-C (MCC) is a technique that combines Micro-C
with Capture-C, with high resolution that allows precise localization
to individual base pairs (Crump et al., 2023). Region Capture Micro-
C (RCMC) is a method that combines region capture with Micro-C,
which resolves highly nested and focal interactions, most of which
are nested interactions between promoter and enhancer regions, and
labels these interactions as “microcompartments.” Additionally,
RCMC technology can mine sequencing-limited data to generate
high-depth 3D genomemaps (Goel et al., 2023). Multiplex-GAM is a
technology used for genome-wide interaction analysis, capable of
detecting multiple genomic regions missed by Hi-C (Beagrie et al.,
2023). Moreover, this technology can provide a comprehensive
understanding of the 3D chromatin structure at the single-cell
level (Beagrie et al., 2023). Pore-C, a chromatin conformation-
capturing technique combined with nanopore sequencing of
linkers, enables faster analysis of proximal higher-order
chromatin contacts at the genome scale (Deshpande et al., 2022).
Compared to Hi-C, which can only detect interactions between
paired genomic loci, this technique can detect interactions between
two or more DNA loci by using long-read sequencing (Deshpande
et al., 2022).

HiChiP is a technique that combines Hi-C and chromatin
immunoprecipitation (ChIP), allowing for the simultaneous
detection of chromatin interactions and protein binding sites on
chromatin. Specifically, H3K27ac HiChIP can detect interactions at
higher resolution within promoters and enhancers (Mumbach et al.,
2017). Promoter capture Hi-C (PCHi-C) is a derivative technique
primarily used to identify the interaction regions between enhancers
and promoters. It is of significant importance for studying the
relationship between genome regulatory mechanisms and disease
occurrence. When this technology is used in conjunction with
expression quantitative trait loci (eQTL) analysis, it can better
reveal the relationship between disease gene expression and
chromosomal spatial structure (Javierre et al., 2016; Baxter
et al., 2018).

Analysis workflow of Hi-C data and deep
learning techniques

The analysis process of Hi-C data typically includes the
following steps (Ay and Noble, 2015): first, the established Hi-C
library is subjected to quality control filtering to obtain high-quality
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data. During the data processing, the data is aligned to the desired
genome following the principle of paired-end unique mapping, and
an interaction matrix is generated. Subsequently, the matrix is
subjected to normalization, followed by the detection of
chromatin interactions. Finally, the data is visualized for further
analysis (Figure 2). In constructing the Hi-C matrix, we typically use
two tools, Juicer (Durand et al., 2016) and HiC-Pro (Servant et al.,
2015). Both Juicer and HiC-Pro can directly convert raw data into
normalized contact maps (Servant et al., 2015; Durand et al., 2016).
Juicer can automatically annotate the three-dimensional structure of
chromatin, while HiC-Pro can construct allele-specific contact maps
using phased genotype data (Servant et al., 2015; Durand et al.,
2016). When analyzing chromatin structure, a series of tools are
typically used to detect structures at different levels. For
compartment detection, tools such as HiCSeg (Lévy-Leduc et al.,
2014) and Fit-Hi-C2 (Kaul et al., 2020) are employed. For TAD
detection, we use tools such as TADbit (Serra et al., 2017) and
TADpole (Soler-Vila et al., 2020). The most significant feature of
TADbit is its ability to complete the entire process of Hi-C data
processing and analysis. It is important to note that when analyzing
interaction matrices, this method uses a breakpoint detection
algorithm to calculate the position of TADs along chromosome
boundaries and employs the Needleman-Wunsch algorithm to align
TADs (Serra et al., 2017). TADpole’s advantage lies in its ability to
identify hierarchical structural domains in interaction matrices and
robustness in terms of data resolution, normalization strategy, and
sequencing depth (Soler-Vila et al., 2020). For the detection of
chromatin loops, we often use tools such as HiCCUPS (Durand
et al., 2016), GOTHiC (Mifsud et al., 2017), and HiCExplorer (Wolff
et al., 2022). In fact, the scope of these tools is not absolute; some
tools can detect multiple chromatin substructures. Table 1 provides
a comparison of the prominent features of these analysis tools.

In addition, deep learning techniques have been applied to
computational 3D genomics. Deep learning is a machine learning
method that simulates the structure and function of the human
brain’s neural network, and its greatest feature is “learning from
what is seen” (Li et al., 2023). Based on the amount of labeled data
used for training, deep learning can be divided into three modes:
supervised learning, unsupervised learning, and semi-supervised
learning. Supervised learning uses all labeled data as the training

set, and the trained model can predict the remaining unlabeled data.
Convolutional Neural Network (CNN) is an example of this learning
mode. Unsupervised learning uses unlabeled data as the training set
and aims to discover hidden information in the data, as well as to
perform functions such as dimensionality reduction, clustering, and
annotation. Autoencoders, Generative Adversarial Networks
(GAN), and self-supervised learning are examples of
unsupervised learning. Semi-supervised learning involves training
with a small amount of labeled data and a large amount of unlabeled
data, resulting in a model with enhanced performance and
generalization capabilities (Srinidhi et al., 2021; Chen et al.,
2022). Currently, deep learning has been applied in various fields,
and in the study of chromatin three-dimensional structure, it has
primarily been used to enhance the resolution of Hi-C matrices and
to predict 3D spatial structures, including compartments, TADs,
and chromatin loops, using high-resolution matrices. The deep
learning techniques for enhancing the resolution of Hi-C data
include HiCPlus (Zhang et al., 2018), HiCNN [Liu and Wang
(2019a)], HiCNN2 [Liu and Wang (2019b)], SRHiC [Li and Dai
(2020)], VEHiCLE [Highsmith and Cheng (2021)]. The high-
resolution matrix prediction models based on GAN include
hicGAN (Liu et al., 2019), DeepHiC (Hong et al., 2020), EnHiC
[Hu and Ma (2021)], HiCARN [Hicks and Oluwadare (2022)].
Other deep learning models include iEnhance (Li et al., 2023)
and Orca (Zhou, 2022). The specific content is as shown in Table 2.

Applications of Hi-C

The Hi-C technology is a method for studying chromatin
structure, which can be used to investigate the relationship
between chromatin structure changes and gene expression. It can
be applied to study gene regulation and the mechanisms of disease
occurrence (van Berkum et al., 2010). In terms of cell differentiation,
scientists have studied the interaction patterns between enhancers
and promoters across the entire genome during the differentiation
process of human primary keratinocytes (Gong et al., 2021). In the
context of cancer, researchers have compared the TAD boundaries
and quantities between myeloma cells and normal cells (Gong et al.,
2021). In mammalian embryonic development, scientists have

TABLE 1 Analysis tools for Hi-C data.

Analysis tools Features References

Juicer A fully automated pipeline for processing and annotating data from Hi-C and other contact mapping experiments Durand et al. (2016)

HiC-Pro Ability to use staged genotypic data to construct allele-specific contact profiles Servant et al. (2015)

HiCSeg Two-dimensional segmentation of Hi-C data for the detection of homeopathic interaction regions Lévy-Leduc et al. (2014)

Fit-Hi-C2 Suitable for studying medium-range chromatin interactions without any parametric assumptions Kaul et al. (2020)

TADbit Ability to complete the entire process of Hi-C data processing, analysis, and visualization Serra et al. (2017)

TADpole Ability to study hierarchical layers of the Hi-C matrix Soler-Vila et al. (2020)

HiCCUPS An algorithm of Juicer, used to identify chromatin loops Durand et al. (2016)

GOTHiC A binomial probabilistic model that solves the complex bias of Hi-C raw data and distinguishes between true and false
interactions

Mifsud et al. (2017)

HiCExplorer Ability to detect TADs and loops with high detection rate and accuracy Wolff et al. (2022)
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investigated the strength of chromatin interactions between
mammalian sperm and egg cells at various stages of division (Ke
et al., 2017). Furthermore, scientists have used Hi-C to accurately
locate the centromeres in the yeast genome (Varoquaux et al., 2015).
With the continuous development of Hi-C technology, it is
gradually gaining importance in various fields such as
agricultural science, life science, and medical science.

In addition, researchers can gain in-depth understanding of the
spatial organization and interaction patterns of the genome in
immune cells through the use of Hi-C and other high-
throughput sequencing technologies, thereby revealing the
complex network of gene regulation. Hi-C can reveal interactions
between elements on the chromatin loop in immune cells,
interactions of genes within TADs, as well as interactions
between compartments, among others. Research on the spatial
organization and interactions of the genome is crucial for
unraveling the functionality of the immune system and the

mechanisms underlying related diseases. Next, we will further
explore the chromatin 3D structure of immune cells and
important findings related to immune system functionality and
disease mechanisms.

The 3D chromatin structure of immune cells

Dendritic cells
Classical dendritic cells (cDCs) complete their differentiation

process in the bone marrow as important antigen-presenting cells in
the immune system. The differentiation process is mainly
undergoing hematopoietic stem cells (HSCs), lymphosensitized
pluripotent progenitor cells (LMPPs), common DC progenitors
(cDPs), and classical dendritic cells type 1 (cDC1s) or classical
dendritic cells type 2 (cDC2s) (Kurotaki et al., 2022). The research
found that the IRF8 factor promotes the enrichment of H3K27ac,

TABLE 2 Deep learning techniques.

Deep learning techniques for enhancing
Hi-C data resolution

Features References

HiCPlus Train a 3-layer deep convolutional neural network (ConvNet) and use only 1/16 of
the sequencing read length to construct interaction matrices of similar quality

Zhang et al. (2018)

HiCNN Training a 54-layer deep convolutional neural network, the training results are
superior to the high-resolution Hi-C data replicated by HiCPlus, but the training
time is longer

Liu and Wang (2019a)

HiCNN2 Use three different levels of deep convolutional neural networks, with 56 layers,
22 layers, and 3 layers respectively. It outperforms HiCNN and HiCPlus in
predicting high-resolution Hi-C contacts and recovering important genomic
interactions

Liu and Wang (2019b)

SRHiC Train multiple times to use small convolutional neural networks and infer
corresponding high-resolution Hi-C interaction matrices from low-resolution
subsampling ratios of 1/16 and 1/25, further reducing sequencing costs. It
outperforms HiCPlus and HiCNN in the identification of long-range interactions
and TAD boundary detection

Li and Dai (2020)

VEHiCLE Use a deep variational autoencoder network and excel in improving the accuracy of
insulation scores. It is particularly meaningful for studying the chromosomal
structure at specific genomic locations

Highsmith and Cheng
(2021)

High-resolution matrix prediction model based on GAN

hicGAN Be the first technique to apply GAN to generate 3D genomic data and capable of
predicting chromatin interactions in low-coverage Hi-C data

Liu et al. (2019)

DeepHiC Using conditional generative adversarial networks (cGAN), it is possible to
reproduce high-resolution Hi-C data from subsampled reads as low as 1%

Hong et al. (2020)

EnHiC It outperforms hicGAN and DeepHiC, providing more accurate predictions of
TADs and fine chromatin interactions

Hu and Ma (2021)

HiCARN Use two cascaded residual networks: a convolutional neural network and a
generative adversarial network

Hicks and Oluwadare
(2022)

Other deep learning models

iEnhance A chromatin interaction enhancement network that integrates multi-scale spatial
projection, attention fusion, dense channel encoding, and residual channel
decoding architecture, is capable of enhancing low-resolution Hi-C matrices.
Specifically, it excels in enhancing A/B compartments (with a stronger effect on the
A compartment than the B compartment), reconstructing small TADs, and
recovering subtle chromatin loops

Li et al. (2023a)

Orca A prediction model consisting of a hierarchical sequence encoder from
convolutional networks and multi-level cascaded decoders, is capable of predicting
chromatin 3D structures from kilobase to whole chromosome scales

Zhou (2022)
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leading to chromatin activation, thereby promoting the formation of
the A compartment in cDC cells and activating the expression of
specific genes (Kurotaki et al., 2022). Furthermore, the study also
found that in cDC cells not infected by intracellular pathogens such
as Toxoplasma gondii, the chromatin 3D structure related to host
defense genes (such as genes encoding cytokines and chemokines)
has already been established (Kurotaki et al., 2022), with the most
significant being the formation of TAD loops and the strengthening
of interactions within TADs, which provides a pre-existing
framework for the action of the aforementioned IRF8 factor.
During the differentiation process from common DC progenitors
(cDPs) to classical dendritic cells (cDCs), the internal interactions
within TADs are strengthened, and TAD loops are reinforced. These
factors promote the transition of cDC-specific genes from the B
compartment to the A compartment.

Classical dendritic cells (cDCs) play a key role in the recognition
of pathogens and innate immune responses. Even before infection,
the three-dimensional structure of higher-order chromatin in cDC
cells involved in immune defense is established, which can generate
a faster and stronger immune response (Kurotaki et al., 2022).

Macrophages
Macrophages can differentiate from monocytes in response to

local tissue growth factors or certain pathogenic microorganisms.
During the differentiation process from progenitor cells to
macrophages, regulation is mediated by the CSF1 factor and the
transcription factor PU.1 (Pollard, 2009). Macrophages are the most
plastic cells in the hematopoietic system, and they can polarize into
two distinct phenotypes: M1 and M2. M0 macrophages can be
polarized into M1 macrophages by stimuli such as polarization
activators (such as TAF-α, TFN-γ, LPS, etc.) or chemokines (such as
CCL2, CCL3, etc.). Research has also found that IL-26 can activate
NF-κB, further promoting M1 polarization (Lin et al., 2020).
M1 macrophages exhibit potent antimicrobial and antitumor
activity. Conversely, M0 macrophages, when stimulated by
polarization activators (such as IL-4, IL-10, and IL-13) or
chemokines (such as CCL17, CCL22, etc.), can polarize into
M2 macrophages (including M2a, M2b, M2c, and M2d subtypes)
(Kishore and Petrek, 2021). M2 macrophages demonstrate strong
phagocytic capabilities and can clear debris and apoptotic cells,
thereby promoting tissue repair and wound healing (Shapouri-
Moghaddam et al., 2018). The PTGS2 gene encodes
cyclooxygenase (PGHS-2), and the higher the expression level of
PGHS-2, the stronger the role of M1 in the inflammatory response
(Wang and Zhao, 2022). In addition, genomic regions of GBP genes
such as GBP1, GBP2, and GBP5 and the STAT1 gene play a
promoting role in the inflammatory response and phagocytosis
processes of macrophages (Qin et al., 2017; Xiong et al., 2022).
In summary, macrophages play an important role in inflammation
and tissue repair.

Macrophages differentiate from monocytes, and currently the
THP-1 cell line (a human monocytic leukemia cell line) is
commonly used by researchers as a monocyte model (Zhang
et al., 2020b). In this section, we will introduce the differences in
chromatin 3D architecture between this cell line and primary
monocytes. Compared to primary monocytes, THP-1 cells exhibit
fewer interactions between large and small chromosomes, and the
interactions between small chromosomes are more pronounced.

Additionally, the overlap of TAD boundaries between these two cell
types is minimal, at only 25%. Correspondingly, 20% of the genome
in these two cell types belongs to different A/B compartments
(Zhang et al., 2020b). For example, genes involved in host
defense (such as DEFA1, DEFA1B, and DEFA3) are located in
the A compartment of chromatin in primarymonocytes, but in the B
compartment of chromatin in THP-1 cells. The expression levels of
these genes are higher in primary monocytes than in THP-1 cells.
Conversely, genes encoding cell cycle-related protein kinases (such
as CDC7) are located in the A compartment of chromatin in THP-1
cells, but in the B compartment of chromatin in primary monocytes,
and the expression levels of these genes are higher in THP-1 cells
(Liu et al., 2021).

The differentiation process of macrophages reflects the
importance of chromatin 3D structure. During the differentiation
of monocytes intomacrophages, there is an increase in the frequency
of interactions within small chromosomes, while the interaction
strength between large and small chromosomes significantly
decreases. Furthermore, in differentiated macrophages, the
interactions within TADs related to immune and inflammatory
responses are stronger compared to primary monocytes.
Correspondingly, the expression levels of genes within these
TADs decrease, such as the PTGS2 gene, chemokine genes
(CXCL1, CXCL2, and CXCL3), and chemokine receptor genes
(CCR2, CCR7, and CX3R1) (Zhang et al., 2020b). Furthermore,
during the differentiation process, there is an increase in TAD
boundary insulation and enhanced interactions within TADs
(Minderjahn et al., 2022). Moreover, in differentiated
macrophages, low-affinity CTCF is removed from the chromatin
loops, while high-affinity CTCF is retained, leading to an increase in
chromatin loop strength. Simultaneously, the ratio of enhancer-
enhancer loops in chromatin loops is greater than enhancer-
promoter loops, and AP-1 positively regulates gene transcription
by binding to distal regulatory elements within these chromatin
loops (Phanstiel et al., 2017).

The changes in the 3D chromatin structure of macrophages play
a significant role in the occurrence and development of certain
diseases. After infection of macrophages (differentiated from THP-1
cells induced by PMA) with Mycobacterium tuberculosis, the
interactions within the chromatin become more organized, and
the number of chromatin loops increases. Specifically, the
genomic regions of GBP genes are found to be in close proximity
to super-enhancer regions (BRD4 and MED1), which enhances the
expression of immune genes such as GBP (Lin et al., 2022).
Furthermore, a small subset of changes in TAD boundaries
affects the expression of immune-related genes (Lin et al., 2022).
Specifically, the STAT1 gene is defined within an independent TAD,
leading to its activation and expression, as well as an increase in the
expression of chemokine genes (such as CCL1, CCL2, CCL7, and
CCL8 genes). In addition, in macrophages infected with M.
tuberculosis, NF-κB strengthens the interactions within the
chromatin loops by binding to the enhancer and promoter
regions of the PD-L1 gene, activating the expression of PD-L1.
Therefore, the enhancer of PD-L1 can be a target for tuberculosis
treatment (Lin et al., 2022). In the anti-infection response, IRF1 can
increase the chromatin accessibility of ISG loci in human
macrophages, thereby promoting the overall expression of ISG
genes and enhancing the body’s immune response (Song et al.,
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2021). In sepsis, the artificial inhibition of the histone
methyltransferase EZH2 activity in humans can exert an anti-
inflammatory effect by reducing the aggregation of macrophages
in the renal interstitium, thereby protecting the kidneys (Li et al.,
2023). In prostate cancer, the development of malignant tumors is
closely associated with the simultaneous enrichment of YY1 and
H3K27ac ChIP-seq signals in the specific enhancer of the IL-6 gene
in M2 macrophages (Chen et al., 2023). In macrophage research,
scATAC-seq can be used to depict the chromatin accessibility
landscape within individual cells, and clustering annotation
through UMAP can be used to study the occurrence of specific
pathologies in macrophages (Sun et al., 2023). In autoimmune
diseases, certain patterns of the chromatin 3D structure in
monocytes and macrophages are also evident (Xia et al., 2022).
The occurrence of systemic lupus erythematosus (SLE) is closely
related to IFN: the combination of IFN-α and TNF can increase the
chromatin accessibility of tolerance genes (such as IL6), leading to
the appearance of tolerant monocytes. The chromatin accessibility
of tolerance genes in monocytes from SLE patients is similar to that
of tolerant monocytes (Park et al., 2017). In Table 3, we have listed
the changes in the chromatin spatial structure during the
aforementioned diseases or response processes.

B cells
B cells play an important role in humoral immunity, and their

growth process mainly involves development and activation. B cells
originate from hematopoietic stem cells and undergo a
developmental process in the bone marrow, progressing through
the stages of early lymphoid progenitor cells, common lymphoid
progenitor cells, pre-pro B cells, pro B cells, and pre B cells. (Hua and
Hou, 2013; Ng et al., 2020), where IL-7 and BCR signals play
important regulatory roles (Ren et al., 2022). Furthermore, when
circulating in the peripheral blood, BAFFR and TLR signals promote
the positive selection and maturation of B cells (Hua and Hou,
2013). Additionally, B cell activation mainly occurs in secondary
lymphoid organs such as lymph nodes, where naive B cells
differentiate into germinal center B cells (GCB), which then
further differentiate into memory B cells and plasma cells
(Azagra et al., 2020).

During the process of humoral immunity, B cells stimulated by
antigens differentiate into GCB that undergo rapid proliferation and
can secrete mature high-affinity antibodies. Compared to naive
B cells, GCB cells exhibit a high enrichment of gene promoter
DNA interactions, forming a highly interactive and specific
enhancer-promoter network centered around the BCL6 gene
(Bunting et al., 2016). Unlike traditional compartment
classification, it makes sense that genes in B cells are divided into
three compartments: A compartment, B compartment, and I
compartment. Among them, the I compartment is a chromatin
structure rich in stable promoters and inhibitory chromatin
independent of the A and B compartments, and the I
compartment is able to interact with the A and B compartments
(Vilarrasa-Blasi et al., 2021). During the differentiation process of
naive B cells into germinal center B cells, the majority of stable
promoters and inhibitory chromatin within the I compartment
transition to the A compartment (activation event), leading to
the global activation and specific expression of the activation-
induced cytidine deaminase (AICDA) gene. A small portion
transitions to the B compartment (inactivation event), increasing
the chromosome status of genes in the A and B compartments to
promote the differentiation process of B cells (Vilarrasa-Blasi et al.,
2021). Research on the transcription factor STAT3 through ChIP-
seq has shown that STAT3 primarily regulates gene expression in
B cells by modulating distal regulatory elements (Wu et al., 2022).
Additionally, the ATAC-seq profile of pre-pro B cells lacking the
tumor suppressor gene PTEN undergoes changes, leading to
enhanced chromatin accessibility in the regions where T-lineage
and myeloid-lineage transcription factors are located, thereby
promoting the development of these two lineages (Xu et al., 2023).

In disease, the three-dimensional chromatin structure of B cells
also undergoes changes. In the chromatin of B cells, the inactivation
of the PRDM1 sequence at the TAD boundary leads to malignant
proliferation of B cells, transforming them into lymphoma cells
(Nagai et al., 2019). Thus, the PRDM1 sequence may serve as a drug
target for future lymphoma therapy (Xia et al., 2017). Additionally,
in a comparative analysis of aggressive mantle cell lymphoma
(cMCL) and indolent non-nodal mantle cell lymphoma
(nnMCL), researchers found a significant increase in

TABLE 3 Genomic spatial structure alterations in B cells and macrophages during disease or a certain reaction.

Cell type Disease or a certain
reaction

Genomic spatial structure alterations

Macrophage Anti-tuberculosis infection The super-enhancer immunogenomic GBP interaction is strong, and NF-κB binds to the enhancer and promoter
loops of the PD-L1 gene

Anti-infection response IRF1 increases the chromatin accessibility of ISG gene loci in macrophages

Prostate cancer The development of malignant tumors is associated with the enrichment of YY1 and H3K27ac at the IL-6 gene
enhancer site

Systemic Lupus Erythematosus The occurrence of the disease is related to the binding of IFN-α and TNF, which leads to the opening of tolerant gene
loci, resulting in the appearance of tolerant monocytes

B cell Diffuse large B-cell lymphoma The inactivation of the PRDM1 sequence at the TAD boundary in B cell chromatin leads to malignant proliferation
of B cells

Mantle cell lymphoma (MCL) The chromosomal interactions in the oncogenic region of SOX11 have significantly increased

Chronic lymphocytic leukemia The 3D interactions and active enhancers in the EBF1 genomic region within B cells are lost in the early stage of the
disease
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chromosomal interactions involving the SOX11 oncogene region in
cMCL, primarily concentrated on chromosome 2, playing a key role
in tumor invasion (Vilarrasa-Blasi et al., 2021), providing direction
for targeted therapy of MCL. Furthermore, the early compartmental
switch (A to I) of the EBF1 factor in B cells of patients with chronic
lymphocytic leukemia results in the loss of chromatin interactions,
and therefore, the downregulation of EBF1 has become a diagnostic
marker for chronic lymphocytic leukemia (Vilarrasa-Blasi et al.,
2021). In Table 3, we have listed the changes in the chromatin spatial
structure during the aforementioned diseases or response processes.

T cells
T cells mature in the thymus and become activated into various

subsets of T cells in peripheral immune organs such as the spleen,
including effector T cells, memory T cells, and regulatory T cells.
The development process of T cells mainly involves the stages of
pro-T cells, CD4−CD8-double-negative (DN) thymocytes,
CD4+CD8+ double-positive (DP) thymocytes, CD8+ single-
positive T cells, and CD4+ single-positive T cells (Kumar et al.,
2018). Among them, CD8+ T cells are cytotoxic cells, capable of
killing infected malignant cells and playing an important role in the
body’s response to infections. CD4+ T cells are helper cells, with the
main function of mediating the activity of immune cells. Under the
influence of cytokines (such as IL-12, IFN-γ, etc.) and mTOR
signaling, CD4+ T cells can differentiate into Th1, Th17, and
Th2 subsets (Geltink et al., 2018). Additionally, research has
found that the SATB1 factor controls the differentiation of
Th1 and Th2 cells by influencing the secretion of the two
cytokines IL-4 and INF-γ (Kakugawa et al., 2017). The
Tox2 locus is actively modified by H3K4me2 histone in Tfh cells,
and ATAC-seq analysis also indicates high chromatin accessibility
of this gene. Furthermore, Tox2 promotes the differentiation of Tfh
cells and increases the expression of the Bcl6 gene within Tfh cells
(Xu et al., 2019). Furthermore, the specific genomic structure within
memory Th2 cells enables them to rapidly mount secondary
immune responses. Compared to the initial CD4+ T cells, resting
memory Th2 cells possess specific open chromatin regions, which
are primarily enhancers. These enhancers target a limited set of
specific genes, and the topological chromatin connections between
these genes and enhancers are increased, priming the cells for rapid
transcription of genes upon activation (Onrust-van Schoonhoven
et al., 2023).

In healthy human blood, CD4+ and CD8+ T cells are activated
under stimulation with CD3 and CD28. The activated CD4+ and
CD8+ T cells preferentially disrupt the long-range chromatin
interactions, leading to enhanced short-range interactions.
Additionally, in the activated state, the number of TADs in these
cells becomes more numerous and smaller, the proportion of
overlapping TADs increases, and the chromatin accessibility at
the boundaries of overlapping TADs is elevated.
Correspondingly, the expression levels of genes within these
regions also increase (Bediaga et al., 2021). In summary, T cell
activation is a process that reshapes TADs and chromatin
interactions, with minimal impact on compartments. Factors
such as Tcf1, Lef1, and SATB1 have a certain impact on the
three-dimensional chromatin structure of T cells. In CD8+

T cells, the transcription factor Tcf1 reduces the insulation of
TAD boundaries (Wang et al., 2022), so the interaction between

TADs with higher levels of Tcf1 expression is more intense.
Additionally, Tcf1 and Lef1 affect the chromatin loop strength in
CD8+ T cells by binding to specific chromatin accessible regions and
super-enhancers, thereby regulating gene expression. For example,
in CD8+ T cells of individuals with Tcf1 deficiency, the interaction of
chromatin segments carrying the Myb gene is significantly reduced
(Wang et al., 2022). SATB1 promotes the transcriptional activation
of chromatin by facilitating the interaction between promoters and
super-enhancers on the chromatin (Zelenka et al., 2022). As the
interaction between the Bcl6 gene promoter and super-enhancers is
strong in DP cells, the expression of the Bcl6 gene is downregulated
in SATB1-deficient DP thymocytes (Feng et al., 2022). In SATB1-
deficient thymocytes, the average strength of all chromatin loops is
slightly reduced, primarily concentrated at the loops associated with
promoters, super-enhancers, and SATB1 clusters. Specifically, in
SATB1-deficient DP cells, the chromatin loops associated with
promoter-enhancer and super-enhancer-super-enhancer
interactions become smaller (with an average loop size of 120 kb
in DP cells compared to 100 kb in SATB1-deficient DP cells).
SATB1 is crucial for the transition from DP to SP cells, so in
individuals with SATB1 deficiency, the generation of CD8+ T cells is
reduced, the expression level of PD-1 is increased, tumor immunity
is suppressed, ultimately leading to cancer development (Zelenka
and Spilianakis, 2020). Currently, the expression of SATB1 has
become an adverse prognostic marker for gliomas and colorectal
cancer (Zelenka and Spilianakis, 2020).

Neutrophils
Neutrophils originate from multipotent hematopoietic stem

cells and develop from myeloblasts. It is generally believed that
they undergo sequential stages including myeloblasts,
promyelocytes, myelocytes, metamyelocytes, rod nuclear
granulocytes, and polymorphonuclear segmented cells (Liew and
Kubes, 2019). As a type of myeloid white blood cell, neutrophils are
the most abundant white blood cells in human blood, accounting for
approximately 50%–70% of the total peripheral blood leukocytes in
adults (Liew and Kubes, 2019). Neutrophils possess phagocytic and
bactericidal functions, participate in inflammatory responses,
respond to chemotactic signals, and migrate to the site of
infection (Mayadas et al., 2014; Liew and Kubes, 2019).

Unlike other immune cells, neutrophils have a large number of
interchromosomal interactions within the cell nucleus, but the
interchromosomal gene regulation is rarely observed in this
nucleus (Keenan et al., 2021). In addition, compared to
progenitor cells, this cell nucleus has a large number of long-
range genomic interactions, including large genomic distances
between compartments A and B (Zhu et al., 2017).

In the transcriptional regulation of neutrophils and related
immune diseases, the binding and variation of the regulatory
factor PU.1 are associated with the local chromatin state, physical
interactions between enhancers and promoters, and the coordinated
expression of downstream genes (Watt et al., 2021). In neutrophils,
the transcription factor C/EBPβ is continuously expressed during
development and upregulated during its terminal differentiation
process, while PU.1 can bind to it in a repressive chromatin state and
activate it by recruiting other factors (Watt et al., 2021). PCHi-C
data indicates that the enrichment of PIR (Promoter Interacting
Regions) within neutrophil-specific PU.1 binding sites and their
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enhancers is positively correlated with the expression levels of the
genes they contact. In terms of genetic effects, the impact of
PU.1 tfQTLs (transcription factor quantitative trait loci) on
C/EBPβ binding decreases with increasing distance, while there is
no distance dependency in the binding to CTCF, indicating long-
range genetic effects of CTCF binding (Watt et al., 2021).
Additionally, comparative analysis of PCHi-C data from
neutrophils and monocytes reveals that enhancers shared in
neutrophils exhibit stronger genetic effects, and the specific
binding of PU.1 to C/EBPβ in neutrophils is also associated with
their specific chromatin activity (Watt et al., 2021), demonstrating
that distal PU.1 binding is cell-type specific, and that this gene-
determined PU.1 binding difference is related to the chromatin
states of different tissues. Another study using an in vitro migration
modelfound that after neutrophils undergo contraction migration,
the overall short-range contacts between genomic regions are
reduced or even interrupted. Additionally, it was observed that
TADs and compartments are enriched in inactive chromatin,
with a more pronounced disruption in compartment B compared
to compartment A. This suggests that during the migration of
neutrophils, local disruptions primarily occur in inactive
chromatin, while transcriptionally active DNA remains
unaffected by reshaping (Jacobson et al., 2018).

Conclusion

The three-dimensional chromatin structure within immune
cells is complex and variable, and our article discusses a topic
that is currently receiving significant attention in the field of
immunology. We summarized the changes in chromatin loops,
TADs, and A/B compartments, as well as the effects of various
cis-regulatory elements and transcription factors on the genome’s
3D structure during the differentiation and development processes
of dendritic cells, macrophages, B cells, T cells, and neutrophils. In
dendritic cells, we focused on the impact of the IRF8 factor on intra-
cellular compartments and TADs. In macrophages, we described the
changes in chromosomal interactions and intra-TAD interactions
during monocyte-to-macrophage differentiation, as well as the
alterations in chromosomal 3D structure during various disease
occurrences. In B cells, we emphasized the concept of the I
compartment and the roles of factors such as STAT3 and PTEN.
In T cells, we discussed the impact of the loss of Tcf1 and SATB1 on
the genome’s 3D structure. Finally, in neutrophils, we mainly
elucidated the effects of the specific binding of the PU.1 factor
on gene expression. Additionally, the use of deep learning-based Hi-
C technology to study immune cells for diagnosing and treating
diseases has emerged as a promising research area that has attracted
considerable attention.

The Hi-C technique also has its significant limitations. Because
Hi-C technology requires input from millions of cells to construct
Hi-C libraries for analysis, studying populations of immune cells
with limited numbers becomes challenging. Recently, researchers
have developed Low-C, a method that only requires a small number
of cells (approximately 1,000) as the starting material, and can
ultimately generate high-resolution chromatin contact maps similar
to Hi-C. Therefore, in the future, the technology for studying

chromatin 3D conformation may shift towards methods that
require less input material, which will aid in studying cell
populations with limited numbers (Díaz et al., 2018). In addition,
the complexity of the Hi-C experimental process may lead to
compromised reproducibility and consistency of results, and the
vast amount of Hi-C data requires more advanced tools for analysis
and processing. Furthermore, the resolution of Hi-C may no longer
meet the demands for studying finer genome structures,
necessitating the development of higher resolution techniques to
better reveal the intricate structure and interactions within the
genome. We believe that in the future, more advanced three-
dimensional chromatin structure technologies will emerge to
overcome the limitations of Hi-C, providing higher resolution
and a more comprehensive perspective, thereby delving deeper
into the complex structure and function of the genome (Kong
and Zhang, 2019).
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