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Several studies have compared the transcriptome across various brain regions in
Huntington’s disease (HD) gene-positive and neurologically normal individuals to
identify potential differentially expressed genes (DEGs) that could be
pharmaceutical or prognostic targets for HD. Despite adhering to technical
recommendations for optimal RNA-Seq analysis, none of the genes identified
as upregulated in these studies have yet demonstrated success as prognostic or
therapeutic targets for HD. Earlier studies included samples from neurologically
normal individuals older than the HD gene-positive group. Considering the
gradual transcriptional changes induced by aging in the brain, we posited that
utilizing samples from older controls could result in themisidentification of DEGs.
To validate our hypothesis, we reanalyzed 146 samples from this study, accessible
on the SRA database, and employed Propensity Score Matching (PSM) to create a
“virtual” control group with a statistically comparable age distribution to the HD
gene-positive group. Our study underscores the adverse impact of using
neurologically normal individuals over 75 as controls in gene differential
expression analysis, resulting in false positives and negatives. We conclusively
demonstrate that using such old controls leads to the misidentification of DEGs,
detrimentally affecting the discovery of potential pharmaceutical and prognostic
markers. This underscores the pivotal role of considering the age of control
samples in RNA-Seq analysis and emphasizes its inclusion in evaluating best
practices for such investigations. Although our primary focus is HD, our findings
suggest that judiciously selecting age-appropriate control samples can
significantly improve best practices in differential expression analysis.
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1 Introduction

Huntington’s disease (HD) is a fatal autosomal dominant neurodegenerative disorder
characterized by an expanded trinucleotide CAG (cytosine-adenine-guanine) repeat in exon 1 of
the HTT (huntingtin) or IT15 gene (located at 4p.16.3) (MacDonald, 1993; Kerkis et al., 2022;
Jiang et al., 2023). The length of the CAG expansion significantly influences the age of onset.
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Typically falling within the range of 40–50 CAG repeats, the onset age
varies from 30 to 65 years for most affected individuals (MacDonald,
1993; Kerkis et al., 2022; Jiang et al., 2023). CAG lengths beyond this
range are frequently associated with juvenile-onset, while CAG lengths
of 36–39 are linked to partial penetrance and delayed onset of the
disease (MacDonald, 1993; Kerkis et al., 2022).

A high number of CAG repeats (>36) encodes a mutated
huntingtin (mHTT) protein, which possesses an expanded
polyglutamine (polyQ) tract. The dysfunctional mHTT protein can
forms aggregates within neurons and other cells (DiFiglia et al., 1995;
1997; Lee et al., 2019; Ferguson et al., 2022; Castro et al., 2023), and leads
to (i) impairment of the ubiquitin-proteasome pathway (reducing
mHTT detoxification), (ii) transcriptional dysregulation, (iii)
excitotoxicity (due to increased glutamate and glutamate agonist
release from cortical afferents), (iv) mitochondrial dysfunction and
altered energy metabolism, and (v) changes in axonal transport and
synaptic dysfunction (Araldi et al., 2022; Castro et al., 2023).
Collectively, these dysregulations contribute to motor,
neuropsychiatric, and cognitive impairments observed in HD
patients (Hong et al., 2021; Kerkis et al., 2022; Wenceslau et al., 2022).

While the pathophysiological mechanisms of the disease are well
understood, there is currently no approved treatment capable of
delaying or preventing the progressive neuronal death caused by
HD (Barker and Mason, 2019; Kerkis et al., 2022). The absence of
disease-modifying therapy for HD patients can be attributed to the
absence of (i) prominent pharmaceutical targets for drug development,
(ii) suitable animal models to assess the potential therapeutic benefits of
investigational products, and (iii) prognostic biomarkers to demonstrate
the potential advantages of investigational products in clinical trials.

In the pursuit of identifying pharmaceutical targets and/or
prognostic biomarkers, numerous studies have already sequenced
the transcriptome of brain regions implicated in HD
pathophysiology (Labadorf et al., 2015; Labadorf et al., 2016; Lin
et al., 2016; Agus et al., 2019). Specifically, these investigations have
concentrated on Brodmann Area 9 (BA9, dorsolateral pre-frontal
cortex) or BA4 (primary motor cortex), as well as the caudate
nucleus (CAU), as illustrated in Table 1. This is because about 90%
of striatal neurons, primarily affected by the disease, are lost in late-stage
disease (DiFiglia et al., 1997; Aylward et al., 2004; Aylward et al., 2011).
This makes it difficult to study striatal postmortem samples from
individuals with HD due to the scarcity of neurons in this highly
degenerated tissue (Labadorf et al., 2015; Agus et al., 2019). However,
studies based on structural magnetic resonance imaging (MRI)

evidenced that, in late-stage HD, BA9 exhibits loss of projection
neurons in layers III, V, and VI and glial density increase in deeper
layer (VI) consistent with cortical degeneration (Selemon et al., 2004;
Delmaire et al., 2013). These results make the BA9 an important brain
area to be explored to identify possible pharmacological/prognostic
targets for HD.

With the advances in bioinformatics, these samples have
undergone extensive reanalysis through various pipelines
(Seefelder and Kochanek, 2021; Sneha et al., 2023). Despite the
commendable efforts invested in these studies, the differentially
expressed genes (DEGs) identified so far have not yielded valuable
pharmaceutical or prognostic targets conducive to HD drug
development (Labadorf et al., 2015; 2016; Lin et al., 2016; Agus
et al., 2019; Seefelder and Kochanek, 2021; Sneha et al., 2023).

Upon analyzing these studies, it was observed that they compared
the transcriptome of BA9/BA4 regions in individuals positive for the
HD gene with that of older neurologically normal control individuals
(matched in terms of mean age) (Labadorf et al., 2015; Labadorf et al.,
2016; Lin et al., 2016; Agus et al., 2019). Nevertheless, it is well-
established that aging induces notable transcriptome alterations in
the brain, leading to changes in energy metabolism (Błaszczyk, 2020;
Palmer and Jensen, 2022), diminished synaptic function (Fan et al.,
2018; Temido-Ferreira et al., 2019), disruptions in the immune system
with subsequent triggering of neuroinflammation (Finger et al., 2022;
Andronie-Cioara et al., 2023), and accumulation of iron (Hagemeier
et al., 2012; González-Velasco et al., 2020; Ham and Lee, 2020). These
age-related factors collectively contribute to the exacerbation of
neurodegenerative processes (Bowirrat, 2022). Consequently, it is no
surprise that aging contributes to the gradual deterioration of
physiological and biochemical functions, encompassing motor and
cognitive decline (Ham and Lee, 2020). This phenomenon is notably
observed in neurodegenerative disorders like HD (Domínguez et al.,
2016; Barron et al., 2021; Jia et al., 2022; van de Zande et al., 2023;
Wilton et al., 2023).

This observation prompted us to hypothesize that the
inappropriate use of control samples from older, neurologically
normal individuals (compared to HD gene-positive individuals)
may lead to the misidentification of DEGs. We conducted a
comparative reanalysis of transcriptomic data from BA9 tissue
samples collected from 20 HD gene-positive individuals and
49 neurologically normal control individuals to test our
hypothesis. The dataset utilized in this study was sourced from
the Sequence Read Archive (SRA), a public database.

TABLE 1 BioProjects available on SRA public database which analyzed the transcriptome of brain areas from Huntington’s disease affected individuals.

Number of samples

BioProject Area Total Control HD Data volume (Tb) Reference

PRJNA271929 BA9 69 49 20 0.38 Labadorf et al. (2015)

Labadorf et al. (2016)

PRJNA670925 BA9 100 68 32 0.26 Labadrof et al. (2018)

PRJNA531456 BA9 CAU 85 54 31 0.46 Agus et al. (2019)

PRJNA316625 BA4 14 7 7 0.25 Lin et al. (2016)

Total samples 268 110 158 1.35
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In assessing whether the utilization of older controls might result in
DEG misidentification, we identified DEGs in HD gene-positive
individuals concerning the entire control group (n = 49) and a
“virtual” group of 20 neurologically normal individuals selected from
the 49 control samples using propensity score matching (PSM). PSM is
a non-parametric statistical technique employed to construct a control
group bymatching each affected unit with a non-affected unit of similar
characteristics (Walsh et al., 2012; Kane et al., 2020).

Our results revealed that the use of older controls indeed leads to
the misidentification of DEGs, negatively impacting the discovery of
pharmaceutical and/or prognostic markers. This finding
underscores the importance of considering the age of control
samples in RNA-Seq analysis, suggesting that it should be
included assessing of best practices for such investigations.

2 Material and methods

2.1 Ethical approval

This study utilized publicly accessible sequencing data obtained
from HD gene-positive and neurologically normal individuals in the
Sequence Read Archive (SRA) public repository database.
Consequently, formal ethical approval was deemed unnecessary
for this investigation.

2.2 Dataset description

The sequencing data of the dorsolateral pre-frontal cortex (BA9)
frombothHDgene-positive and control samples was obtained from the
SRA database (BioProject PRJNA271929, available on https://www.
ncbi.nlm.nih.gov/bioproject/PRJNA271929). This BioProject is
comprised of 69 postmortem samples, featuring 20 from HD gene-
positive individuals aged between 40 and 75 years (with a mean of 58.
2 ± 10.4 years) and 49 from neurologically normal control human
individuals aged between 36 and 106 years (with a mean of 68.3 ± 15.
8 years). The selection of this BioProject for our study was based on the
following criteria: (i) the presence of a satisfactory number of case-
control samples, (ii) the high quality of sequencing data, and (iii) the
prior analysis of these samples by Labadorf et al. (Labadorf et al., 2015),
followed by subsequent reanalysis, including additional BA9 and/or
CAU samples (Labadorf et al., 2018; Agus et al., 2019). Demographic
data from the samples are described in Supplementary Excel S1.

2.3 Control sample selection by age
distribution using the propensity
score matching

To assess our hypothesis that the inappropriate use of older
control samples can affect DEGs identification, we employed
propensity score matching (PSM) at a 1:1 ratio (HD gene-
positive subject: neurologically normal subject). PSM is a quasi-
experimental method, initially introduced by Rosenbaum and Rubin
(1983), that aims to align affected/treated and control groups based
on a targeted feature to enhance comparability. For this purpose, we
utilized the MatchIt package in R (Ho et al., 2007). To validate the

outcomes derived from the package, the age distribution was visually
examined before and after PSM through both boxplot and density
plot analyses. Additionally, the statistical confirmation of age
distribution equality was carried out using a t-Student test, all
executed within the R environment.

2.4 Pre-processing (quality control and
mRNA abundance estimation)

The RNA-Seq data, formatted in FASTQ, underwent pre-
processing through FastQC (Andrews, 2010) and MultiQC (Ewels
et al., 2016) tools to ensure sequencing quality. Subsequently, the
pre-processed reads were mapped to the latest human genome
(hg38) using STAR (Spliced Transcript Alignment to a Reference), a
splice-aware aligner designed for accurately aligning reads to the
reference genome (Dobin et al., 2013). Transcript abundance was
then estimated utilizing the feature count read summarization
program (Liao et al., 2014). The abundance estimates from all
samples were consolidated into a unified expression matrix and
normalized using the DESeq2 package v1.10.1 (Love et al., 2014),
following the methodology outlined by Labadorf et al. (2015).

2.5 Differential gene expression analysis

To gain deeper insights into how the age of control samples may
impact the identification of differentially expressed genes, the
normalized read counts of HD gene-positive individuals (n = 20)
were individually compared with both the entire control sample set
(n = 49) and the PSM-selected control samples (n = 20, hereafter
referred to as Age-matched control samples). The differential
expression analysis was performed using the DESeq2 method (Love
et al., 2014), generating a comprehensive list of genes along with their
respective levels of differentiation and statistical significance.

Mapped genes were categorized based on their abundance, p-value,
and fold change (|log2FC|) into six distinct categories, as outlined in
Table 2; Figure 1. Genes classified as upregulated (URG) or
downregulated (DRG) were considered differentially expressed genes
(DEGs), while other categories were designated as non-differentially
expressed genes (NDEGs). Notably that both zero count genes (ZCG;
genes with row counts = 0) and low count genes (LCG; genes with
normalized counts < 10 in less than 70% of the smaller category) are
excluded from the differential gene expression analysis using DESeq2.

2.6 Unsupervised dimension reduction and
clustering analyses

For a comprehensive comparative assessment of the entire
transcriptome between HD gene-positive individuals and all
neurologically normal subjects, we employed the Uniform Manifold
Approximation and Projection (UMAP) dimensionality reduction
technique (McInnes et al., 2018), which proved itself to produce
insightful reduced dimensions to represent genomic data (Dorrity
et al., 2020). Utilizing three distinct components from UMAP, we
subsequently applied the Density-based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm to unveil primary

Frontiers in Genetics frontiersin.org03

Dias Pinto et al. 10.3389/fgene.2024.1377237

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA271929
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA271929
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1377237


grouping patterns (Kriegel et al., 2011); the advantage of this approach is
the fact that no prior knowledge on the ideal number of clusters is
required; also, DBSCAN generates clusters based on density of data in a
particular region and thus automatically recognizes anomalous or
outlying observations. The UMAP analysis was performed in
CRAN-R environment through UMAP package, while the
subsequent application of DBSCAN was applied using the scikit-
learn-based DBSCAN implementation for Python 2.6.

2.7 Functional enrichment analyses

Recognizing that the biological effects on the HD phenotype hinge
on the intricate interplay among DEGs, we subjected the ranked list of
genes—comprising both URGs and DRGs—derived from the analysis
using all control samples (n = 49) and age-matched controls (n = 20) to
distinct functional enrichment analyses. These analyses were conducted
using the Gene Set Enrichment Analysis (GSEA) to explore biological
pathways (BP) and molecular functions (MF).

2.8 Variation of genes abundance across age
in the control samples

To assess the influence of aging on genes that have
become DEGs or NDEGs, we employed a linear regression model
on the median of the reads by age across all control samples. This
approach allowed us to examine trends and determine their
statistical significance. These analyses were conducted within the
R environment, utilizing the stats package.

2.9 Analysis of the older neurologically
normal individual’s removal on the adjusted
p-value

Given that the raw p-values obtained through the Wald test
(employed for DEG identification by DESeq2) are subjected to
correction for multiple testing using the Benjamin and Hochberg
(BH) method to control the false-discovery rate (FDR) (Benjamin

TABLE 2 Gene classification according to differential expression in relation to the patients with Huntington’s disease.

Classification Abbreviation Reads p-adjust log2FC

Zero count genea ZCG = 0 NA NA

Low count geneb LCG <10 NA NA

Equally expressed gene EEG ≥10 >0,05 NA

Non-significant log2FC gene NSLFCG ≥10 <0,05 | log2FC | < 0.58c

Upregulated genes URG ≥10 <0,05 log2FC > 0.58

Downregulated genes DRG ≥10 <0,05 log2FC < −0.58

aGenes that showed reads equal zero across all samples (not identified).
bGenes with reads >10 that accounts for less than 70% of a limit number of samples (here we adopt the number samples of the smallest category)); NA, not applicable.
c| log2FC | > 0.58 or - 0.58 < log2FC < + 0.58 (which corresponds roughly to change less than ± 50% of the reference level).

FIGURE 1
Gene classification. Genes are generically classified as: i) non expressed, which includes zero count genes (ZCG, row counts = 0) and low count
genes (LCG, normalized counts < 10 in less than 70% of the smaller category), ii) commonly expressed, which includes equally expressed genes (EEG,
adjusted p-value > 0.05) and non-significant log2FC (LFC) genes (NSLFCG, adjusted p-value < 0.05, but |log2FC| < 0.58) and, iii) differentially expressed
genes (DEGs), which include upregulated genes (URG, adjusted p-value < 0.05 and log2FC > 0.58) and downer genes (DRG, adjusted p-value <
0.05 and log2FC < −0.58).
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and Hochberg, 1995) and considering that age matching
primarily affects the genes identified as DEGs, we further
hypothesized that age matching could potentially influence
DEG discovery by altering the p-adjusted values. To
investigate this hypothesis, we compared the raw p-values and
the p-adjusted values of genes that ceased to be identified as
DEGs upon excluding control samples from older neurologically
normal individuals.

3 Results

3.1 All samples show a satisfactory quality,
making them eligible for
downstream analyses

Quality control analysis stands as an indispensable facet of
RNA-Seq analysis (Consortium, 2011; Conesa et al., 2016; Chung

FIGURE 2
Results of Control Sample Selection Using PSM: The boxplot in (A) illustrates the statistically significant age difference between HD gene-positive
individuals and the entire control sample set, as confirmed by the age distribution in (B). Notably, (C) demonstrates the absence of a statistical difference in
age between HD gene-positive individuals and the PSM-selected control samples, a finding corroborated by the corresponding age distribution in (D).
Additionally, the dispersion plot in I affirms that the excluded control samples (Unmatched controls) consist of older individuals (with an average age
of 75 ± 15.6 years), diverging from both HD gene-positive individuals (58.2 ± 10.4 years) and PSM-selected age-matched controls (58.8 ± 10.5 years). (E)
Graphic showing the samples included in this study were obtained from individual with HD and controls with similar age distribution. Samples from
neurological normal individuals without age-matching were removed by the PSM.
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et al., 2021; Faustinoni-Neto et al., 2023). Therefore, we meticulously
evaluated the quality control of the 69 BioSamples by utilizing
FastQC and MultiQC tools. The outcomes unequivocally
affirmed that all BioSamples within the BioProject
PRJNA271929 exhibited a median per-sequence Phred score of
36, signifying a sequencing accuracy surpassing 99.9%.
Furthermore, the samples displayed a %GC content of 49%,
indicating the absence of potential contaminations. These
findings reassert the high quality of all 69 BioSamples, aligning
with prior validations conducted by Labadorf et al. (2015).

3.2 PMS appropriately selected control
samples with age distribution similar to HD
gene-positive individuals

As anticipated, the PSM method effectively selected control
samples from neurologically normal individuals with a
comparable age distribution to HD gene-positive individuals
(Figure 2). Consequently, two distinct control groups were
established: (i) the “All Controls” group, encompassing all
neurologically normal individuals (n = 49, with an average age of
68.3 ± 15.8 years), replicating the control cohort employed in the
study by Labadorf et al. (2015), and (ii) the “Age-Matched” group,
formed by samples from neurologically normal individuals
exhibiting a similar age distribution (n = 20, with an average age
of 58.2 ± 10.4 years) to that of the HD gene-positive individuals (n =
20, with an average age of 58.8 ± 10.5 years), representing the
“virtual” age-matched cohort.

3.3 Aging modifies the BA9 transcriptomic
profile, making the older individuals non-
appropriated controls for the DEG
identification in Huntington’s disease

To assess the potential impact of utilizing control samples from
older individuals on differential expression analysis, we initially
compared the entire transcriptome of HD gene-positive individuals
with that of all neurologically normal individuals using UMAP.

The three UMAP-components effectively grouped most samples
into seven distinct density-based clusters, revealing three overall
patterns (Figure 3A). Notably, clusters C3 and C4 on the left side
predominantly comprised young control individuals. In contrast, the
transcriptome of HD gene-positive individuals (clusters C6 and C7)
occupied an intermediary position on the Cartesian plane between
neurologically normal young individuals andmore distant older control
individuals (aged over 70 years, Figures 3C,D). This outcome strongly
suggests that age significantly influences the BA9 transcriptomic profile,
emphasizing that using older individuals as controls may not be
appropriate for identifying DEGs in HD.

3.4 Control samples from older individuals
affect the differential expression analysis

To assess the impact of including older control individuals on
the identification of DEGs, we conducted a comparison by analyzing

the number of genes identified across various classes (ZCG, LCG,
EEG, NSLFCG, URG, and DRG) in HD gene-positive individuals
relative to (i) the entire control group (n = 49) and (ii) age-matched
controls (n = 20) using a cross table. The results revealed that
excluding older individuals from the control group led to the
reclassification of 1,915 genes of interest. Among these, 1,523
(79.5%) were no longer considered DEGs (putative false-positive
genes), while 392 (20.5%) transitioned to being classified as DEGs
(putative false-negative genes) (Figure 4, highlighted in color
in Table 3).

3.5 Incorporating samples from older
control individuals has an impact on
functional enrichment

Recognizing that different genes can concurrently regulate
multiple molecular functions in various biological processes, the
DEGs identified in HD gene-positive individuals concerning all
controls (n = 49) or age-matched controls (n = 20) were
independently subjected to functional enrichment analysis using
GSEA in terms of Geneontology (GO). The results revealed that
protein-coding DEGs from all controls enriched for 162 biological
pathways, while those obtained exclusively from age-matched
controls enriched for 137 biological pathways (Figure 5;
Supplementary Excel S2). Upon comparison, it was observed that
77 pathways (Supplementary Table S1) were no longer identified as
enriched when samples from older neurologically normal
individuals were excluded from the control group (Figure 5).

Among the pathways excluded is the one associated with cellular
response to heat (Supplementary Table S1), encompassing heat
shock genes previously reported as upregulated in HD10–12.
Conversely, the omission of samples from older neurologically
normal controls enriched 52 new pathways (Figure 5;
Supplementary Table S2). A total of 85 pathways remained
consistent between the analyses using all and age-matched
controls (Figure 5; Supplementary Table S3). Interesting, we also
observed that the genes that were no longer classified as DEG
(highlighted in red in Table 3) are directly involved in
inflammatory process (Supplementary Table S4), reinforcing that
the aging exacerbates (neuro)inflammatory process which can lead
to false-positive results. These findings underscore that the inclusion
of samples from older control individuals not only leads to the
misidentification of DEGs but also exerts a detrimental impact on
functional enrichment.

3.6 The aging process amplifies the
expression changes of both up- and
downregulated genes in BA9, thereby
adversely affecting the identification of HD-
related DEGs

Considering the involvement of DEGs in HD pathophysiology,
mediated by protein interactions within each biological pathway, we
identified the protein-coding genes associated with pathways no
longer enriched (235 genes, 77 excluded pathways) and those
enriched in new pathways (222 genes, 52 pathways) identified in
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FIGURE 3
(A) UMAP and BDSCANclusterin analysis showing that the HD gene-positive individuals have mostly an intermediate overall transcriptomic
expression between young controls and older controls. In the clustering analysis, C-1 (gray dots) represented unassigned samples to clusters based on
their distance to the main groups. Plots (B–D) represents the age and condition distribution across all identified clusters. UMAP performed using all
samples (n = 69).
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FIGURE 4
Venn diagrams illustrate the number of genes identified as DEGs in HD gene-positive individuals concerning all control samples. Among these,
1,523 were no longer reclassified as DEGs, 1,039 remained classified as DEGs, and 392 became differentially expressed after the exclusion of control
samples from older individuals (age-matched controls).

TABLE 3 Quantitative analysis of the impact of age of death-matched controls selection in terms of differential expression genes (DEG) classification.
Numbers in black bold describe the total number of upregulated (URG) and/or downregulared genes (DRG).

Age of death-matched controls

NDEG DEG

ZCG LCG EEG NSLFCG URG DRG Total

All control NDEG ZCG 8,949 - - - - - 8,949

LCG - 30,412 28 - 7 − 30,447

EEG - 720 16,648 206 127 68 17,769

NSLFCG - - 2014 772 121 69 2,976

DEG URG - 13 582 14 711 - 1,320

DRG - 212 678 24 - 328 1,242

Total 8,949 31,357 19,950 1,016 966 465 62,703

ZCG, zero count genes; LCG, low count genes; EEG, equally expressed genes; NSLFCG, non-significant log2 fold change genes; URG, upregulated genes; DRG, downregulated genes. Numbers

highlighted in blue indicate genes that became DEG., Numbers highlighted in red indicate genes that were no longer DEG (or became NDEG). Numbers in bold describe the total number of

upregulated (URG) and/or downregulared genes (DRG).

FIGURE 5
Venn diagrams depict the outcomes of the functional enrichment analysis using GSEA for biological pathways and molecular functions. The results
demonstrate that the DEGs identified in HD gene-positive individuals using all control samples enriched for 77 biological pathways, which were no longer
observed in the enrichment based on the DEGs identified using age-matched controls (denoted as excluded pathways). Conversely, the DEGs identified
using age-matched controls enriched for 52 biological pathways that were not found in the analysis using all control samples (referred to as new
pathways). A total of 85 biological pathways were enriched for the DEGs identified using both all and age-matched control samples (referred to as
conserved pathways).
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TABLE 4 Count of genes (categorized as URG or DRG) that either became DEGs or were no longer classified as DEGs following age matching.

Became DEG No longer DEG

Max count/gene URG DRG Total URP DRG Total

<900 94 12 106 118 28 146

900–3,000 55 3 58 35 9 44

3,000–13,000 35 8 43 27 10 37

>13,000a 6 9 15 1 7 8

Total genes 190 32 222 181 54 235

aNon graphically plotted due to the reduced number of genes belonging to this classification.

FIGURE 6
Analysis of the aging effect on protein-coding genes enriched for pathways revealed significant impacts on classification due to age-matching. The
results indicate that aging has a more pronounced effect on genes that became DEGs, leading to a reduction in the expression levels of DRGs and an
increase in the expression levels of URGs in HD gene-positive individuals compared to neurologically normal individuals aged less than 60 years.
Additionally, the boxplots for all control samples display a median expression more closely resembling that of HD gene-positive individuals than
those observed for neurologically normal individuals aged less than 60 years.
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the analysis using age-matched controls. To assess the impact of
aging on the expression of these genes, we categorized them based on
their normalized counts into four groups reflecting their abundance
levels (Table 4). This categorization facilitated the visualization of
gene expression levels across age groups. We compared normalized
counts of these genes (per category) between HD gene-positive and
neurologically normal individuals aged less than 60, 60–75, and
older than 75 years (the maximum age observed in the HD group,
Figure 2). The rate estimates of expression changes across age in the
control groups for the genes that became DEGs showed statistical
significance.

These results highlight that aging has a more pronounced effect
on genes that became DEGs, reducing the expression levels of DRGs
and increasing the expression levels of URGs in HD gene-positive
individuals compared to neurologically normal controls aged under
60 years (Figure 6). Notably, the level of gene expression abundance
correlates with the magnitude of changes observed across age groups.

These findings collectively affirm that aging significantly
impacts gene expression in BA9. This underscores the
importance of utilizing control samples with a comparable age
distribution to HD gene-positive individuals, emphasizing that
such an approach is preferable and imperative for accurately
identifying DEGs with potential utility as pharmaceutical or
prognostic targets. However, it’s worth noting that aging exhibits
negligible effects on genes that are no longer URGs and have subtle
effects on genes that are no longer DRGs (Figure 6).

3.7 Incorporating control samples from
older neurologically normal individuals
impacts p-value adjustment, thereby
contributing to the false-positive
identification of DEGs

The impact of age matching on p-value adjustment is evident
in the reclassification of numerous DEGs to NDEGs

(Supplementary Figure S1). To illustrate these findings, we
examined the normalized counts of two genes (previously
identified as upregulated by Labadorf et al. (2015)), HILPDA
and SERPINH1, which were no longer classified as DEGs in the
analysis with age-matched controls. The raw p-values obtained
using both all controls and age-matched controls were
statistically significant (p-value < 0.05). However, the p-value
adjustment applied in DESeq2, which controls the false-
discovery rate (FDR) and considers age-matched controls,
resulted in a non-significant adjusted p-value (p-adjust > 0.05,
Figure 7). This effect is observed in 3.206 genes (2.686 protein-
coding genes), from which 478 genes had log2FC > 0.58 and
310 had log2FC < −0.58 (Supplementary Excel S3). These results
underscore that the absence of age matching leads to the
identification of false-positive DEGs due to p-value
adjustment, reinforcing the findings in Figure 6.

Furthermore, we demonstrated that age matching also
influences the log2 fold change (log2FC), altering the gene
abundance levels of control samples, as depicted in Figure 6. As
anticipated, this effect was more pronounced for genes that became
DEGs and those that are no longer DEGs (Supplementary Figure S1)
than those that remain classified as DEGs (Supplementary Figure
S1). Collectively, these findings strongly support the contention that
the lack of age matching leads to the misidentification of DEGs.

3.8 The synergy of age matching with an
analytical strategy can foster the discovery
of pharmaceutical targets

In our final assessment, we examined the expression levels, based on
normalized counts, of genes previously identified as URGs in HD gene-
positive individuals by Labadorf et al. (2015), using both all controls and
age-matched controls. Interestingly, we noted that the heat shock
protein-coding genes identified as URGs in HD by Labadorf et al.
(2015) exhibit relatively low expression, with a median expression in

FIGURE 7
Statistical Disparities in Normalized Gene Counts for Genes Previously Identified as Upregulated in HD Gene-Positive Individuals: (A) HILPDA (B)
SERPINH1. It is noteworthy that the p-values (highlighted in red) for both genes are significant (p-value < 0.05) in comparisons with both all controls and
age-matched controls. However, when analyzing only age-matched controls, the adjusted p-values for both genes become non-significant (p-adjust >
0.05). This underscores the influence of age matching on the statistical outcomes and emphasizes its impact on the significance of gene
expression changes.
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HD gene-positive individuals falling below the commonly used
threshold for defining gene expression (count > 10, Figures 8A,B).
This observation suggests that, in addition to age matching in the
control group, normalized counts should be further scrutinized with
adjusted p-values and log2FC for accurate DEG identification.

Consequently, through the integration of adjusted p-values,
log2FC, and normalized counts, we identified ADRA2B as

upregulated in HD gene-positive individuals (Figure 8C),
thereby emerging as a potential candidate for HD treatment.
This underscores the importance of a comprehensive analytical
approach for robust and accurate DEG identification. The
genes identified as putative DEGs in HD (in relation to age-
matched controls) can be visualized in Figure 9;
Supplementary Excel S3.

FIGURE 8
Expression Levels of Heat Shock Protein-Coding Genes: (A) HOXB9, (B) HOXC10 These genes were previously identified as upregulated, and it is
noteworthy that the median of normalized counts in HD gene-positive individuals is below the threshold typically considered for gene expression. (C)
Upregulated gene (ADRA2B) identified using age-matched controls, a result obtained through the combination of adjusted p-value, log2FC, and
normalized counts.
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4 Discussion

Despite the elucidation of the genetic basis of HD byMacDonald
et al., in 1993, there is currently no approved treatment capable of
altering the natural progression of the disease. To identify potential
DEGs that could serve as pharmaceutical and/or prognostic targets
for HD, various studies have conducted comparative analyses of the
transcriptome across different brain areas from HD gene-positive
and neurologically normal individuals (Labadorf et al., 2015; Agus

et al., 2019). Although these studies adhered to technical
recommendations to ensure optimal practices in RNA-Seq
analysis (Conesa et al., 2016; Chung et al., 2021), none of the
genes identified as upregulated by these investigations have yet
proven successful as prognostic or therapeutic targets for HD.

Upon scrutinizing one of these studies, we noticed that the
control group used to identify differentially expressed genes (DEGs)
consisted of samples from neurologically normal individuals older
than the HD gene-positive group (Labadorf et al., 2015).
Considering that aging induces gradual transcriptional changes in
the brain, leading to proteotoxic stress and iron accumulation, which
can contribute to neuroinflammation (Hagemeier et al., 2012;
González-Velasco et al., 2020; Ham and Lee, 2020) and result in
motor and cognitive declines (Ham and Lee, 2020), a phenomenon
also observed in HD (Domínguez et al., 2016; Barron et al., 2021; Jia
et al., 2022; van de Zande et al., 2023; Wilton et al., 2023), we
hypothesized that utilizing samples from older controls might lead
to misidentification of DEGs. To validate our hypothesis, we
reanalyzed the 69 samples previously investigated in this study
(Labadorf et al., 2015), which are accessible on the SRA database.
PSM, we formed a “virtual” control group comprising samples from
neurologically normal individuals with a statistically similar age
distribution to the HD gene-positive group.

To comprehensively visualize the entire transcriptome of the
69 analyzed samples, we employed unsupervised dimensionality
reduction combined with density-based clustering techniques. The
results revealed distinct clusters, each exhibiting characteristic age-
related features. As anticipated, the 20 samples from HD gene-
positive individuals differed from the control samples. However, the
transcriptome of HD gene-positive individuals demonstrated a
transitional state, aligning more closely with neurologically

FIGURE 9
Volcano plot showing the DEG identified in HD in relation to the
age-matched controls.

FIGURE 10
Illustration of how the utilization of control samples from older neurologically normal individuals can impact accurate DEGs identification. As
observed, age matching (via PSM) resulted in the transition of NDEGs to DEGs, highlighting the negative impact of using control samples from older
neurologically normal individuals on DEG discovery and increasing the likelihood of type II errors (false negatives). Additionally, age matching led to the
reclassification of DEGs toNDEGs through p-value adjustment (reclassifying DEGs as equally expressed genes–EEG) or significantly affected log2FC
(reclassifying DEGs as non-significant log2FC genes–NSLFCG). These findings provide evidence that the use of older neurologically normal individuals as
controls also elevates the probability of type I errors (false positives).
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normal individuals aged over 70 and younger controls under 70.
These findings provide evidence supporting the notion that
Huntington’s disease accelerates biological aging in the brain, as
previously discussed in the literature (Horvath et al., 2016; Machiela
and Southwell, 2020; Alcalá-Vida et al., 2021).

To evaluate the impact of using samples from older
neurologically normal controls on differential expression
analysis (DEA), we compared the BA9 transcriptome of HD
gene-positive individuals (n = 20, 58.8 ± 10.5 years) with two
groups: all controls (n = 49, 68.3 ± 15.8 years) and age-matched
controls (n = 20, 58.2 ± 10.4 years). We categorized genes into six
classes based on expression and differentiation levels. Our findings
illustrate that age-matching influences the identification of
differentially expressed genes (DEGs) in distinct ways, as
depicted in Figure 10.

The age matching of the control group not only significantly
reduced the number of Differentially Expressed Genes (DEGs) from
2,562 to 1,431 by eliminating putative false-positive DEGs but also
facilitated the identification of novel putative DEGs. Consequently,
it is unsurprising that the analysis based on the “virtual” control
group also impacted the functional enrichment analyses. This led to
the exclusion of 77 enriched biological pathways and the emergence
of 52 new biological pathways.

Remarkably, among the pathways excluded was the one related
to the cellular response to heat, encompassing heat shock protein-
coding genes previously identified as upregulated in HD by Labadorf
et al. (2015). Analyzing the normalized reads of these genes, we
observed that they have a median expression below the reliable
threshold of detection in the HD gene-positive group. However,
despite not being expressed in the control group, these HOX genes

FIGURE 11
Effects of the age matching on differential expression analysis. (A) Results show that the age matching affects the p-value adjustment, reclassifying
part of DEGs to NDEGs. Log2FC changes observed in genes that became DEG (B), that were no longer DEG (C) and that remain DEG (D) with the
age matching.
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exhibit a significant log2FC, providing a rationale for the results
obtained by Labadorf et al. (2015).

We also observed that aging primarily impacts the expression of
genes that became DEGs, leading to a gradual increase in the
expression of URGs and a decrease in the expression of DRGs.
This shift consequently alters the log2FC between HD and controls.
This finding aligns with existing literature, where evidence indicates
that aging induces a progressive deterioration of physiological and
biochemical functions in the brain (Lupo et al., 2019; Ham and Lee,
2020), promoting transcriptional changes in BA9.

Differential expression analysis using DESeq2 revealed the lack
of significant differences (p-value > 0.05) for numerous enriched
genes when comparing HD gene-positive individuals with
neurologically normal individuals, including those aged older
than 75 years. In contrast, when age-matching was performed,
significant statistical differences (p-value < 0.05) were observed
for the same genes. Collectively, these findings strongly indicate
that the inappropriate selection of samples from neurologically
normal controls increases the likelihood of type II errors (false
negatives), leading to the oversight of potential DEGs.

Differential expression analysis based on DESeq2 revealed no
statistical differences among the enriched genes no longer classified
as DEGs. This suggests that the inclusion of older neurologically
normal controls indirectly contributes to type I errors, leading to
putative false-positive DEGs. This hypothesis is plausible because
the raw p-values obtained from the Wald test (utilized for DEG
identification by DESeq2) are corrected for multiple testing using
the Benjamin and Hochberg (BH) method to control the false-
discovery rate (FDR) (Benjamin and Hochberg, 1995).
Consequently, removing older neurologically normal individuals
from the “virtual” control group altered the raw p-values of many
genes, influencing the adjusted p-values (Figure 11).

To illustrate this, we analyzed the normalized counts of two
genes identified as upregulated in HD by Labadorf et al. (2015)
(HILPDA and SERPINH1) in HD gene-positive individuals, age-
matched controls, and all controls (including older
neurologically normal individuals). During the differential
analysis, the Wald test revealed a statistically significant
difference (raw p-value < 0.05) in both scenarios during the
differential analysis. However, the p-value adjustment for these
genes became nonsignificant (adjusted p-value > 0.05) after
removing older neurologically normal individuals, leading to
the false-positive discovery of DEGs.

Considering that identifying pharmaceutical/prognostic
targets often relies on selecting disease phenotype-related genes
ranked with higher log2FC, these findings underscore the impact
of using inappropriate control samples from neurologically normal
individuals, leading to misguidance in DEG identification. By
excluding neurologically normal individuals older than 70 years,
we identified a novel putative therapeutic target, the ADRA2B
gene, encoding the alpha-2 adrenergic receptor. This gene is
upregulated in HD and is a target for various approved
antipsychotic drugs, including levomepromazine, pramipexole,
ropinirole, aripiprazole, ziprasidone, promazine, and
nortriptyline (Huang et al., 2022). Moreover, in vitro treatment
with beditin, a novel alpha-2 adrenoreceptor antagonist, has
demonstrated a significant cytotoxicity reduction, increasing
neuronal cell survival (Singer et al., 2021). These findings

position the alpha-2 adrenoreceptor as a potential
pharmaceutical target for HD, with beditin being a promising
candidate for pharmaceutical receptor manipulation. However,
further preclinical, and clinical studies are essential to confirm
the therapeutic potential of beditin.

It’s worth noting that this study is part of a broader investigation
dedicated to analyzing RNA-Seq data for HD. Our upcoming study
will present candidate genes for pharmaceutical/prognostic targets,
integrating different BioProjects and analytical strategies, including
artificial intelligence, to identify potential DEGs for drug discovery
and development accurately.

5 Conclusion

In conclusion, our study strongly indicates that employing
neurologically normal individuals aged over 70 as controls has a
detrimental impact on the accuracy of differential expression
analysis, leading to both false-positive and false-negative
Differentially Expressed Genes (DEGs). While the focus of this
study is on Huntington’s disease, our results imply that the
thoughtful inclusion of age-appropriate control samples in study
design can significantly enhance the best practices of differential
expression analysis. This study also suggests that the lack of
demographic feature matching between cases and controls, such as
sex, can lead to DEG misidentification.
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