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Introduction: Frailty is the most common medical condition affecting the aging
population, and its prevalence increases in the population aged 65 ormore. Frailty
is commonly diagnosed using the frailty index (FI) or frailty phenotype (FP)
assessments. Observational studies have indicated the association of frailty
with Alzheimer’s disease (AD). However, the shared genetic and biological
mechanism of these comorbidity has not been studied.

Methods: To assess the genetic relationship between AD and frailty, we examined
it at single nucleotide polymorphism (SNP), gene, and pathway levels.

Results:Overall, 16 genome-wide significant loci (15 unique loci) (pmeta-analysis < 5
× 10−8) and 22 genes (21 unique genes) were identified between AD and frailty
using cross-trait meta-analysis. The 8 shared loci implicated 11 genes: CLRN1-
AS1, CRHR1, FERMT2, GRK4, LINC01929, LRFN2, MADD, RP11-368P15.1, RP11-
166N6.2, RNA5SP459, and ZNF652 between AD and FI, and 8 shared loci between
AD and FFS implicated 11 genes: AFF3, C1QTNF4, CLEC16A, FAM180B, FBXL19,
GRK4, LINC01104, MAD1L1, RGS12, ZDHHC5, and ZNF521. The loci 4p16.3
(GRK4) was identified in both meta-analyses. The colocalization analysis
supported the results of our meta-analysis in these loci. The gene-based
analysis revealed 80 genes between AD and frailty, and 4 genes were initially
identified in our meta-analyses: C1QTNF4, CRHR1, MAD1L1, and RGS12. The
pathway analysis showed enrichment for lipoprotein particle plasma, amyloid
fibril formation, protein kinase regulator, and tau protein binding.

Conclusion:Overall, our results provide new insights into the genetics of AD and
frailty, suggesting the existence of non-causal shared genetic mechanisms
between these conditions.
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Introduction

Alzheimer’s disease (AD) and frailty are two profound health
concerns that exert a substantial impact on the aging population. AD
is characterized by a relentless neurodegenerative process resulting
in cognitive deterioration, memory loss, and alterations in behavior
and physical capabilities. It affects approximately 6.7 million
Americans aged 65 and above (Alzheimers Dement, 2023).
Concurrently, frailty represents a clinically identifiable state of
increased vulnerability and decreased physiological reserves in
older adults in everyday life (Chen et al., 2014). There are several
frailty definitions; the most common ones are the frailty phenotype
(FP) (Fried et al., 2001) and the frailty index (FI) (Mitnitski et al.,
2001). FP is diagnosed as a clinical syndrome predicated upon the
presence of three of five physical components, namely, weakness,
slow walking speed, inadequate physical activity, exhaustion, and
unexpected weight loss. On the contrary, FI is rooted in
accumulating various health deficits throughout an
individual’s lifetime.

The pathophysiological underpinnings of AD are characterized by
intricate and multifactorial processes involving beta-amyloid plaques
and neurofibrillary tangles. Studies have illuminated the pivotal roles of
inflammation and oxidative stress in the initiation and progression of
AD and frailty (Di Bona et al., 2010; Chen et al., 2014; Sargent et al.,
2018). Furthermore, these conditions share common risk factors such as
age, cognitive decline, slow walking, depression, and diabetes. Notably,
frailty is a recognized risk factor for AD (Buchman et al., 2007; Ward
et al., 2022). With improvements in lifestyle and advanced therapeutics,
the extended life span of the population has amplified the prevalence of
both AD and frailty. AD prevalence increases with age, being 5.0% from
age 65 to 74, 13.1% from age 75 to 84, and 33.3% from age 85 and older,
respectively (Rajan et al., 2021). Estimating the prevalence of FI is
challenging, but it is estimated to be 18% worldwide in the population
aged 60 or above (Siriwardhana et al., 2018). Consequently, many
studies used the FP, which is easier to ascertain in large population
studies, to assess the prevalence of frailty. In the United States, for the
population older than 65 years, the frailty prevalence ranges from 6% to
12% and increases from 3.9% in the 65–74 years age group to 25% in
those older than 85 years (Fried et al., 2004). The comorbidity of AD
and frailty can further impair quality of life (Mhaolain et al., 2012) and
amplify healthcare costs (Butler et al., 2016).

A systematic review and meta-analysis of frailty in mild to
moderate AD suggested an increased prevalence of frailty in AD
(Kojima et al., 2017), and a randomized clinical trial showed a
greater prevalence of frailty in AD compared to mild cognitive
impairment (MCI) (Wightman et al., 2023). Although there are no
genetic studies directly related to AD and frailty, some
epidemiological studies have found an association between AD
and frailty (Gomez-Gomez and Zapico, 2019; Alvarado et al.,
2021; Sabbatinelli et al., 2021), and AD biomarkers and frailty
(Koch et al., 2013; Wallace et al., 2018; Canevelli et al., 2021).
Genome-wide association studies (GWAS) for AD and frailty have
identified single nucleotide polymorphism (SNPs), genes, and
susceptibility loci. Findings from these GWAS have suggested
shared genetic underpinnings between the risk factors common
to both AD and frailty, such as body mass index (BMI),
cardiovascular diseases, depression, and smoking. To the best of
our knowledge, no genetic studies have investigated potential

pleiotropy or shared underlying mechanisms between AD and
frailty using either SNP or gene-level information from GWAS of
these two traits.

In the current study, we carried out comprehensive analyses
with the goal of exploring the genetic and potential causal
relationship between AD and frailty. Our investigation revealed a
nuanced genetic overlap with minimal genetic correlation between
AD and frailty. Furthermore, we employed cross-trait meta-analyses
to identify shared loci between AD and frailty. Our causality analysis
provides no substantial evidence for a causal relationship between
these two conditions. However, in gene-based association analysis,
we found common genes attaining genome-wide cutoff for AD and
frailty. Lastly, pathway analyses revealed a notable enrichment of
lipoprotein particle plasma, amyloid fibril formation, protein kinase
regulator, and tau protein binding for those genes common to AD
and frailty.

Materials and methods

The general workflow of the study is summarized in Figure 1.

GWAS summary statistics

We obtained GWAS summary statistics data for AD, which
included only diagnosed AD individuals (n = 398,058) (Wightman
et al., 2021) (GWAS data with AD cases only, excluding AD proxies
from UK Biobank, was made available by the authors upon request).
Separately, GWAS summary statistics on FI (n = 164,610) (Atkins
et al., 2021) and FP (n = 386,565) (Ye et al., 2023) analyzing
participants from the UK Biobank were obtained. All individuals
were of European ancestry, and the summary statistics were built on
the genome reference GRCh37. There was no sample overlap
between AD and each of the frailty assessments (FI and FP)
GWAS datasets (Supplementary Table S1).

Linkage disequilibrium score regression
(LDSC) between AD and frailty

To estimate the genetic correlation between AD and each of the
frailty assessments, we employed the cross-trait linkage
disequilibrium score regression (LDSC) method (Bulik-Sullivan
et al., 2015). To ensure the robustness of our analysis, we utilized
pre-estimated linkage disequilibrium (LD) scores provided by the
developers of LDSC. These LD scores were derived from the
1,000 Genomes European reference population. We preprocessed
the summary statistics using LDSC munge_sumstats.py and used
the z-score as the signed summary statistic. To minimize the
potential for bias arising from variations in LD structure, we
conducted the genetic correlation calculations by incorporating
HapMap3 SNPs in conjunction with LD reference panel SNPs.
We excluded genomic regions covering the major
histocompatibility complex (MHC, chr6: 25,119,106–33,854,733)
and apolipoprotein E (APOE, chr19:44,000,000-47,000,000) from
our analysis, considering their complex LD structure and known
large genetic effect in AD, respectively.
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GWAS cross-trait meta-analysis

We conducted cross-trait meta-analyses of AD and each of the
frailty assessments GWAS data to identify shared pleiotropic SNPs and
loci between both traits. The fixed effect (FE) and the modified random
effect (RE2) (Han and Eskin, 2011) models were implemented in our
meta-analyses using the METASOFT program (http://genetics.cs.ucla.
edu/meta/). The RE2 model operates under the assumption that SNP
effects vary and that it computes p values via a likelihood ratio test, in
contrast to the FE model, which assumes uniform effect sizes across
studies. The FE derives the p values using the inverse variance weighted
(IVW) effect size methodology, which may be inadequate in the
presence of heterogeneity. Our primary objective with this approach
was to unveil the SNPs that, while not initially meeting the genome-
wide significance threshold (5 × 10−8 < pGWAS-SNP < 0.05), attained this
level of significance following each meta-analysis (pmeta-analysis <
5 × 10−8).

To further evaluate the shared SNPs between AD and each of the
frailty assessments, we used the posterior probability (m-value)
scores (Han and Eskin, 2011) from the meta-analysis results,

which predict the effect size estimate in each of the studies under
heterogeneity. An effect was predicted to exist if the posterior
probability was greater than 0.9, no effect when the posterior
probability was below 0.1, and an ambiguous effect when it was
between 0.1 and 0.9 (Han and Eskin, 2011).

Genomic loci definition and functional
annotation

For AD and each of the frailty meta-analyses, independent
SNPs and loci were identified based on the FUMA protocol, an
online tool for functional mapping of genetic variants (http://
fuma.ctglab.nl/) (Watanabe et al., 2017). As a result of our meta-
analysis, SNPs that reached genome-wide significance (pmeta-

analysis < 5 × 10−8) with linkage disequilibrium (LD) r2 < 0.
6 with each other were recognized as independently significant
SNPs. A subgroup of these independent SNPs with LD r2 < 0.
1 was then considered as the lead SNPs. The genomic locus
boundaries were identified by detecting all the candidate SNPs

FIGURE 1
Study design. Three levels of SNP-based, gene-based, and pathway-based analyses exploring the shared genetic architecture between Alzheimer’s
disease and frailty.
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that were in LD (r2 ≥ 0.6) with the lead SNP. If the distance
between two loci was smaller than 250 kb, they were merged.
Some loci may have multiple LD-independent (r2 < 0.1) lead
SNPs within the locus. All candidate SNPs located in these
distinct locations were regarded as one independent genomic
locus. The LD calculations were based on the 1000 Genomes
Project (Clarke et al., 2017) reference panel for
European ancestry.

We annotated the genes to the lead SNPs based on positional
mapping using ANNOtate VARiation (ANNOVAR) (Wang
et al., 2010) in FUMA. Additionally, these SNPs were
annotated with Combined Annotation Dependent Depletion
(CADD) scores (Rentzsch et al., 2019) to predict how certain
the SNP effect is on protein structure or function and possible
contribution to genetic disease. Similarly, we used RegulomeDB
(RDB version 1.1) scores (Boyle et al., 2012) to predict the
likelihood of regulatory functionality and chromatin states to
predict transcription and regulatory effects from chromatin
states at the SNP locus. RDB ranks the SNPs with a score
from 1 (1a to 1f) to 6. The SNPs with strong evidence of
being a regulatory variant are given a score of 1, and the ones
with the least evidence are scored 6 (Boyle et al., 2012).

Enrichment control and assessment of
SNP novelty

SNPs within the MHC region (defined as chr6: 25,119,106 -
33,854,733) and APOE gene (chr19:44,000,000-47,000,000) were
excluded from the analyses due to known association to AD
(Lambert et al., 2010; Scheltens et al., 2016) or a very complex LD
structure (de Bakker and Raychaudhuri, 2012). For the meta-
analysis, we used a modified random effect (RE2) p-value and the
GWAS p-value, i.e., pmeta-analysis < 5 × 10−8 and 5 × 10−8 < pGWAS-

SNP < 0.05 cutoff to identify the novel, previously unidentified
shared SNPs between two traits in their original GWAS.

To assess their novelty, we examined our identified loci in
previously reported GWAS associations in the National Human
Genome Research Institute (NHGRI-EBI) GWAS Catalog
(Sollis et al., 2023). We further identified if the gene was
novel to any of our traits based on the traits reported in the
GWAS Catalog.

Colocalization analysis

To further investigate and discover genomic regions shared by
each of the frailty assessment and AD, we conducted a colocalization
study using the Pairwise GWAS approach (Pickrell et al., 2016)
(GWAS-PW) (https://github.com/joepickrell/gwas-pw). The
Bayesian pleiotropy association test, which reveals genomic
regions that affect both traits, is the foundation of GWAS-PW.
Additionally, we employed this technique to determine whether AD
and frailty confidently share the same loci attaining genome-wide
cutoff in our GWAS meta-analyses. The summary statistics of AD
and each of the frailty assessments were combined using the GWAS-
PW, and the posterior probability of association (PPA) of a pre-
specified genomic region was calculated. GWAS-PW estimates four

PPAs: i) the probability that the locus is associated with AD only
(PPA1), ii) the probability that the locus is associated with frailty
only (PPA2), iii) the probability that the locus is associated with both
AD and frailty (PPA3) and iv) the probability that the locus is
associated with both AD and frailty but through different causal
variants (PPA4). The shared SNPs and regions (PPA3 and PPA4)
were selected if their PPA >0.5 in the models.

Causal relationship

We evaluated the potential causal relationship between AD and
each of the frailty assessments using Mendelian randomization
(MR) analyses. MR uses SNPs as instrument variables (IV) to
assess the causality, and these IVs are defined by three
assumptions (Davies et al., 2018). First, the selected IVs are
significantly associated (pGWAS < 5 × 10−8) with the exposure
variable. Second, the IVs are independent between the exposure
and the outcome. Third, the effect of IVs on the outcome must
precede the exposure. We evaluated the bidirectional association
between AD and each of the frailty assessments using the two-
sample MR method (https://mrcieu.github.io/TwoSampleMR/
articles/introduction.html). Initially, independent (r2 < 0.001)
genome-wide significant SNPs (pGWAS < 5 × 10−8) associated
with exposure (AD) were considered as instrumental variables
(IVs) and assessed against outcome variables (FI and FP) and
vice versa. We used the 5 MR methods (MR Egger, weighted
median, inverse variance weighted (IVW), simple mode, and
weighted mode) implemented in the 2SMR R package (Hemani
et al., 2018).

Gene-based association analysis

We carried out gene-based association analyses to find genome-
wide significant genes shared between AD and each of the frailty
assessments. By combining the effects of multiple SNPs, this
methodology enhances SNP-based studies and increases the
power for detecting genetic risk variations. It additionally
addresses the problem of smaller effect sizes or correlations
amongst SNPs. We used the multi-marker analysis of genomic
annotation (MAGMA) (de Leeuw et al., 2015) software (https://
ctg.cncr.nl/software/magma) to conduct the gene-based association
analysis for overlapping SNPs between AD and each of the frailty
assessments. To annotate the SNPs present within the gene region
and to carry out precise gene-based testing, we used the gene
boundary length as within ‘±0 kb outside the gene’ downstream
and upstream.

Genome-wide significant genes for AD and FI were defined at a
corrected p-value <2.79 × 10−6 (Bonferroni correction for qualified
17,919 genes, 0.05/17,919), based on the MAGMA results. With an
adjusted p-value of 2.83 × 10−6 (Bonferroni correction for qualified
17,683 genes (0.05/17,683), we also discovered genome-wide
significant genes for AD and FP. Additionally, we retrieved their
overlapping genes at gene-level p-value <0.1 (pgene < 0.1) to find the
genes shared between AD and frailty. By implementing the Fisher’s
combined p-value (FCP) analysis (Adewuyi et al., 2022) approach,
we merged the FCP values for AD and frailty. We identified the
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common genes with genome-wide significance for AD and frailty
at FCP <0.05.

Pathway-based analysis

To explore the underlying biological mechanisms between
AD and frailty, we performed overrepresentation analysis
(ORA) using the g:GOSt tool from the g-profiler software

(Raudvere et al., 2019), a web-based functional pathway
analysis tool. To perform analysis using user specified genes,
the g:GOSt tool includes databases Gene Ontology, Human
Protein Atlas, Wikipathways, Human Phenotype Ontology,
CORUM, Kyoto Encyclopedia of Genes (KEGG), and
Reactome. We attempted to interpret gene functionality
between AD and frailty based on these findings. We chose
the genes that were the output of the gene-based association
analysis as input for pathway analysis. We used the default

TABLE 1 Genome-wide significant independent SNPs and loci for AD and frailty.

Locus Lead SNP Gene/
cytoband

CHR:BP A1:
A2

RE2 p ADm Frailty m AD p Frailty p AD z Frailty z

SNPs and loci reaching genome-wide significance after meta-analysis of AD and frailty index (FI)

1 rs35096827 CLRN1-AS1/3q25.1 3:
150616348

T:C 2.09E-08 0.9 1 3.43E-
02

8.58E-08 −2.11 −5.36

RP11-166N6.2/3q25.1

2 rs2071689 GRK4/4p16.3 4:3039311 T:C 2.52E-08 0.9 1 1.89E-
02

1.57E-07 2.36 5.18

3 rs9471333 LRFN2/6p21.2 6:40362023 T:C 3.47E-08 0.9 1 4.08E-
02

2.71E-07 −2.05 −5.18

4 rs11039165 MADD/11p11.2 11:
47312689

A:G 3.77E-08 1 0.1 2.26E-
07

9.60E-04 −5.17 −3.32

5 rs117500469 RP11-368P15.1/
14q22.1

14:
53428839

A:G 4.48E-10 1 1 1.20E-
06

5.01E-05 4.85 4.06

FERMT2/14q22.1

6 rs1635298 CRHR1/17q21.31 17:
43744344

A:T 1.84E-08 1 0.9 1.44E-
05

1.60E-04 4.34 3.77

7 rs28483960 ZNF652/17q21.33 17:
47432879

T:C 3.33E-09 0.9 0.7 2.90E-
07

6.97E-05 5.15 4.00

8 rs11660554 LINC01929/18q21.2 18:
52796510

A:G 2.39E-08 0.9 1 2.57E-
03

6.90E-07 3.01 4.94

RNA5SP459/18q21.2

SNPs and loci reaching genome-wide significance after meta-analysis of AD and frailty phenotype (FP)

1 rs6722241 AFF3/2q11.2 2:
100803778

T:C 1.96E-08 0.9 1 4.64E-
02

6.70E-08 −5.08 4.43

LINC01104/2q11.2

2 rs2515933 GRK4/4p16.3 4:3027897 C:G 3.38E-08 0.9 1 4.24E-
02

9.70E-08 −2.05 −5.44

2 rs10012797 RGS12/4p16.3 4:3385176 A:G 2.54E-08 0.9 1 8.33E-
03

1.60E-07 2.86 5.16

3 rs34647879 MAD1L1/7p22.3 7:1960646 A:G 1.40E-08 0.9 1 1.06E-
02

6.80E-08 1.96 −5.49

4 rs11039307 C1QTNF4/11p11.2 11:
47611152

T:C 1.69E-09 0.9 0.5 3.77E-
07

8.10E-06 −2.03 −5.37

FAM180B/11p11.2

5 rs1785498 ZDHHC5/11q12.1 11:
57448932

T:C 1.53E-08 0.9 1 4.03E-
02

5.90E-08 1.99 5.42

6 rs34342224 CLEC16A/16p13.13 16:
11225441

T:C 2.81E-08 0.9 1 4.26E-
03

2.00E-07 2.03 5.29

7 rs35733741 FBXL19/16p11.2 16:
30945887

A:T 1.22E-08 0.9 1 4.99E-
02

5.10E-08 −2.64 −5.23

8 rs34979937 ZNF521/18q11.2 18:
22690663

A:G 2.37E-08 0.9 1 4.25E-
02

8.60E-08 −2.55 5.36
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functional parameter in the tool (Reimand et al., 2019) for our
analysis. The range of acceptable functional category term sizes
was 5–1,000. We used the default ‘g: SCS threshold’ (set counts
and sizes) for multiple testing correction and reported the
significantly enriched pathways at the multiple testing
adjusted p-value <0.05. We used the enrichment map from
Cytoscape (Shannon et al., 2003) to visualize the pathways
with FDR <10−3 and auto-annotate cluster to annotate
the pathways.

Results

The workflow of our study is shown in Figure 1. We
performed the analysis at three levels: SNP, gene, and
pathway-based analysis (Adewuyi et al., 2022). First, in the
SNP-based analysis, we computed the SNP-heritability and
genetic correlation based on the LDSC method. The AD
heritability was approximately 1.5% (h2SNP = 0.0155, SE =
0.0023), 12% for FI (h2

SNP = 0.1169, SE = 0.0053), and 6% for
FP (h2SNP = 0.0623, SE = 0.0027). There was no significant
correlation between AD and FI (rg = −0.045, SE = 0.05, p =

0.3) and between AD and FP (rg = 0.01, SE = 0.04, p = 0.8). FI and
FP have shown significant genetic correlation (rg = 0.75, SE =
0.02, p = 8.7e-309). Next, we performed GWAS meta-analyses to
identify shared SNPs and loci associated with AD and frailty. We
also used the pairwise GWAS colocalization method across the
predefined genomic loci to identify the loci with shared genetic
influence between AD and frailty. We assessed for any probable
causal relationship between AD and frailty using MR. Finally, we
conducted gene and pathway-level-based analyses to find the
genes reaching genome-wide significance and the biological
pathways between AD and frailty.

Cross-trait meta-analysis: shared and novel
SNPs, loci, and genes between AD and frailty

We conducted cross-trait meta-analyses of AD and frailty
utilizing GWAS summary statistics. We used a random effect
meta-analysis to find SNPs that were not genome-wide
significant in the individual AD or frailty GWAS (i.e., 5 × 10−8 <
pGWAS < 0.05) but reached statistical significance in our analysis
(pmeta-analysis < 5 × 10−8). Our meta-analyses found shared SNPs,

FIGURE 2
Miami plot based on the cross-trait meta-analyses of AD and frailty. The top plot is based on the meta-analysis of AD and the frailty index. The
bottom plot is based on the meta-analysis of AD and frailty phenotype. The gene highlighted in bold is identified in both of the meta-analyses.
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some of which were novel for AD or/and frailty (Table 1). In our
cross-trait meta-analyses, the SNPs with genome-wide significance
in these loci were not reported to be significant in their
original GWAS.

A total of 9,090,769 overlapping SNPs in the AD and FI
GWAS were meta-analyzed in the combined 562,668 individuals.
A total of 55 SNPs attained a genome-wide significance
(Supplementary Table S2). To identify the independent and
lead SNPs, we filtered them at LD r2 < 0.6 and subsequently at
r2 < 0.1 in FUMA. Any overlapping SNPs within a 250 kb region
were merged into a single locus, and the SNP with the least
p-value was considered the lead SNP. We identified 8 genomic
loci, each with a lead SNP. Of these 8 loci, 5 loci (3q25.1, 4p16.3,
6p21.2, 14q22.1, 18q21.2) were novel for both AD and FI, and
3 loci (11p11.2, 17q21.31, 17q21.33) were novel for FI (Table 1;
Figure 2) and had pleiotropy association with AD. Based on the
posterior probability (m-value), the effect exists for AD in all the
SNPs, and, for FI, rs11039165 had no effect on FI, and
rs28483960 had an ambiguous effect. These 8 lead SNPs were
located in 11 genes (CLRN1-AS1, CRHR1, FERMT2, GRK4,
LINC01929, LRFN2, MADD, RP11-368P15.1, RP11-166N6.2,
RNA5SP459, and ZNF652), are either in their intronic (66.3%)
or intergenic (33.7%) regions. All these genes are novel to FI. Five
genes (CLRN1-AS1, GRK4, LINC01929, RP11-368P15.1, RP11-
166N6.2) are novel to both AD and FI, and 3 (FERMT2, LRFN2,
ZNF652) of them have been previously associated with AD or a
family history of AD (Lambert et al., 2013; Marioni et al., 2018;
Schwartzentruber et al., 2021; Wightman et al., 2021). The three
RNA genes, CLRN1-AS1, RP11-166N6.2, and RP11-368P15.1,
were not previously reported for any AD-related phenotype in
the EBI GWAS Catalog.

Additionally, we identified 115 independent SNPs at 83 loci at
the genome-wide suggestive association (pmeta-analysis < 1 × 10−5).
Five of the 8 genome-wide significant loci (excluding loci: 3q25.1,
6p21.2, 14q22.1) were replicated at genome-wide suggestive
association level for AD and FI (Supplementary Table S4).
Also, we found SNPs and loci that were already known to be
associated (pGWAS < 5 × 10−8) with AD (AD lead SNPs) and, upon
meta-analyses, were related to FI and vice versa
(Supplementary Table S5).

Regarding the FP assessment, a total of 6,665,979 overlapping
SNPs in the AD and FP GWAS were meta-analyzed in the combined
551,175 individuals. Meta-analysis of AD and FP identified 54 SNPs
reaching a genome-wide significant association (Supplementary
Table S3), and we identified 9 independent (r2 < 0.1) genomic
loci. Of these 9 loci, 8 were novel for both AD and FP, and one locus
was novel for FP only (Table 1; Figure 2), which was also identified
in a pleiotropy study between AD and gastroesophageal reflux
disease (GERD). Eleven genes (AFF3, C1QTNF4, CLEC16A,
FAM180B, FBXL19, GRK4, LINC01104, MAD1L1, RGS12,
ZDHHC5, and ZNF521) were mapped to the 9 lead SNPs and
their regions are either intronic (66.3%), intergenic (16.7%) or
downstream (16.7%). All the genes are novel to FP, 8 of the
genes are novel to both AD and FP (MAD1L1 being the
exception), and 3 genes (AFF3, LINC01104, MAD1L1) have been
previously associated with the pleiotropy analysis of AD with
educational attainment (EA) (Kulminski et al., 2022). Based on
the posterior probability (m-value), the effect exists for both AD and

FP in all the SNPs, and SNPS within the locus 11p11.2 (chr11:
47611152—47232038) had an ambiguous effect on FP
(Supplementary Table S3). The loci 4p16.3 and 11p11.2 and gene
GRK4 were shared with both pairs of AD and frailty.

We identified 120 independent SNPs at 79 loci at the genome-
wide suggestive association (pmeta-analysis < 1 × 10−5). Seven of the
8 significant genome-wide loci (excluding locus 18q11.2) were
replicated at genome-wide suggestive association levels for AD
and FP (Supplementary Table S5). Additionally, we found SNPs
and loci that were already known to be associated (PGWAS < 5 × 10−8)
with AD (AD lead SNPs) and, upon our meta-analyses, were related
to FP too, and vice versa (see details in Supplementary Table S6).

Colocalization analysis: shared loci across
genomic regions

We assessed the genomic regions shared between AD and frailty
using GWAS-PW (Supplementary Tables S7, S8). The findings of
this research imply that AD and frailty share all the loci found in the
meta-analyses with varying posterior probability (PPA4 > 0.2)
(Table 2). The posterior probability result (PPA3 < 0.2) of causal
variants suggests that those variants in the locus may be in strong
LD, which restricts the GWAS-PW analysis ability to differentiate
between model 3, where the locus is shared between both traits, from
model 4, where the locus is shared between both traits, but through
other causal variant (Pickrell et al., 2016). Additional shared
genomic regions with PPA4 > 0.9 were identified in
chromosomes 6, 10, and 11 for AD and FI, and PPA4 > 0.8 were
identified in chromosomes 1, 3, 5, 6, 7, 11, 14, and 19
(Supplementary Table S7). For AD and FP, genomic regions in
chromosomes 7, 10, 11, 14, and 19 had PPA4 > 0.9 and PPA4 >
0.8 in chromosomes 2, 5, 6, 10, 11, 15, 16, and 17
(Supplementary Table S8).

Causal association analysis by MR

Since both AD and frailty are diagnosed in the later stage of
aging population, it is cumbersome to determine the temporality
between these disorders. Therefore, to evaluate the probable causal
relationship between AD and frailty, we used the two-sample MR
method. Regardless of the direction of the investigation, we
employed the 5 MR methods [MR Egger, weighted median,
inverse variance weighted (IVW), simple mode, and weighted
mode] implemented in the 2SMR R package. Although, no
statistically significant evidence was detected for a causal
association between AD and frailty (AD as outcome and frailty
as exposure, and vice versa) within all the tests (Table 3), the effect of
the variants is significant on these combined traits.

Gene association analysis identified AD-
related genes

Using the overlapping SNPs between AD and FI, we performed
gene-based analysis using MAGMA. We found a total of
17,919 protein-coding genes shared between AD and FI. By
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applying Bonferroni correction p-value cutoff (0.05/17919, 2.79 ×
10−6), we identified 37 protein coding genome-wide significant genes
for AD (Supplementary Table S9) and 43 for FI (Supplementary
Table S10). A total of 17 genes (pgene < 2.79 × 10−6) shared between
AD and FI were found by using the FCP technique (Supplementary
Table S13), 16 of which were significant (pgene < 2.79 × 10−6). All
these genes are novel for FI, and 3 of those genes are novel for both
AD and FI (Supplementary Table S13). Eleven genes (ANCA7,
ARHGAP45, C17orf107, CD33, CLU, CRHR1, KANSL1, LAMB2,
MAPT, PICALM, SPPL2c) have been previously related to AD in the
EBI GWAS Catalog. We found 2 overlapping loci (4p16.3 and
17q21.31) between gene analysis and SNP meta-analysis but no
overlapping gene.

We found 17,683 protein-coding genes shared between AD and
FP. After applying the Bonferroni correction (0.05/17683, p-value =
2.83 × 10−6), we identified 40 genome-wide significant genes for AD
(Supplementary Table S11) and 86 for FP (Supplementary Table
S12). A total of 41 shared genes were found using the FCP technique
(Supplementary Table S14). All these genes were significant at the
pgene < 2.83 × 10−6 level. All these genes were novel for FP, and
22 were novel for both AD and FP (Supplementary Table S14).
Eighteen genes (ADAM10, ATXN2L, BCL1A, CD33, CELF1,
CRHR1, EPHA1, FNBP4, KANSL1, LAMB2, MAD1L1, MAPT,
MS4A3, NUP160, PICALM, PSMC3, SPI1, and SPPL2C) were
previously related to AD in the EBI GWAS Catalog. There were
3 overlapping loci (4p16.3, 7p22.3, and 11p11.2) and genes
(C1QTNF4, MAD1L1, and RGS12) between the gene analysis and

SNP meta-analysis. CD33, CRHR1, KANSL1, LAMB2, and MAPT
were the overlapping genes between FI and FP, with AD based on
the SNP and gene-level analysis.

Pathway-based analysis

We used the g: Profiler, a web-based platform to perform pathway-
based enrichment analysis to functionally interpret the genes that
overlap between AD and frailty. We examined the genes associated
with AD and frailty (pgene < 0.1, FCP <0.05) (Supplementary Table S15,
S16). We found multiple enriched biological pathways, suggesting a
shared role in the biological mechanisms between AD and FI. This
analysis identified 50 significantly enriched biological pathways or
processes, mostly related to receptor activity, amyloid fibril
formation, lipoprotein particle, and leukocyte activation. These
include serine/threonine kinase activity (padjusted = 1.18 × 10−4),
protein homodimerization activity (padjusted = 6.12 × 10−4), plasma
lipoprotein particle organization (padjusted = 8.81 × 10−5), Cdc42 protein
signal transduction (padjusted = 5.46 × 10−4), amyloid fibril formation
(padjusted = 2.86 × 10−8), among others (Supplementary Table S17).
Cytoscape identified six major clusters: ‘homodimerization activity
dimerization,’ ‘receptor serine activin,’ ‘lipoprotein particle plasma,’
‘leukocyte activation cell,’ ‘cdc42 signal transduction’, and ‘amyloid
fibril formation’ (Figure 3).

Similarly, between AD and FP, 18 biological pathways were
identified, which include ‘protein-macromolecule adaptor activity’

TABLE 2 Colocalization analysis on the meta-analysis significant loci between Alzheimer’s disease and frailty.

Locus NSNP CHR Start Stop PPA_1 PPA_2 PPA_3 PPA_4

Pairwise analysis between Alzheimer’s disease and frailty index

1 2680 chr3 150252004 151348193 8.60E-04 6.37E-01 2.79E-02 3.18E-01

2 2751 chr4 2844641 3844625 3.30E-07 7.51E-01 1.13E-02 2.38E-01

3 5,045 chr6 40345542 42038449 4.17E-03 3.43E-05 8.24E-04 9.95E-01

4 6,212 chr11 47008125 49865926 1.06E-01 1.33E-05 2.44E-02 8.69E-01

5 6,151 chr14 51493572 53473918 3.83E-02 1.62E-01 1.54E-02 7.02E-01

6 6,406 chr17 43056905 45874715 4.35E-03 4.30E-01 1.21E-02 5.20E-01

7 4076 chr17 45876022 47516523 1.66E-03 5.67E-01 1.70E-01 2.22E-01

8 8,459 chr18 51554436 55213381 9.31E-04 6.75E-01 4.40E-02 2.58E-01

Pairwise analysis between Alzheimer’s disease and frailty phenotype

1 7,275 chr2 98995201 101822144 5.04E-08 4.69E-01 5.08E-02 4.81E-01

2 3,075 chr4 2845274 3845571 3.64E-12 2.94E-01 4.62E-01 2.45E-01

3 2557 chr7 1354471 2061783 8.80E-09 3.96E-01 1.14E-01 4.91E-01

4 7,878 chr11 47008125 49865926 4.67E-03 2.16E-07 7.53E-01 2.43E-01

5 12262 chr11 55082693 58455737 1.11E-06 6.00E-01 4.54E-02 3.54E-01

6 4118 chr16 10426040 11519750 1.08E-03 2.59E-01 4.88E-01 2.39E-01

7 2977 chr16 29038452 31379355 6.37E-05 1.65E-01 3.38E-02 8.01E-01

8 5,500 chr18 20649667 22994310 4.86E-05 5.98E-01 4.13E-02 3.59E-01

NSNP: number of Single nucleotide polymorphisms, CHR: chromosome, PPA_1: the probability that the locus is associated with AD, only, PPA_2: the probability that the locus is associated

with frailty only, PPA_3: the probability that the locus is associated with both traits, PPA_4: the probability that the locus is associated with both traits but through different causal variants.
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(padjusted = 1.25 × 10−4), ‘protein homodimerization activity’
(padjusted = 2.11 × 10−4), and ‘tau protein binding’ (padjusted =
4.51 × 10−4) (Supplementary Table S18). Cytoscape shows four
major clusters: ‘molecular adaptor activity’, ‘homodimerization
activity dimerization’, ‘protein kinase regulator’, and ‘tau protein
binding’ (Figure 3). Of note, the ‘homodimerization pathway’ was
shared between the two frailty assessments with AD.

Discussion

Epidemiological studies have reported comorbidity of aging
disorders like AD with frailty, but no previous research has focused
on the shared genetic architecture between AD and frailty. Similarly, in
a cross-sectional study inmicemodels, increased frailty has been seen in
AD (Kapphan et al., 2023). In addition, observational studies in humans
have suggested a shared relationship betweenADbiomarkers and frailty
(Wallace et al., 2018). In this study, we comprehensively assessed the
genetic overlap, causal relationship, shared genes, and biological
pathway between AD and frailty using GWAS summary statistics.
Similar to the previous observational studies, our findings suggested a
shared genetic architecture between AD and frailty.

In our analyses, LDSC did not provide a significant genetic
correlation between AD and frailty, which may be due to the mixed
effect of the influence of SNPs on each phenotype. The genetic
correlation between FI and FP was 0.75. We did not find studies
measuring the phenotypic correlation between FI and FP in the UK
biobank population. To the best of our knowledge, longitudinal
studies based on the European ancestry population showed amodest
kappa agreement ranging from 0.38 to 0.45 (Thompson et al., 2018;
Kim et al., 2022). The kappa score >0.8 suggests a strong agreement.
The genetic correlation method, like LDSC, failed to capture the
mixture of effect directions across the shared variants, i.e., nullifying
the negative effect of the variant on one trait and the positive effect of
the variant on another trait (Frei et al., 2019). Since the LDSC
approach cannot reveal the completely shared variants associated
with AD and frailty, we followed a multi-statistical approach to
identify shared variants and genes at the SNP and gene levels and
performed the pathway analysis to explore the shared
biological mechanism.

The cross-trait meta-analyses identified 8 loci shared between
AD and FI; among them, 3 (FERMT2, LRFN2, ZNF652) were
previously associated with AD. The loci 11p11.2 (MADD) and
17q21.31 (CRHR1) were previously reported in the pleiotropy

TABLE 3 Summary of Mendelian randomization analysis results between Alzheimer’s disease and frailty.

Exposure Outcome Method # SNPs b se p

Mendelian randomization between Alzheimer’s disease and frailty index

FI AD MR Egger 15 1.73 1.08 0.13

Weighted median 15 −0.11 0.20 0.59

Inverse variance weighted 15 −0.13 0.15 0.37

Simple mode 15 0.23 0.36 0.53

Weighted mode 15 0.15 0.39 0.70

AD FI MR Egger 22 −0.03 0.03 0.33

Weighted median 22 −0.01 0.01 0.35

Inverse variance weighted 22 −0.01 0.01 0.32

Simple mode 22 0.00 0.02 0.89

Weighted mode 22 −0.01 0.02 0.42

Mendelian randomization between Alzheimer’s disease and frailty phenotype

FP AD MR Egger 36 0.99 0.80 0.22

Weighted median 36 −0.15 0.22 0.51

Inverse variance weighted 36 −0.22 0.20 0.26

Simple mode 36 −0.18 0.45 0.68

Weighted mode 36 −0.22 0.40 0.59

AD FP MR Egger 27 −0.01 0.37 0.97

Weighted median 27 −0.03 0.02 0.12

Inverse variance weighted 27 −0.03 0.02 0.09

Simple mode 27 −0.03 0.31 0.93

Weighted mode 27 −0.03 0.03 0.38

AD: Alzheimer’s disease, FI: frailty index, FP: frailty phenotype, b: beta, se: standard error, p: p-value.
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relationship between AD and EA (Kulminski et al., 2022). The loci
17q21.33 (ZNF652) was previously reported in the pleiotropic
relationship between AD and GERD (Adewuyi et al., 2022). The
cross-trait analysis of AD and FP identified 9 loci, 8 of which were
novel for both AD and FP, and 1 locus was novel for FP only. All the
genes were novel for FP, and 3 genes (AFF3, LINC01104, and
MAD1L1) were in a pleiotropy relationship between AD and EA.
The lead SNP rs1635298 (mapped to 17q21.31, CRHR1) has a
RegulomeDB score of 1f, which suggests regulatory functionality.
SNP rs1785498 (11q12.1, ZDHHC5) has a CADD score of 20,
suggesting its deleteriousness. The colocalization analysis showed
a moderate to high (20%-99%) probability of association signals at
the loci identified from the meta-analyses and high association
signals in the regions of chromosomes 1, 2, 3, 5, 6, 7, 11, 14, 15,
16, and 19 between AD and frailty. However, these association
signals were not sufficiently strong to provide any bidirectional
causal relationship between AD and frailty. The gene analyses by
Fisher’s test identified several loci (4p16.3, 7p22.3, 11p11.2, and
17q21.31) and genes (RGS12, MAD1L1, and C1QTNF4) that were
shared with the meta-analyses results.

Of note, there were several genes (AFF3, CRHR1, FERMT2, GRK4,
LINC01104, LRFN2, MADD, MAD1L1, and ZNF652) identified in the
meta-analyses were associated with AD or had a pleiotropic relationship
with AD and its risk factors such as obesity-related traits (Comuzzie
et al., 2012), cognitive performance (Lee et al., 2018), EA (Okbay et al.,
2022), hypertension (Hoffmann et al., 2017), immune diseases
(Johansson et al., 2019), neuropsychiatric disorders (Yao et al., 2021),
and BMI (Tachmazidou et al., 2017).We discussed some of them below.

AFF3 is a putative transcription activator involved in
oncogenesis and lymphoid development. It has been associated
with immune diseases like rheumatoid arthritis and type
1 diabetes, plays role in controlling immune responses and
protects against infections (Tsukumo et al., 2022). CRHR1, which
showed regulatory functionality in our analyses, encodes a Gprotein
coupled receptor for CRH (corticotropin-releasing factor) and UCN
(urocortin). It is related to GPCR downstream signaling and
activation of cAMP-dependent Protein kinase A (PKA) pathways.
Activation of CRHR1 by CRH has been shown to increase the release
of APP in rat cerebellar neurons, in human neuroblastoma
IMR32 cell line, and in mouse hippocampal HT22 cells

FIGURE 3
Clusters of biological pathways enriched with the genes shared between AD and frailty. Pathways enriched with the genes shared between AD and
frailty index: (A) Gene Ontology: Molecular Function. (B) Gene Ontology: Biological Pathway. (C) Gene Ontology: Cellular Components. (D) Reactome:
Biological Pathway. Pathways enriched with the genes shared between AD and frailty phenotype: (E) Gene Ontology: Molecular Function. (F) Gene
Ontology: Cellular Components. The size of the inner circle represents the number of genes within the pathway. The bigger the circle, the higher the
number of genes associated with that pathway. The color darkness of the inner circle denotes the strength of the p-value. The higher the p-value, the
lighter the color of the circle.
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(Lezoualc’h et al., 2000). The reduction in CRH levels is associated
with morphological abnormalities in brain areas affected by AD
(Bissette et al., 1985; De Souza et al., 1986). Downregulation of the
cAMP-response element-binding protein (CREB) in AD brains has
been linked to cognitive and memory impairments (Liang et al.,
2007). FERMT2 (encoding fermitin family member 2) is a
scaffolding protein mediated by TLN1 and/or TLN2 that
enhances integrin activation and plays a role in the TGFB1 and
integrin signaling pathways. FERMT2, implicated in tau metabolism
(Shulman et al., 2014), has also been associated with AD risk factors
such as systolic and diastolic blood pressures (Hoffmann et al.,
2017). The 4p16.3 (GRK4) locus was shared between AD and frailty.
GRK4 (G Protein-Coupled Receptor Kinase 4), a paralog for GRK5,
has been associated with AD pathology (Guimaraes et al., 2021) and
is a potential drug target (Zhang et al., 2022). LINC01104, an RNA
gene, has a pleiotropic relationship between AD and EA (Kulminski
et al., 2022). LRFN2, encoding Leucine Rich Repeat and Fibronectin
Type III Domain Containing 2, is a protein-coding gene that
promotes neurite outgrowth in hippocampal neurons and
processes the frequency of synaptic transmission from a neuron
to a target cell across a synapse. A proteomic study of synaptic
markers has shown a strong association of LRFN2 with cognitive
decline in an AD population (Bereczki et al., 2018). LRFN2 is also
associated with obesity-related traits (Comuzzie et al., 2012),
cognitive performance (Lee et al., 2018), EA (Okbay et al., 2022),
psychiatric conditions such as insomnia (Watanabe et al., 2022) and
schizophrenia (Trubetskoy et al., 2022), and multiple cancers (lung
cancer, gastric cancer, and squamous cell carcinoma) (Jin et al.,
2012). MADD (MAP Kinase Activating Death Domain protein)
belongs to the DENN protein family. It regulates the Rab family of
small GTPases.MADD acts as a guanine nucleotide exchange factor
(GEF) for Rab3, which is present on synaptic vesicles and regulates
neurotransmitter release. MADD has been associated with several
diseases, including Deeah syndrome, which affects developmental,
intellectual growth, and neurodevelopmental disorders with
dysmorphic facies, impaired speech, and hypotonia. MADD is
associated with glycemic traits (blood insulin and glucose
measurement) (Masotti et al., 2019), which impacts insulin
resistance in depressed people, a common risk factor for AD and
frailty (Fernandes et al., 2022). It is also involved in several pathways,
including the TNF signaling and TNFR1 pathway. The TNFR1 and
MADD proteins interact and mediate downstream protein signaling
pathways that result in neuronal cell death and AD, possibly being
drug targets for AD (Hassan et al., 2021). MAD1L1 is a part of the
spindle-assembly checkpoint that delays the beginning of anaphase
until all chromosomes are correctly positioned at the metaphase
plate (Jin et al., 1999; Nakano et al., 2010; Ji et al., 2018).
Neurodevelopmental processes in mice and human organoids
have shown a role for MAD1L1 in the impairment of neuronal
migration and neurite outgrowth (Goo et al., 2023). Gene ZNF652 is
predicted to enable DNA-binding transcription factor activity, RNA
polymerase II-specific, and RNA polymerase II cis-regulatory region
sequence-specific DNA binding activity. It has been identified as a
risk gene for hypertension (Hoffmann et al., 2017), one of the known
AD risk factors. ZNF652 is associated with allergic diseases such as
asthma, eczema, and allergic rhinitis (Johansson et al., 2019), and it
was reported to be associated in a pleiotropic relationship between
AD and asthma (Enduru et al., 2024).

The gene analyses cumulatively identified 77 genes for AD and
129 genes for frailty (includes both FI and FP). Overall, 58 genes
were identified between AD and frailty at FCP cutoff and they help
in the understanding of their shared biological mechanisms. Since
frailty is classified based on multi-comorbidities, using the genes
associated with AD and frailty can help to identify novel drug targets
for multiple diseases and offer more treatment options for these
comorbidities.

Our pathway enrichment analysis of the genes shared between AD
and frailty revealed several pathways, including ‘Activin binding,’
‘amyloid fibril formation,’ and ‘lipoprotein and dendrite tree
neurons.’ Activins are members of the transforming growth factor β
(TGFβ) family and play a pivotal role in signal transduction across the
central nervous system (CNS). They serve as multifunctional regulatory
proteins inmany tissues and organs (Link et al., 2016). Activins can also
activate pathways like ‘mitogen-activated protein kinase (MAPK)
signaling’ (Moustakas and Heldin, 2005), which are involved in the
pathophysiology and pathogenesis of AD (Zhu et al., 2002). Activin type
II receptor, part of the TGFβ family has been related to loss of muscle in
aging population and heart failure severity, the risk factors associated to
frailty (Roh et al., 2019). ‘Amyloid fibrils’ are self-assembled fibrous
protein structures of β-rich forms (Aβ1-40), linked to many currently
incurable disorders, including AD and Parkinson’s disease (Ow and
Dunstan, 2014). Studies have shown that neuronal disruption with the
Aβ fibril formation results in symptoms similar to AD (Paola et al.,
2000). Aβ has been a prominent protein in the study of amyloid fibril
formation (AFF). Many therapeutics have focused on developing
inhibitors capable of preventing AFF (Hardy and Selkoe, 2002; Liu
et al., 2022) by using antibodies against AFF (Hardy and Selkoe, 2002;
Mangialasche et al., 2010) and decreasing the production of Aβ, all of
which could possibly halt the progression of AD (Hardy and Selkoe,
2002; Lichtenthaler, 2011). Varying plasma lipoprotein cholesterol
levels of ApoA and ApoC have been suggested to alter regional
brain volumes related to AD. Higher cholesterol/ApoA ratios were
linked to lower cortical grey matter volume and higher ventricular
volume. In contrast, higher ApoA andApoJ/ApoA ratios were linked to
higher cortical grey matter volume (and for ApoA-II, higher
hippocampal volume) and lower ventricular volume (Pedrini et al.,
2022). The shared ‘dendrite tree neuron pathway’ between AD and FI
provides evidence for the association of excessive neuron loss and
regression in dendrites in both AD and frailty (Coleman and Flood,
1987; Cochran et al., 2014).

In our study, some pathophysiology mechanisms have been
identified and several biological pathways, both in each condition in
isolation and shared between AD and frailty are reported, such as the
inflammation pathway, which reported kynurenine pathway in
association with AD (Fernandes et al., 2023) and frailty (Kim
et al., 2020). Several observational studies reported the
relationship between brain pathologies and frailty. Previous study
showed rapid progression of frailty in the presence of pathologies
related to macroinfarcts, AD, Lewy body and nigral neuronal loss
(Buchman et al., 2013). Other similar studies have shown the
accumulation of Aβ from cerebrospinal fluid to be associated to
worsening frailty (Yoon et al., 2018; Maltais et al., 2019). In this line,
our analysis provided evidence of genetic overlap between AD and
frailty, similarly to observational studies that have suggested a
consistent comorbid association between AD and frailty. Studies
suggested that those with higher amount of frailty were more likely
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to have more AD pathology, which later are expressed as dementia
(Wallace et al., 2019; Ward et al., 2022).

A key aspect of this study is the use of various complementary
statistical genetic techniques, which allowed for a deep analysis of the
genetic relationships between AD and frailty. We used only clinically
diagnosed cases of AD to reduce the possibility of false-positive and
false-negative findings. In addition, we used well-powered GWAS,
which is considerably less affected by the small sample size
frequently observed in traditional observational studies. Our results
highlight the shared genomic loci between AD and frailty with minimal
genetic correlation and no causality. Our study comes with some
limitations. First, diagnosing frailty is challenging. The FI is based
on health deficits accumulated during the life course, and the specific
health deficits may vary from person to person. Aminimum number of
accumulated health deficits must be considered to adequately calculate
the FI. The FP is based on the presence of three out of five physical
components (weakness, slow walking speed, inadequate physical
activity, exhaustion, and unexpected weight loss), and there may be
misdiagnosis based on the participant’s responses to health
questionnaires. Our analyses were restricted to only individuals of
European ancestry; thus, our results may not be representative of
other populations. Further genetic studies are needed to validate and
refine our findings. For example, additional GWAS and genome
sequencing data from cohorts ascertaining these phenotypes and the
related large datasets from general cohorts such as UK Biobank and All
of Us could provide further evidence to support of our findings. In
addition, other types of omics data such as epigenetic data can provide
additional biological evidence regarding genetic relationships. Finally,
animal models and cell lines can provide additional tools to validate the
potential function and phenotypic outcomes by functional genetic
studies, including mutation knock in or out in mice.

To conclude, our study explores the shared genetic relationship
between the two aging-related conditions, AD and frailty. Our study
utilized the 54 frailty items which focused on various mental health
conditions, cardiovascular diseases, immune-mediated diseases, pain,
and physical frailty to mention a few (5 FP, 49 FI items) in the aging
population. It provides some novel insights into the shared genetic
architecture from SNP and gene-level to biological pathways that are
associated with AD and frailty. Our findings based on SNP analyses
show minimal genetic correlation but reveal significant shared loci and
genes between AD and frailty, from gene-based analyses. These shared
loci present a significant shared genetic association between AD and
frailty with a varying posterior probability, with several loci (4p16.3,
7p22.3, 11p11.2, and 17q21.31) and genes (RGS12, MAD1L1, and
C1QTNF4) being shared in the SNP meta-analyses and gene
analyses. Finally, we identified several biological pathways common
toADand frailty. This is the first genetic study exploring the genetic and
biological relationship between AD and frailty using extensive yet
complementary statistical approaches. Overall, our findings provide
evidence of genetic relationship between the commonly co-occurring
conditions of AD and frailty.

Web resources

The software’s used in this study are freely available here:
Genetic correlation analysis: https://github.com/bulik/ldsc.

Cross-trait analysis: http://genetics.cs.ucla.edu/meta colocalization
analysis: https://github.com/joepickrell/gwas-pw mendelian
randomization: https://mrcieu.github.io/TwoSampleMR/

MAGMA: https://ctg.cncr.nl/software/magma gprofiler: https://
biit.cs.ut.ee/gprofiler/gost.

Cytoscape: https://cytoscape.org/
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