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Since the turn of the 21st century, genome-wide association study (GWAS) have
successfully identified genetic signals associated with a myriad of common
complex traits and diseases. As we transition from establishing robust genetic
associations with diverse phenotypes, the central challenge is now focused on
characterizing the underlying functional mechanisms driving these signals.
Previous GWAS efforts have revealed multiple variants, each conferring
relatively subtle susceptibility, collectively contributing to the pathogenesis of
various common diseases. Such variants can further exhibit associations with
multiple other traits and differ across ancestries, plus disentangling causal variants
from non-causal due to linkage disequilibrium complexities can lead to
challenges in drawing direct biological conclusions. Combined with cellular
context considerations, such challenges can reduce the capacity to
definitively elucidate the biological significance of GWAS signals, limiting the
potential to define mechanistic insights. This review will detail current and
anticipated approaches for functional interpretation of GWAS signals, both in
terms of characterizing the underlying causal variants and the corresponding
effector genes.
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Introduction

The pathogenesis of common, complex human traits and diseases emerge as a
consequence of the interplay between environmental and genetic factors. To uncover
the genetic underpinnings of such traits, studies have successfully employed genome-wide
association study (GWAS) to identify susceptibility loci. When a GWAS is conducted,
differences in allele frequencies across hundreds of thousands to millions of single
nucleotide polymorphisms (SNPs) assayed in one experiment are assessed by
comparing the genotypes of individuals with and without a trait of interest
(dichotomous), such as asthma, or treating the trait as a continuous variable
(quantitative), such as body mass index. One can identify loci associated with a specific
disease or trait of interest by evaluating allelic frequency differences that remain statistically
significant after correcting for the large degree of multiple comparisons across the genome.
This method crucially relies on linkage disequilibrium (LD) to inform the analysis, which
can readily aid in identifying associated genetic loci; however, this same factor can limit
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implications of the actual underlying causal functional variants
driving the pathogenesis of the phenotype of interest. For this
reason, various tools and study designs have been leveraged to
carry out GWAS follow-up studies to uncover which variants are
casual for complex traits, along with implicating the corresponding
effector genes.

Although GWAS has proven successful in uncovering trait-
associated genetic susceptibility loci, ranging from breast cancer to
migraine to type 2 diabetes (Bradfield et al., 2012; Bradfield et al.,
2019; Easton et al., 2007; Papaemmanuil et al., 2009; Xue et al., 2018;
Genome-wide association study identifies new, 2009), there are
associated challenges with the overall study design. The ability to
obtain statistical power of 80% or more for genetic associations
stems from the ability to recruit a sufficient sample size for the
GWAS study, which can often prove challenging (more information
on GWAS sample size and cohort-based replication studies can be
found elsewhere) (Uffelmann et al., 2021). Low sample size and its
impact on statistical power contributes to type I and II errors,
directly and negatively impacting downstream follow-up studies
(Serdar et al., 2021; Banerjee et al., 2009; Krzywinski and Altman,
2013) Typically, collaboration is required to meet such high
demands for appropriate sample sizes for statistical power and
allowing for the opportunity to replicate initial findings within
independent datasets. Additionally, large-scale collaboration
efforts lend themselves to subgroup analysis, allowing for
additional investigation of complex diseases and traits. With
independent and worldwide genomic data collection sites,
incorporating different ancestral data collectively can be
accomplished through trans-ethnic meta-analysis. Further
subgroup analysis can be accomplished based on age, sex, or
other dichotomous characteristics to find novel loci for further
function follow-up studies. This has been successfully carried out
in complex diseases or disorders such as childhood obesity
(Bradfield et al., 2012; Bradfield et al., 2019), body mass index
(Akiyama et al., 2017), migraines (Anttila et al., 2013), to name a few.

Additionally, GWAS has to account for population-biased
findings. Since the allele frequencies used for comparisons often
originate from European ancestry, findings from GWAS efforts
often need to be more representative across various ancestral
groups, resulting in replication challenges across populations
(Peterson et al., 2019). As such, combined with remaining
power challenges, GWAS is still limited in addressing a large
portion of the ‘missing heritability (Manolio et al., 2009;
Matthews and Turkheimer, 2022) for common complex traits.
Furthermore, GWAS are often performed with SNP array data
heavily biased towards common variants (MAF ≥5%) (Momozawa
and Mizukami, 2021; Gibson, 2012). This subsequently limits the
potential findings of casual rare variants (MAF <1%) (Momozawa
and Mizukami, 2021; Gibson, 2012; Wainschtein et al., 2022). As
more studies include increasingly larger sample sizes from diverse
ancestry and include better imputation panels, the degree of
missing heritability remaining to be characterized should
narrow (Momozawa and Mizukami, 2021; Gibson, 2012;
Wainschtein et al., 2022).

The results of a GWAS are also limited to simply detecting
genetic signals. Indeed, such signals themselves cannot pinpoint
the true causal variant (s) in LD with the SNP producing the overall
lowest P-value. This means that the causal variant is not typically

assayed directly in the given genotyping assay. Additionally, given
the usual polygenicity of common complex traits, the magnitude of
each signal is relatively small, with only the additive effects of loci
driving the overall genetic etiology of the phenotype of interest.
Furthermore, genetic effects are often cell-type specific. As such,
determining which cell or tissue type is impacted by GWAS loci
has often proven arduous. Together with phenotype heterogeneity,
these features of GWAS make mechanistic follow-up analyses
challenging.

Although multiple examples of GWAS functionalization
attempts exist, one of the most noteworthy examples is at the
FTO obesity locus (Frayling et al., 2007). This very robust
association signal located within an intronic region of the FTO
gene has been widely replicated across different studies involving
different ethnicities (Hassanein et al., 2010; Okada et al., 2012;
Wen et al., 2012; Loos and Yeo, 2014) and age groups (Bradfield
et al., 2012; Bradfield et al., 2019; Grant et al., 2008; Felix et al.,
2016; Elks et al., 2010; Elks et al., 2012). Although there are
hundreds of studies validating this association signal with
obesity risk, it is becoming clear that the FTO gene itself may
not be the causal effector gene at this key associated signal.
Research assessing the genomic interactions at this locus found
a direct contact between the FTO intronic region harboring the
genetic signal and the IRX3 gene (Smemo et al., 2014). This led to
the conclusion that there is an enhancer imbedded within the FTO
intron directly influencing the regulation of the neighboring IRX3
gene (Smemo et al., 2014). Additional work in primary adipocytes
further showed that knockout of IRX3, together with the next gene
along IRX5, directly impacted thermogenetic properties and, by
extension, demonstrated their role in obesity (Claussnitzer et al.,
2015). This is a key example of why GWAS follow-up studies can
be time-consuming. Despite such difficulties, establishing casual
genetic influences from a GWAS is attainable, especially when
incorporating available public resources and cutting-edge
techniques (discussed below) to enable important follow-up
study designs to reveal crucial novel biological insights.

Considering the complexities of GWAS, from the plethora of
data to the underlying complex gene-gene/gene-environment
interactions, following up on potential leads can appear
daunting. Computational tools and technologies can be
incorporated to offset such constraints, having proven
successful and timely. With so many advances, it is timely to
review the available resources to conduct a GWAS mechanistic
‘variant-to-function’ (V2F) follow-up successfully. As such, we will
highlight methods and techniques involved in GWAS V2F studies,
emphasizing more recent high-throughput methods. An overview
of the discussed tools and techniques used for GWAS follow-up
can be seen in Figure 1.

Genetic signal follow-up strategies

Non-coding variants represent over 90% of GWAS reports,
which is a large contributing factor to why GWAS follow-up can
be so arduous (Schipper and Posthuma, 2022). Although variants
can also be found within a gene coding region it potentially
regulates, it is still imperative to consider variants in LD that
may still reside in non-coding regions (McCarthy et al., 2008).
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Challenges in understanding the genotype to phenotype relationship
resulting from the putative regulation of a noncoding variant,
requires connection between an associated variant to gene(s)
regulation, and by extension tissue site(s) of mechanistic action.
Based on the association alone, researchers cannot determine which
variants are causal, the putative gene effector target(s), or tissue-
specific involvement. This is where incorporating previously
generated data, such as fine-mapping, functional annotations,
and a combination with multi-omics approaches plays a role in
elucidating the overall biological underpinnings from a GWAS-
nominated variant. Given that variant-to-gene methods need to be
conducted in a human setting in the first instance, animal models
can only be leveraged subsequently, albeit often successfully, once
such leads are determined (Palermo et al., 2023; Soleimanpour et al.,
2014; Srivastava et al., 2019).

Variant/gene prioritization approaches
and tools

With the myriad of signals discovered by GWAS, narrowing
down variants with a higher probability of being causal becomes
necessary. Signals detected by GWAS typically do not necessarily
represent the causal variant for a given phenotype, but rather
represent a tag-SNP in LD with the underlying causal variant(s).

Indeed, understanding the underlying LD structure is the initial step
in making sense of GWAS signals. Comprehensively assessing both
tag-SNPs and their LD proxies facilitates the acquisition of the true
causal variant(s) in any functional follow-up approaches (Schaid
et al., 2018; Raychaudhuri, 2011). This can be achieved by
incorporating fine-mapping into the study design to aid in the
prioritization of candidate causal variants by considering both
LD patterns and association statistics.

Fine-mapping helps narrow down a list of GWAS signals
through a combination of statistical approaches, in conjunction
with functional annotations. Types of statistical models used for
fine-mapping include Bayesian-based methods (Schaid et al., 2018;
de los Campos et al., 2023), heuristic (Schaid et al., 2018), penalized
regression (Schaid et al., 2018), and conditional association analysis
(Kocarnik et al., 2018). When wanting to obtain more information
about more than one SNP collectively producing an effect, the
Bayesian method may prove most beneficial (Schaid et al., 2018).
Many approaches are available that include the Bayesian-based
method for fine-mapping, such as CARMA (Yang et al., 2023a),
SUSIE (Wang et al., 2020), PAINTOR (Kichaev et al., 2014),
CAVIAR (Wang et al., 2020), etc. Following fine-mapping efforts,
an assessment of the genomic landscape can be conducted to
determine which variants reside in genomic regions areas which
accessible and potentially functional. This can be accomplished
through various annotation methods described below.

FIGURE 1
Overview of methods used for functional validation of GWAS variants.
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Work was recently conducted in Alzheimer’s Disease (AD)
incorporating variant prioritization via three fine-mapping
approaches (Bayesian, FINEMAP, and PAINTOR) in conjunction
with annotation-based data from primary microglia and iPSC-
derived macrophages (Schwartzentruber et al., 2021). This work
revealed 21 variants being prioritized as most probable (>50%) for
causality, and an additional 79 variants within the 10%–50%
potential variants of interest (Schwartzentruber et al., 2021).
Some prioritized SNPs were close to already established AD
genes, like BIN1(43). In addition to these known genes, there
were new AD risk genes uncovered through leveraging fine-
mapped SNPs (Schwartzentruber et al., 2021). Such variant-to-
gene pairs included rs143080277 in NCK2, rs2830489 near
ADAMTS1, and rs268120 in SPRED2(43). Similarly, fine-
mapping-based work in chronic lymphocytic leukemia (CLL) led
to successful GWAS V2F follow-up (Slager et al., 2013). Using
genotype data from over 2000 participants, fine-mapping was
conducted (Slager et al., 2013). Results revealed a functional
connection between rs1044873 and the IRF8 gene (Slager
et al., 2013).

Functional annotation methods

Epigenetic and chromosomal-based techniques
Variant annotation methods that incorporate epigenetic data

have become a standard approach to elucidating the functional
consequences of genetic variants. Assessment of DNA accessibly can
be caried out in multiple cell types to reveal underlying gene
regulatory roles of chromatin organization in a given cell type,
which in turn suggests how such activity confers its trait effects.
Integrating various publicly available resources can further aid the
prioritization of GWAS-identified variants. Assay for transposase-
accessible chromatin sequencing (ATAC-seq) (Buenrostro et al.,
2015) has proven to be an efficacious assay in assessing GWAS
variants and functionality for complex diseases. A study focusing on
type 2 diabetes (T2D) determined that the open chromatin
landscape in human pancreatic islets cells differed between
samples obtained from individuals with and without T2D (46). A
total of 13 T2D associated SNPs were found in regions marked
within open chromatin accessibility sites which were located near
genes such as TCF7L2, ADCY5, and GCH (Bysani et al., 2019). In
addition to the 13 SNPs, there were 67 SNPs that were in LD with
T2D associated SNPs and further annotated to known T2D genes
(such as PPARG, FTO, and KCNJ11) (Bysani et al., 2019). Another
study focused on T2D used a combination of pancreatic cell
expression data, chromatin accessibility, and network analysis
methods to prioritize the gene RFX6 from GWAS results for the
disease (Walker et al., 2023). This study took a different approach for
incorporating ATAC-seq by using this technique to assess the
chromatin architecture following the knockdown of the putative
T2D causal gene (Walker et al., 2023). Knockdown of RFX6 in beta-
pancreatic cells not only resulted in substantial variation in gene
expression, but also provided evidence of dysregulation of regulatory
elements harboring T2D GWAS variants via changes in genome-
wide chromatin states (Walker et al., 2023).

As such, these annotations help determine a variant’s context
with respect to a typically non-coding role as a potential regulatory

element. Identifying whether a genetic variant resides in a
regulatory element (such as promoter, enhancer, or
transcription binding site) can be highly informative when
determining subsequent biological consequences with respect to
gene expression. Furthermore, assessing epigenetic markers in a
cell type-dependent manner can help determine gene regulation
specificity, adding important context to cell and tissue involvement
for a given complex trait or disease. A popular resource for
assessing variant annotations includes the Encyclopedia of DNA
Elements (ENCODE) Consortium, which consists of histone
modification, expression, and chromatin conformation data
across different cell types (Luo et al., 2020).

Histone modifications are an essential aspect of gene regulation
by influencing how tightly or loosely DNA is packaged, which
indicates areas of the genome that are accessible and available for
gene transcription. Acetylation andmethylation patterns are histone
modifications often leveraged to assess poised or inactive cell-
specific chromatin states (Karlić et al., 2010). Histone marks used
to determine overall DNA accessibility help determine whether a
specific region is accessible to transcriptions factor (TF) binding, and
therefore a potentially functional element. Regions with histone
marks like H3K4me3 and H3K27ac are typically defined as
promoter/open chromatin regions (Barski et al., 2007; Creyghton
et al., 2010), while marks like H3K27me3 indicate closed chromatin
states (Cai et al., 2021). Such histone modification patterns can be
assessed by a number of available techniques, which are explored in
greater detail elsewhere (Mansisidor and Risca, 2022). Examples of
some techniques used to assess chromatin accessibility include not
only ATAC-seq (discussed in previous paragraph), but also
formaldehyde-Assisted Isolation of Regulatory Elements
sequencing (FAIRE-seq) (Giresi et al., 2007), DNase I
hypersensitive sites sequencing (DNase-seq) (Song and Crawford,
2010) and sequencing of micrococcal nuclease sensitive sites
(MNase-seq) (Deng et al., 2022; Wong et al., 2023). Although
many options are available, subtle nuances between the available
techniques make some techniques more appealing than others
depending on the specific application. Regarding experimental
time and output success among the available options, ATAC-seq
has become a gold standard, with an approximate three-hour
protocol for preparation (Buenrostro et al., 2015; Grandi et al.,
2022), where transposases are used with DNA-associated adaptors
for subsequent high-throughput sequencing (Buenrostro
et al., 2015).

Another significant component of the genomic landscape to
consider is chromatin 3D interactions, which offer insight into
physical connections between GWAS-implicated candidate causal
variants and putative effector genes. Understanding which gene(s)
are regulated by non-coding GWAS associated variants is
essential to understanding complex traits fully. This is where
the power of incorporating chromosomal capture techniques
become apparent.

Chromosomal capture techniques involve crosslinking
interacting genomic loci to each other, followed by high
throughput sequencing (Dixon et al., 2012). The sequencing
results generate a map of interacting segments from the genome,
which can help nominate candidate effector genes controlled by
regulatory elements harboring GWAS associated variants. Various
techniques have been developed that can be used for such a purpose,
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and indeed TADs can be defined with chromosomal capture
techniques (Zufferey et al., 2022).

Inclusion of chromosomal conformation capture techniques to
determine gene regulation by GWAS loci has been successful in a
multitude of studies involving complex diseases and traits. One
study identified 38 candidate genes potentially involved in obesity by
incorporating promoter Capture-Hi-C techniques within primary
adipocytes (Pan et al., 2018). Following promoter Capture-HiC, the
study implicated interaction with GWAS SNPs and three additional
genes (rs8076131 to ORMDL3, rs1017546 and rs3784671 with
LACTB, and rs10774569 with ACADS) (Pan et al., 2018). Use of
related techniques led to the discovery of inflammatory bowel
syndrome (IBD) target genes that were regulated by
92 regulatory elements previously associated with IBD (Meddens
et al., 2016). Our study on systemic lupus erythematosus (SLE)
evaluated putative target genes of GWAS signals by combining
follicular helper T cells (TFH) (cells with SLE involvement), open
chromatin sites, and three-dimensional genomic architecture as
defined by Capture C (63). Incorporation of Capture C implicated
genes BCL6 and CXCR5, which were previously identified as TFH
regulators (Su et al., 2020). The study further assessed the putative
target genes via CRISPR/CAS9 genome editing techniques, which
revealed key genes important in regulating crucial cytokine
involvment in B cell antibody production (Su et al., 2020). Such
examples show the power of integrating chromosomal conformation
techniques to determine targeted genes by non-coding variants and
can lead to a more comprehensive understanding of the genomics
driving specific complex traits or diseases.

Studies involving chromatin 3D interactions and genome
organization have found regions with increased frequency of
contact referred to as topologically associated domains (TADs)
(McArthur and Capra, 2021). TADs provide a spatial framework
for the genome while facilitating proper gene regulation (McArthur
and Capra, 2021), and has been used by investigators to define the
search space for defining an underlying effector gene at a given
GWAS locus. Variants within noncoding regulatory elements, such
as enhancers, localize within three dimensional TADs that are
readily assessed through various chromosomal capture methods
that asses chromatin 3D interactions (Dixon et al., 2012; McArthur
and Capra, 2021). An overview of popular and useful resources for
chromatin accessibility data integration can be found in Table 1.

Chromosomal capture techniques including Capture-C (65),
ChIA-Pet (Han et al., 2018), Hi-C (59,65), chromosome
conformation capture carbon copy (5C) (Dixon et al., 2012; Han
et al., 2018; Dostie et al., 2006), chromosome conformation capture-
on-chip (4C) (Dixon et al., 2012; Han et al., 2018; Simonis et al.,
2006), and other chromosome conformation capture (3C) (Han
et al., 2018) techniques are all methods that are available for genomic
interaction assessment purposes (Luo et al., 2020; Karlić et al., 2010).
Although there are some differences among chromosomal capture
technique methods, each method includes four main steps
(crosslinking, fragmenting, ligating, and sequencing steps). Each
approach requires an initial step for crosslinking chromatin. The
genome is subsequently fragmented with endonucleases and then
ligated. The ligation step is used to join the interacting genetic loci to
each other, which is reverse crosslinked in preparation for

TABLE 1 Resource examples used in the GWAS V2F follow-up.

Resource Data access/Usage

Functional ANnoTation Of the Mammalian genome (FANTOM) (Lizio et al., 2019;
Lizio et al., 2015)

Project FANTOM is committed to producing an atlas of human transcripts and is
currently on its 6th iteration with a focus on long noncoding RNAs (lncRNAs)
(Ramilowski et al., 2020). Previous FANTOM5 work focused on collecting transcriptome
data of cells under different states. Data includes transcriptomics of different cell types
over various time course and exposures (Noguchi et al., 2017). https://fantom.gsc.riken.jp/

ENCODE Consortium (Luo et al., 2020) Available annotations include open chromatin, histone marks, transcription factor
binding, gene expression, transcription start site, RNA binding protein occupancy, DNA
methylation, 3D chromatin interactions, and topologically associated domains data.
https://www.encodeproject.org

Roadmap Epigenomics Mapping Centers (REMC) (Kundaje et al., 2015) DNase, DNAme, histone modification, and RNA-seq data from relatively normal human
cell and tissue samples. https://egg2.wustl.edu/roadmap/web_portal/index.html

International Human Epigenome Consortium (IHEC) (Stunnenberg and Hirst,
2016)

Epigenetic profiles of both diseased and unremarkable states with collected mRNA-seq,
DNAme, WGBS, and histone modification data. Data collected has originated from
worldwide projects and include BLUEPRINT, CEEHRC Epigenomic Platform Project,
CREST, and DEEP. https://epigenomesportal.ca/ihec/

Human Genome Browser (Kent et al., 2002) Web-based tool that allows integration of annotated data across entire genomes to more
readily visualize. https://genome.ucsc.edu

Galaxy (Galaxy Community, 2022) Bioinformatics web-based platform with many computational tools for analysis for a
variety of reason (e.g., RNA-seq, ChiP-seq, variant calling, etc.) Allows users to upload
own data to analyze, as well as incorporate publicly and shared available data. Important
to understand local legal guidelines, especially when analyzing human genomic datasets
on a web-based platform. https://usegalaxy.org

Open Targets Genetics (Ghoussaini et al., 2021; Mountjoy et al., 2021) Web-based platform that integrates GWAS, various QTL, Hi-C, and DNase
Hypersensitivity Sites to aid in causal variant and gene target prioritization. https://
genetics.opentargets.org/

Genotype-Tissue Expression project (GTEx) (The Genotype-Tissue Expression
GTEx project, 2013)

Both RNA-seq and genotype data is used to provide information on human gene
expression by tissue. https://www.gtexportal.org/home/
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sequencing or quantitative polymerase chain reaction (PCR) to
identify genomic interactions (Dostie et al., 2006; Simonis et al.,
2006; Naumova et al., 2012; Lieberman-Aiden et al., 2009; Fullwood
et al., 2009; Li et al., 2010; Zhao et al., 2019a; Fullwood and
Ruan, 2009).

Quantitative trait loci (QTL)
QTL analysis is another method that can aid in prioritizing

variants that are involved in a disease or trait. A QTL can be used to
focus on a genomic region associated with a phenotype or trait,
which is beneficial when attempting to implicate a gene for GWAS
V2F follow-up (Powder, 2020). QTLs will typically incorporate
marker and quantitative data to connect observed trait variation
to genetic variations within a given population (Powder, 2020).
Various types of QTL analysis exist and rely on various
combinations of genotype, RNA-seq, chromatin accessibility,
and/or methylation data (Powder, 2020). QTL-based data is
based on observable, quantitative traits motivated by answering
the question of how genetic variation impacts said trait. QTLs can
further be used to assess the influence of genetic variation diseases
and response to various treatments. Some of the more commonly
used QTL analyses include expression quantitative trait loci (eQTLs)
(Porcu et al., 2019), protein quantitative trait loci (pQTLs) (Xu et al.,
2023), and chromatin accessibility quantitative trait loci (caQTLs)
(Khetan et al., 2021; Kumasaka et al., 2019).

The more well-known type of QTL is the eQTL, which is used to
determine how a specific genome region impacts gene expression
variation. In order to conduct an eQTL study, both genotype and
RNA expression data are required. Combining such data for eQTLs
can aid in the GWAS V2F follow-up process to determine which
genes are influenced by genetic differences in complex diseases or
traits. Studies that have overlapped eQTL and GWAS data have been
able to address the link between GWAS signals and potential target
genes through ‘co-localization’. One example was seen in the context
of an AD study, where combined eQTL and mQTL data was used to
prioritize SNPs and then to connect them to putative target effector
genes (Zhao et al., 2019b). Findings from the study indicated an
association between 653 SNPs and 25 genes, with 93 of the SNPs
being significant for both eQTL andmQTL data (Zhao et al., 2019b).
Furthermore, 10 out of the 25 genes found were previously identified
in the literature as already being involved in the genetic etiology of
AD (79). Another study used eQTL to assess immune related
diseases and nominate 127 candidate disease genes following
colocalization of eQTL and GWAS associated SNPs across
11 different diseases (Soskic et al., 2022). The eQTL data was
generated from 119 human derived isolated and activated naive
and memory CD4+ T-cell. Each cell was profiled at resting, 16 h,
40 h, and 5 days (Soskic et al., 2022). The eQTL and GWAS SNP
results implicated genes in a broad range of immune related diseases,
which included Crohn’s disease, multiple sclerosis and SLE (80).
More details on various types of QTL/GWAS colocalization and
methods can be found elsewhere (Hormozdiari et al., 2014; Kang
et al., 2023; Zuber et al., 2022; Cano-Gamez and Trynka, 2020; Suhre
et al., 2021; Zhang et al., 2024; Abood and Farber, 2021; Fabo and
Khavari, 2023).

Similar to eQTLs, pQTL and caQTL have major applications.
Although these approaches serve slightly different purposes, they
incorporate genotype data with protein levels for pQTLs, and

chromatin accessibility for caQTLs. A previous study
focusing on serum protein successfully overlapped pQTLs
with lead GWAS variants for multiple different phenotypes
(Gudjonsson et al., 2022). In the study, two body mass index
(BMI) associated loci were faound to overlap with protein serum
levels of Agouti signaling protein (ASIP) (Gudjonsson et al.,
2022). The study also found waist-to-hip ratio GWAS signals
within the LRRC36 gene overlapping with levels of Agouti-
related protein (Gudjonsson et al., 2022). One caQTL study
had success when assessing GWAS signals for T2D (77).
Chromatin accessibility sites were assessed in pancreatic islet
cells, resulting in the nomination of causal variants at 13 GWAS
loci (Khetan et al., 2021). These candidate causal loci were then
functionally assessed in vitro via luciferase assay in MIN6 cells
(Khetan et al., 2021). Out of the 13 loci, more than half were
identified as having differential allelic regulatory roles (Khetan
et al., 2021).

Additional QTL approaches that can be applied to GWAS
follow-up are outlined in Table 2.

Transcriptome-wide association study (TWAS)
Similar to QTL, Transcriptome-Wide Association Study

(TWAS) (and the newer casual TWAS that allows for
confounding adjustments within the model (Zhao et al.,
2024)) can aid in gene prioritization for GWAS follow-up.
TWAS leverages genomic and transcriptomic data to
discover how genetic differences might impact gene
expression across different tissues. This approach can further
explain how genetic variants found through GWAS not only
affect gene expression, but also influence disease risk. A study
conducted by Gusev et al. applied TWAS by using expression
data across multiple tissues in conjunction with GWAS
summary stats focused on traits such as height, body mass
index (BMI), and lipids (Gusev et al., 2016). By leveraging
this type of data, the study revealed 69 novel gene-trait
associations (Gusev et al., 2016).

While many TWAS methods tend to be univariate (such as
PMR-Egger (Yuan et al., 2020), PrediXcan (Gamazon et al., 2015),
and FUSION(90)), more recent TWAS methods have tried to
expand this type of model with the rationale of potential
pleiotropic effects (Liu et al., 2021; Feng et al., 2021). One such
study that developed a TWAS method referred to as moPMR-Egger
which accommodates the analysis of multiple traits at a time (as
opposed to one trait), lead to 13.5% increased gene associations
findings when applied to United Kingdom biobank traits (Liu et al.,
2021). While has different models available, it can still be a great
genomic-based tool that offers a potential resolution to determining
how GWAS identified variants might function within a biological
setting by suggesting the genetic target(s) of GWAS varaints. More
in depth information of the various TWAS approaches along with
valuable resources can be found elsewhere (Feng et al., 2021; Li and
Ritchie, 2021; Zhu and Zhou, 2021; Mashhour et al., 2024; Xie
et al., 2021).

While outside the scope of this review, it is worthmentioning the
use of Phenome-wide association studies (PheWAS) for its ability to
also connect gene-trait associations. A general overview on PheWAS
and some resources can be found elsewhere (Liu and Crawford,
2022; Bastarache et al., 2022).
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Pathway and network analysis
Successful incorporation of pathway and network-based

analyses can inform V2F by implicating potential hubs
influencing a phenotype of interest. One AD study identified
32 additional candidate genes by including a network analysis in
their study (Schwartzentruber et al., 2021). They first generated an
overall gene interaction list based on information retrieved from the
STRING, IntAct, and BioGRID databases (Schwartzentruber et al.,
2021). Through propagation methods utilizing genes found in the
initial retrieval process, the study was able to highlight previously
established genes associated with AD (Schwartzentruber et al.,
2021). Interestingly, the study included high ranked genes for
AD GWAS loci with the lowest P-values, indicating larger
GWAS may be required to fully evaluate all putative loci
(Schwartzentruber et al., 2021). Another recent study focused on
kidney renal clear cell carcinoma (KIRC) utilized a Protein-Protein
Interaction (PPI) network method and the authors elected to further
evaluate the top four genes (referred to as “hub” genes) in the
associated list (Ali et al., 2023). Through further assessment of their
implicated hub genes, the study reported that two out of the four
genes were upregulated while the other two were downregulated in
KIRC patients (Ali et al., 2023).

Although there is debate regarding the utility and
reproducibility of pathway and network based analyses (Tomczak
et al., 2018), a wide-range of studies have included such results as a
means to further understand potential underlying gene interactions
on a broader scale (Yu et al., 2019; Jin et al., 2022). Pathway analysis
can be accomplished through either a non-topology or a topology-
driven method. A non-topology-driven method is traditionally
known as an overrepresentation analysis (ORA) or functional
enrichment analysis. An enrichment analysis considers a list of
significantly differentially expressed genes (DEG) from a larger
given data set. The list is then used to determine the percent of
DEG present within a pathway. When more than 10% of DEGs are
present in a given pathway, that specific network is considered
“enriched” and worth further investigation. ORA tools include
FuncAssociate (Berriz et al., 2009), GeneMerge (Castillo-Davis
and Hartl, 2003), EASE (Hosack et al., 2003), g:Profiler (Kolberg
et al., 2023), DAVID ((Huang et al., 2009a), (Huang et al., 2009b)),
WebGestalt (Liao et al., 2019), AmiGO 2 (Carbon et al., 2009),
GeneWeaver (Baker et al., 2012), BiNGO (Maere et al., 2005),
GoMiner (Zeeberg et al., 2003), ontologizer (Bauer et al., 2008),
etc. Functional class scoring (FCS) is another type of ORA similar to
functional enrichment analysis but utilizes the entire gene set data

TABLE 2 List of various QTL resources available with additional information on the data required to perform each type of QTL and what question each type
of QTL can answer.

Gene expression
stage

QTL type Abbreviations Utility for incorporation into study design

Epigenetic Regulation Methylation QTL meQTL (Villicaña and Bell,
2021)

mQTL (Lyu et al., 2021)
methQTL (Scherer et al.,

2021)

Genome-wide genotype in addition to epigenetic/histone marker data
(methylation and/or acetylation) can be used to distinguish variant vs. epigenetic
impact on trait of interest. Such data is also incorporated to identify associations
between variant(s) and chromatin state (open or closed)

Histone QTL hQTL (Zheng et al., 2020)

Chromatin
Accessibility QTL

caQTL (Zheng et al., 2020)

Transcription factor
binding QTL

tfQTL (Watt et al., 2021)
bQTL (Tehranchi et al.,

2016)

Determining potential genomic regions involved in gene regulation in a cell
specific manner

Transcriptional Regulation Expression QTL eQTL (Zhang and Zhao,
2023)

Genome wide genotype data and gene expression data (RNA-seq) to determine
how variants impact gene expression of gene(s)

Post-Transcriptional
Regulation

RNA Editing QTL reQTL (Zheng et al., 2020)
edQTL (Park et al., 2021)

When assessing the impact of genetic variation on protein levels. This can be due
to underlying involvement in regulation involving pre-mRNA regulation by
variation in capping, splicing, or polyadenylation

microRNA QTL miRQTL (Huan et al., 2015)

Splicing QTL sQTL (Zheng et al., 2020)

Competing Endogenous
RNA QTL

cerQTL (Zheng et al., 2020)

Alternative
Polyadenylation QTL

apaQTL (Li et al., 2023b)

Translational Regulation Ribosome Occupancy QTL riboQTL (Zheng et al., 2020)
rQTL (Battle et al., 2015)
roQTL (Cenik et al., 2015)

Ribosomal occupancy assessment can aid in determining potential underlying
translational efficiency impact from putative variants (Ozadam et al., 2023)

Protein Expression QTL pQTL (Zheng et al., 2020) GWAS/WES/WGS data combined with protein-based data to link variants to
protein quantity (Xu et al., 2023)

Post-Translational
Regulation

Metabolic QTL metaQTL (Zheng et al.,
2020)

Determine whether allelic differences explain differences in metabolite levels
(Carreno-Quintero et al., 2012)

Frontiers in Genetics frontiersin.org07

Bruner and Grant 10.3389/fgene.2024.1375481

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1375481


instead of only the DEG. Common FCS approaches include GSEA
(Subramanian et al., 2005; Mootha et al., 2003), GSA (Mooney and
Wilmot, 2015), GlobalTest (Hulsegge et al., 2009), PADOG (Tarca
et al., 2012), SAM-GS (Dinu et al., 2007), FunCluster (Henegar
et al., 2006), etc.

Gene Ontology (GO) analysis is another ORA-based
enrichment method that allows users to assign functional
annotations based on various categories. GO analysis can help
assign genes or gene products based on molecular, biological, and
cellular functions (Zhao et al., 2020). GO analysis is an example of a
pathway analysis, which identifies biological pathways involved in a
phenotype by using gene expression data and available pathway
databases. This approach is often used to help elucidate how genes
and variants impact specific cellular pathways. Pathway-based
databases can help discern involved gene and protein networks,
which helps further understand the underlying interactions within a
given complex trait or disease. There are multiple online resources
available to incorporate GO analysis. Most notable databases include
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and
Goto, 2000), PANTHER (Thomas et al., 2022), Reactome (Gillespie
et al., 2022), Pathway Commons (Rodchenkov et al., 2020), Wiki-
Pathways (Martens et al., 2021), and PathBank (Wishart et al., 2020).

Although non-topology ORA analyses are helpful and can yield
biological insights, such analyses do not take into account interactions
of genes, which often play a role in contributing to complex disease
and traits. For this reason, topology-based approaches can be a better
alternative to non-topology ORAs. Pathway topology (PT) considers
the independent gene role, position, magnitude, and interactions. Fold
change of a gene is propagated onto the gene directly downstream in a
pathway. iPathwayGuide (Ahsan and Drăghici, 2017) provides a web-
based system to conduct a PT approach to gene expression analysis
tools to better rank pathways involved in a given phenotype. More
information on pathway analysis and additional resources can be
found elsewhere (Maleki et al., 2020).

Pathway analyses provide information regarding gene and gene
products within a set pathway impacting a phenotype of interest, but
not necessarily how proteins across different pathways potentially
interact. Such information can yield additional insight into the
underlying biological network leading to a complex disease or
trait. For this purpose, PPI networks can help highlight how
proteins within various pathways intersect and interact at a given
point to serve an overall biological process. A valuable tool for a PPI
network includes the STRING (Szklarczyk et al., 2021) database,
which can also be used for enrichment and PPI network analysis.

Although it aids understanding of the underlying biological
network, the main goal is for functional and mechanistic
significance. Insight from additional approaches like phenotype
annotation and comparative genomics can further aid in
understanding how genetic variants lead to a specific functional
outcome (i.e., disease, drug response, biological process, etc.). By
incorporating tools like Ensembl (Martin et al., 2023), linking
genetic changes to phenotype can help determine functional
consequences. Furthermore, using evolutionally conservation data
can also help understand functional significance through
comparative genomics. Comparing genomic regions across
species for GWAS signal interpretation may reveal a conserved
gene regulatory site. Using such knowledge can further aid in
understanding whether a specific locus is in a region potentially

involved in regulating an essential gene in a given biological
pathway. Available tools for a comparative genomic approach
include VISTA (Frazer et al., 2004; Dubchak et al., 2000), CoGE
(Lyons and Freeling, 2008), PipMakers (Schwartz et al., 2000), etc.

Functional validation methods

Individual reporter-based method
Regulatory abilities of putative non-coding regulatory elements

are traditionally assessed through individual reporter-based assays.
Although reporter assays are not used to explicitly nominate genes
being regulated by a putative enhancer region, they can represent an
initial step in determining which nominated variants drive expression
changes. The luciferase reporter assay system is an example of an
individual reporter-based assay that is very useful when investigating
the regulation on gene expression. Incorporating reporter assays has
shown success in assessing variant regulatory impact of across
different complex disease and traits (Zhang et al., 2010; Ustiugova
et al., 2019; Rivas et al., 2011; Ramachandran et al., 2022). While
investigating opioid addiction and the role of rs569356 in the gene
OPRD1 gene promoter, luciferase reporter plasmids were constructed
with the major (A) and minor (G) alleles (Zhang et al., 2010). These
constructs were transfected into HEK293 cells, and results indicated
the G allele led to an increased expression in the reporter assay (Zhang
et al., 2010). The differential allelic response was used to suggest a
potential mechanism in regulation of OPRD1 leading to opioid
addition (Zhang et al., 2010). Another study focused on GWAS
associated loci in autoimmune diseases, incorporating luciferase
reporter assay into their study design to determine allele specific
functionality (Ustiugova et al., 2019). Both risk and protective alleles
from six associated loci (rs12946510, rs2313430, rs4795397,
rs12709365, rs13380815, rs8067378) were included in the reporter
assay and assessed in six different cell lines (Nalm6,MP1, Jurkat, MT-
2, U-937, and activated U-937) (Ustiugova et al., 2019). The results
indicated cell specific differential allelic activity for at least four of the
six loci, with the strongest effect seen for rs12946510 across three cell
types (Nalm6, MP1, and activated U-937) (Ustiugova et al., 2019).

Although simplistic in design, luciferase assays are still useful in
determining whether a specific genomic region harboring GWAS
loci potentially impacts gene expression. Luciferase assays use
plasmids containing a luciferase reporter gene located
downstream of a regulatory element of interest and a minimal
promoter (Fan and Wood, 2007). The final reporter construct is
transfected into a specific cell type (animal, plant, or bacteria). Since
the reporter gene is essentially fused to the regulatory element,
detecting transcription changes in the reporter gene is directly
correlated to the relative regulatory activity of the regulatory
element (cis-acting) (Fan and Wood, 2007). The luciferase gene
encodes for a specific enzyme that produces fluorescence, which is
quantified by measuring the light intensity (Fan and Wood, 2007).

Although individual reporter assays help determine functional
non-coding variants nominated from GWAS, they are very time-
consuming. The time constraints associated with individual reporter
assays require stringent prioritization of nominated GWAS variants
due to their inability to incorporate multiple variants in a single
experiment. Current genomic technologies have led to an expanded
and comprehensive form of individual reporter-based assays,
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referred to as high-throughput reporter assays. Such high-
throughput reporter assays allows for the evaluation of thousands
of putative non-coding regulatory variants simultaneously
(Melnikov et al., 2012; Kheradpour et al., 2013; Kwasnieski et al.,
2012; White et al., 2013; Inoue and Ahituv, 2015; Arnold et al.,
2013). High-throughput reporter assays result in a more streamlined
and comprehensive follow-up approach for GWAS-
nominated variants.

Most high-throughput reporter assays, like Massively Parallel
Reporter Assay (MPRA) and Self-Transcribing Active Regulatory
Region Sequencing (STARR-seq) (both discussed below), use a
similar plasmid-based concept as utilized in individual reporter
assays when determining the relative regulatory ability of specific
non-coding regions (Gallego Romero and Lea, 2023; Das et al.,
2023). The main difference between individual reporter assays and
high-throughput assays is how the expression is quantified. In
individual reporter assays, the relative enhancer activity is
qualitatively determined using light emission created by
substrate-enzymatic reactions (Fan and Wood, 2007; Melnikov
et al., 2012; Kheradpour et al., 2013; Tewhey et al., 2016). High-
throughput reporter-based assays are far more quantitative by
incorporating high throughput sequencing to count generated
sequences caused by a specific regulatory region (Gallego Romero
and Lea, 2023; Das et al., 2023).

High-throughput methods (MPRA)
MPRA is a highly reproducible and sensitive high-throughput

reporter assay that simultaneously evaluates thousands of putative
regulatory sequences while determining allele-specific activity
(Melnikov et al., 2012; Kheradpour et al., 2013; Ulirsch et al.,
2016; Lu et al., 2021). Inclusion of the MPRA design has been
utilized in a wide range of contexts from answering evolutionary
questions (Du et al., 2022) to determining previously unexplored
allele specific activity of complex diseases/traits. In fact, multiple
studies have shown great success in identifying functional GWAS
loci that were previously unexplored through incorporation of
MPRA (Matoba et al., 2020; Long et al., 2022; Mouri et al.,
2022). One study, in particular, focused on autoimmune diseases
where T cell involvement was known. Integrating variants associated
with inflammatory bowel syndrome (IBD), multiple sclerosis (MS),
type 1 diabetes (T1D), psoriasis and rheumatoid arthritis (RA) were
included in the MPRA design and subsequently assessed for their
functionality within T-cells (Mouri et al., 2022). With over
18,000 loci assessed, the study found 313 variants with
differential expression when comparing the reference and
alternative alleles (Mouri et al., 2022). Other studies have
achieved success by leveraging data from MPRA and eQTLs
combined, allowing further biological perturbations from
previously overlooked loci (Choi et al., 2020). This study
included over 800 loci associated with melanoma, and assessed
their regulatory influence within a melanoma cell line (Choi et al.,
2020). Overlapping the MPRA data with local eQTL data, the study
could prioritize nine variants for which differential gene expression
data appeared to corroborate potential variant endogenous gene
regulation (Choi et al., 2020).

Incorporating MPRA to evaluate GWAS-associated variants
include constructs with sentinel single nucleotide polymorphisms
(SNPs) and variants in LD. Including variants in LD aids in

determining whether the SNP directly genotyped for the GWAS
is influencing the biological system or the SNP in high LD with the
SNP directly genotyped. Once a list of noncoding variants is
determined, various manufacturers (such as Agilent Technologies,
Dynegene, and Twist Bioscience (Agilent, 2024; Dynegene, 2024;
Bioscience, 2024)) can create large-scale oligonucleotide (oligo)
library pools. The entire MPRA oligo library is generated or
synthesized by microarray technologies and is currently limited
to 230 base pairs (bp) (Melnikov et al., 2014). Although traditional
MPRAs are highly reproducible and sensitive enough to determine
allelic variation, the MPRA reporter plasmid design cannot
guarantee biological relevance. The construct may not represent
an actual regulatory element since MPRA oligos are limited in
sequence length. Regulatory elements often span much larger
regions than the length-restricted regions found in MPRA oligos,
which may lead to type I and II errors (Blackwood and Kadonaga,
1998). Since regulatory regions can span large regions, it is essential
to validate MPRA findings to include genomic regions that span
larger bp regions centered on the putative variant that can be
transformed into individual reporter plasmids (Blackwood and
Kadonaga, 1998). The ability to further evaluate larger regions of
any high-confidence regulatory element found in MPRA assays with
individual reporter assays is one way to mitigate the negative
consequences of the limited sequence lengths in MPRA oligo
library pools. Another alternative approach to the limited length
of current MPRA designs is the Tiling MPRA method (Ernst et al.,
2016). Tiling MPRA allows one to extend the length of testable
regulatory regions by using multiple 175bp constructs for one
variant loci represented at the center of the construct and
varying bp lengths to the left and right from the center of the
constructs (Ernst et al., 2016).

In addition to size restrictions, MPRA plasmid pool designs do
not consider the endogenous biological context. Although using the
same minimal promoter and reporter gene for the entire MPRA
library pool is beneficial for direct comparison across individual
regulatory elements within the MPRA pool, it lacks biological
context and relevance by excluding endogenous promoters and
genes. MPRA experiments cannot measure the putative
regulatory element’s activity in its endogenous chromatin
environment. Additionally, GWAS can nominate noncoding
variants that may be involved in gene regulation but do not
indicate putative tissue or cell types involved. Lack of cell-specific
involvement in a disease or trait becomes another limitation for
MPRAs when incorporating library pools for a research design.
MPRA libraries are created based on all top GWAS hits, which
means false positives and negatives can occur when utilizing this
technique within cell types that are not actively involved in the
complex trait or disease of interest. Including chromatin accessibility
data for specific cell types is one way to avoid such errors when
determining which cell type best suits the MPRA design.
Alternatively, the high-throughput reporter assay called STARR-
seq can supplement the MPRA design to analyze active enhancer
regions within a given temporal context (Arnold et al., 2013).

High-throughput methods (STARR-Seq)
Similar to MPRAs, STARR-seq can simultaneously determine

the regulatory activities of thousands of regulatory elements. Unlike
MRPA, STAR-seq method can determine active regulatory regions
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of the genome in a state/temporal dependent manner while directly
assessing cell-specific regulatory activity (Arnold et al., 2013).
Studies incorporating STAR-seq design have had success in
determining regulatory elements for cellular response to various
pharmacological drugs, such as dexamethasone and other
glucocorticoids (GC) (Johnson et al., 2018; Penner-Goeke et al.,
2023). Such studies placed cells under the influence of steroid-based
drugs to induce a GC- response. Regulatory regions that were
responsive to the pharmacological insult would reside in open
chromatin, allowing for fragmentation and placement into the
reporter plasmid for incorporation into the STARR-seq design to
detect novel GC-responsive regulatory loci within the genome
(Johnson et al., 2018; Penner-Goeke et al., 2023). Incorporating
GC-responsive elements into the STARR-seq technique has
previously allowed researchers to identify an overlap between
functionally validated drug responsive elements that were
enriched with identified GWAS variants associated with
psychiatric traits (Penner-Goeke et al., 2023). Under the driving
idea that a “stress” induced response would result in various
psychiatric outcomes, the STARR-seq reporter plasmid was
introduced into osteosarcoma and brain glioblastoma cell lines
(Penner-Goeke et al., 2023). Furthermore, the identified GC-
responsive elements were found to regulate transcripts enriched
in genes shown to be differentially expressed in the cerebral cortex of
psychiatric disorders, such as schizophrenia (SCZ), major depressive
disorder (MDD) and autism spectrum disorder (ASD) (Penner-
Goeke et al., 2023).

Importantly, STARR-seq can only include open chromatin
accessibility sites in the reporter plasmid pool (Arnold et al., 2013).
In some situations, the direct cell-specific assessment makes STARR-
seq cost effective compared to MPRA as a plasmid pool is unnecessary
for STARR-seq (Das et al., 2023). Instead, any cell type or tissue needed
for a project can be used to extract cellular DNA and subsequently
sheared to obtain smaller fragments of DNA (typically 300-500bp
fragments) (Arnold et al., 2013). The fragmented DNA is transformed
into the reporter plasmid. Open chromatin regions can be obtained by
targeting regions by incorporating chromatin immunoprecipitation
(CHIP) techniques to select for specific transcription factor binding
sites or histone modifications associated with open chromatin sites and
active enhancers (H3K27ac andH3K4me1) which can be advantageous
when only wanting to assess GWAS associated SNP regions (Arnold
et al., 2013; Heintzman et al., 2007). The STARR-seq reporter plasmid is
then transfected into the cell type from which the regulatory elements
were initially derived. Following transfection, the cells are lysed and
submitted for high-throughput sequencing (Arnold et al., 2013).

Another difference seen betweenMPRA and STAR-seqmethods
is in the subsequent analysis. Variation in the analysis technique is
due to the plasmid organization. MPRA plasmids place the
regulatory regions upstream of a minimal promoter and reporter
gene. The only way to determine regulatory activity in an MPRA
experiment is to sequence the unique identifier downstream of the
reporter gene. Unlike the MPRA plasmid organization, the STARR-
seq method places the regulatory element downstream of the core
promoter and reporter gene (Arnold et al., 2013). The basic concept
driving the STARR-seq method assumes active enhancers can act
independently of their position (Arnold et al., 2013). Placement of
the regulatory elements in the STARR-seq plasmid will allow active
enhancer regions to transcribe themselves, essentially being their

own unique identifier. Analysis for STARR-seq experiments differs
fromMPRA analysis primarily due to the need for alignment, which
is due to the incorporation of a fragmentation step in creating the
STAR-seq reporter plasmid pool (Arnold et al., 2013).

Genome editing based methods (CRISPR)
Incorporating functional annotation and validation methods

can collectively implicate a link between GWAS-nominated
variants and target gene expression; however, these techniques
still lack the ability to physically confirm whether GWAS loci are
causal within an endogenous setting. Recent techniques like CRISPR
become useful in fully elucidating how variants impact phenotypes
within an endogenous setting. This powerful genome editing
technique has shown great utility in a wide range of diseases
(such as Parkinson’s (Soldner et al., 2016), schizophrenia (Forrest
et al., 2017) and nasopharyngeal carcinoma (Wang et al., 2023)).
Furthermore, CRIPSR has been used in pursuit of GWAS loci for
complex traits such as bone mineral density (Pippin et al., 2021).
Our study focused on bone mineral density connected GWAS
associated variants to a target gene by incorporating promoter
capture C (172). After obtaining a putative gene target (EPDR1),
CRIPSR was used to knockdown the gene in a cell model equivalent
to mesenchymal stem-cell derived osteoblasts and we showed the
gene impacted osteoblast differentiation (Pippin et al., 2021).

CRISPR aids in such investigations by allowing direct
quantification of gene expression based on endogenous single
nucleotide changes (Wang et al., 2016; Irion et al., 2014). Editing
an individual nucleotide in a regulatory sequence allows direct
assessment of variant function on putative target gene expression.
This was accomplished in a study interesting in bonemineral density
and hyperglycemic phenotypes (Sinnott-Armstrong et al., 2021).
Chromosomal capture techniques were used to assess ADCY5 as the
potential target of the rs56371916 pleiotropic locus (Sinnott-
Armstrong et al., 2021). CRIPSR was implemented to edit the
locus in adipose-derived mesenchymal stem cells (AMSCs) to be
either homozygous for CC or TT (Sinnott-Armstrong et al., 2021).
Following osteoblast or adipocyte induction, ADCY5 expression was
assessed (Sinnott-Armstrong et al., 2021). Findings indicated
ADCY5 expression was increased in osteoblast induction for the
TT homozygous genotype, while conversely ADYC5 expression was
decreased in the adipocyte induction for the CC homozygous
genotype (Sinnott-Armstrong et al., 2021). Overall, the change in
ADCY5 expression confirmed a pleiotropic effect of rs5637916 seen
through lipolysis regulation in adipocytes and lipid-oxidation
differentiation of osteoblasts (Sinnott-Armstrong et al., 2021).

Using CRISPR to edit single nucleotide changes requires the
Cas9 protein, gRNA, and a repair template strand (Wang et al., 2016;
Irion et al., 2014). The repair template strand is used to repair the
genomic break caused by the Cas9 protein through the homology-
directed repair (HDR) and nonhomologous end joining (NHEJ)
mechanisms (Li et al., 2023a). Following nucleotide editing
validation, the impact of downstream gene expression can be
determined with traditional qPCR techniques. Unfortunately, off-
target effects while using CRISPR and designing functional guide
RNAs (gRNAs) are a valid concern. Exploiting the high-fidelity use
of HDR for single nucleotide editing has the unfortunate drawback
of having low efficiency with previous rate estimates of
approximately <5% (Wang et al., 2016; Irion et al., 2014; Komor
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et al., 2017). However, this rate has recently been drastically
improved to >50% (Li et al., 2023a).

CRISPR screens can be implemented as a pooled (gRNAs in bulk
cells) and arrayed (gRNAs intro CRISPR screens) for a large-scale
GWAS follow-up (Bock et al., 2022) or at a single-cell resolution
(Faial, 2023). While pooled screens are great for discovery-based
research, array-based screens are beneficial for follow-up-based
studies. In the context of GWAS signals, array-based CRISPR
screens can make implementing single-base pair changes in the
genome possible, and measurable phenotypes can be determined
based on the perturbation.With the continued use of CRISPR screen
applications for GWAS functional follow-up, focus on single-cell
CRISPR-based (scCRISPR) applications has increased. Some
notable methods that incorporate the scCRISPR approach include
CRISP-seq (Jaitin et al., 2016), CROP-seq (Datlinger et al., 2017),
Mosaic-seq (Xie et al., 2017), Perturb-seq (Adamson et al., 2016;
Dixit et al., 2016), and transcript-informed single-cell CRISPR
sequencing (TISCC-seq) (Kim et al., 2024a). Additional details
on the progress of CRISPR-based screen approaches has been
recently explored by Kim et al. (2024b), Cooper et al. (2024).

Artificial intelligence (AI) methods
AI is a general term used to describe technology that utilizes

computer algorithms like machine learning or deep learning (Sarker,
2022). The benefits of incorporating AI programs can be seen in
their ability to handle large amounts of data, which can significantly
decrease the overall time of determining putative gene targets of
GWAS variants (or variants in LD with GWAS variants). AI tools
have been trained on different datasets for the overall purpose of
pattern recognition. Having the ability to assess patterns quickly, AI
has become an efficient way to predict which variants might disrupt
regulatory motifs and gene function, leading to a more streamline
method to prioritize the most relevant variant and putative target
gene for functional validation.

Researchers have already benefited from AI integration in tools
that can help suggest the potential functional impact of GWAS variants
such as the online tools GeneMANIA (Warde-Farley et al., 2010),
STRING (Szklarczyk et al., 2021; Martin et al., 2023), PhenoScanner
V2 (Kamat et al., 2019), and Variant Effect Predictor (VEP) (Martin
et al., 2023; McLaren et al., 2016). Tools like these, capitalize on pattern
recognition from intersecting AI and multi-omics datasets (such as
transcriptomics, functional annotations, etc.). Other tools, like
DeepSEA (Zhou and Troyanskaya, 2015) and ExCAPE (Sturm
et al., 2020), use a convolutional neural network (Gu et al., 2018)
to determine the potential impact of regulatory elements and gene
expression and how this could translate to a pharmaceutical approach,
respectively (Zhou and Troyanskaya, 2015; Sturm et al., 2020).

Genetic variants effect predicting tools have further been
inhanced by the inclusion of deep learning tool. Some notable
examples include ESM (Lin et al., 2023) (iterations include ESM-
1, ESM-2, and recently ESM-3), AlphaMissense (Cheng et al., 2023;
Tordai et al., 2024), AlphaFold2 (Yang et al., 2023b), and
DeepVariant (Chen et al., 2023). Various iterations of ESM focus
on model protein structures. ESM assesses evolutionary sequence
data and genetic mutations into its model to suggest how variants
affect protein folding, stability, and/or interactions (Lin et al., 2023;
Callaway, 2024). ESM-3 has extended this protein-based application
to predicting new proteins that could be created to enhance current

GFP and CRISPR proteins to enhance current techniques used in
functional assays (Callaway, 2024). Similarly, AlphaMissense AI tool
predicts protein activity caused by variants that impact amino acid
sequences by using deep learning and structural bioinformatics
(Tordai et al., 2024). Apart from protein prediction effect, other
advancements in AI have provided newer tools like DeepVariant
that have improved accuracy of mapping variants to genes and/or
regulatory elements they might affect (Chen et al., 2023).

Once a target gene or regulatory element is prioritized with the
available AI algorithms, other forms of AI tools can further aid in
developing the assays used for functional assays. Already mentioned
was the latest ESM-3 tool that is actively attempting to create new
protein structures based on known sequences that could provide
higher efficient CRISPR proteins for genome editing (Callaway,
2024). ESM-3 is currently too new to fully know the degree of
efficiency this may provide to current CRISPR techniques used for
functional follow-up, but a important to mention in the context of
how AI tools may further advance functional assessments in the
future (Callaway, 2024). AI-powered design tools like CRISPR-DO
provides predictive feedback on designing guide RNAs used for
genome editing, which is useful for designing the most efficient
gRNA for successful application of CRISPR technique (Ma et al.,
2016). Additional AI powered tools and method have been explored
elsewhere (Sigala et al., 2023; Nicholls et al., 2020).

Concluding remarks

Functional work of GWAS signals continue to be an arduous
endeavor. Most of the complexity of GWAS follow-up stems from the
large percent of predicted variants reside within the noncoding
genome. Such nominated variants likely involved in gene
regulation, which requires the need to determine target gene(s) and
how this may vary across different tissues and under varying stimuli.
As technology and computation methods continue to advance, such
challenges will steadily decrease (or at least minimize the time to find
causal variants and their target gene(s). Continued advancements will
further help overcome the additional challenge of answering further
questions regarding how GWAS variants might impact gene function
within different cells/tissues, cellular state (such as development state),
and environmental stimuli (drug exposure, altitude, temperature, etc.).

The future of GWAS signal follow-up is beginning to be positively
impacted by the continued interest in artificial intelligence (AI) and
machine learning integration. As GWAS data is often too large to
follow-up efficiently, technological advancements involving AI
promise to quickly assess the most probable GWAS signals
responsible for complex diseases and traits. Moreover, an AI-based
framework can be incorporated to identify underlying networks of
regulation that are currently time-consuming and difficult to explain
fully in complex phenotypes. In this manner, AI has the potential to
overcome a large portion of the time and financial burden often
associated with follow-up studies of GWAS results and further
facilitate quicker personalized therapy and medicine.

As genomics and computational approaches continue to
advance, most notably with the recent advances in V2F based
algorithms such as activity-by-contact (ABC) (Nasser et al.,
2021), polygenic priority score (PoPS) (Weeks et al., 2023) and
the Effector Index (Liang et al., 2023), GWAS V2F follow-up will

Frontiers in Genetics frontiersin.org11

Bruner and Grant 10.3389/fgene.2024.1375481

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1375481


become increasingly capable of uncovering the underlying gene-gene
and gene-environment interactions that collectively contribute to
disease and trait etiologies. Currently, combining multiple
techniques for variant prioritization and functional validation
methods is an established process for determining causal variants
and pathways contributing to complex phenotypes of interest. Most of
the methods and techniques lead to large multi-omics and pathway-
based datasets that require computational models to dissect the genetic
basis of a complex trait comprehensively. Ongoing improvements with
high-throughput techniques and computational methods will allow for
easier identification of causal genes and pathways than previous
capabilities. With the advent and continued advancements of
computational algorithms and AI, the inclusion of multi-omics and
“big data” will undoubtedly experience a further reduction in the
current time restraints required for completing GWASV2F follow-up.
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