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Race, ethnicity, and ancestry are terms that are often misinterpreted and/or used
interchangeably. There is lack of consensus in the scientific literature on the
definition of these terms and insufficient guidelines on the proper classification,
collection, and application of this data in the scientific community. However,
defining groups for human populations is crucial for multiple healthcare
applications and clinical research. Some examples impacted by population
classification include HLA matching for stem-cell or solid organ transplant,
identifying disease associations and/or adverse drug reactions, defining social
determinants of health, understanding diverse representation in research studies,
and identifying potential biases. This article describes aspects of race, ethnicity
and ancestry information that impact the stem-cell or solid organ transplantation
field with particular focus on HLA data collected from donors and recipients by
donor registries or transplant centers.
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Introduction

Race, ethnicity, and ancestry are terms often confused and used by many
interchangeably. However, each of these terms has a distinct meaning. Race is a
dynamic, and complex social construct, generally applied to a group of individuals
based on observed biological or phenotypic traits, where these characteristics have
acquired socially significant meaning (such as Black or White). Ethnicity is a socially
constructed concept employed to refer to groups of individuals who share a similar cultural
heritage or identity (history, language, and/or religion), where these characteristics have
social meaning (such as Hispanic). In contrast, Ancestry refers to ancestral origin, an
individual’s lineage of descent, or the geographic history of an individual’s ancestors
according to signatures in their DNA (Borrell et al., 2021; Lu et al., 2022).

Ancestry can be defined geographically, genealogically, or genetically, and can suffer
limitations like race or ethnicity. Geographic ancestry refers to ancestors originating from
similar geographic regions (such as South Asian). Genealogical ancestry refers to one’s
ancestral pedigree (family tree), and genetic ancestry refers to ancestors from whom one is
biologically descended (for example, if segments from an individual’s genome are found
similar to individuals from particular continental groups like European or African). While
the construct of race relies on perceived physical characteristics like skin color, ethnicity also
captures elements of an individual’s identity beyond the physical. As a result, the use of each
term is subject to various interpretations by researchers, study participants, and readers. For
example, the terms “Asian” and “Hispanic” are interpreted differently in different regions of
the world. Additionally, several race groups can themselves include multiple ethnic groups:
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for example, Black, White, and Asian races can all include
individuals belonging to Hispanic and/or Jewish ethnicities (Lu
et al., 2022).

These terms are important not just for social purposes, but for
numerous medical applications, including matching for solid organ
and stem-cell transplantation. The term “matching” refers to
identifying the similarities of the patient and stem-cell or solid-
organ donor of a gene system called Human Leukocyte Antigen
(HLA). These are genes in the major histocompatibility complex
(MHC) region on chromosome 6 that help code for proteins
differentiating between self and non-self and play a significant
role in the body’s immune defense. Because of the nature of
HLA function, these genes are extremely polymorphic with
thousands of alleles already identified (Robinson et al., 2016;
Robinson et al., 2020; Barker et al., 2023) and have been under
immune selective pressure in humans for thousands of years
(Prugnolle et al., 2005; Chang and Ferrone, 2007). This means
that the different immune responses that help humans survive
pathogens, migration patterns, wars, colonization movements,
natural catastrophes, or changes in procreation patterns in
different areas of the world have helped shape the HLA alleles
and haplotypes (alleles on the same chromosome) in every region,
depending on the selective pressures at play. For example, as
generations of African humans survived Malaria, some
individuals of African ancestry carry HLA alleles that are known
to be resistant to Malaria such as HLA-B*53:01 and HLA-C*06:02
(Digitale et al., 2021). There are numerous other examples of
population-specific HLA associations with disease or adverse
drug reactions such as the association of HLA-DRB1*04:02 and
HLA-DQB1*03:02 in Jewish populations with the autoimmune
disease Pemphigus vulgaris (Drenovska et al., 2022) and the
adverse reaction to the drug Carbamazepine in individuals of
East and South-East Asian ancestry carrying HLA-B*15:02 (Chen
et al., 2011). Accordingly, the concept of geographical ancestry
(ancestors originating from similar geographic regions) could be a
differentiator of HLA genotypes.

Additionally, some worldwide populations have been exposed to
several patterns of admixture resulting in the emergence of new
populations. For example, individuals identifying with the African
American race have an African and European ancestral admixture
while individuals identifying with Hispanic ethnicity have multiple
levels of Indigenous-American, European, and African ancestral
admixtures (Bryc et al., 2015). These migration-driven admixtures
further increase HLA diversity and contribute to shaping HLA
alleles and haplotypes in these regions. For example, an HLA
genotype (2 haplotypes) can be common in African or European
populations, but when a new genotype is formed with one haplotype
from each continental group, the new genotype may not be common
at all. All these factors contribute to the formation of certain HLA
patterns particular to each geographical area in the world. It is for
these reasons that we collect self-identified race and ethnicity (SIRE)
data from volunteer donors joining stem-cell registries in general.

Collecting SIRE data is a cost-effective way, in lieu of the more
costly genetic ancestry analysis, to stratify registry members into
different populations. Without this population information it is
difficult to perform multiple processes on the donor registry,
including imputation to fill data gaps and resolve data
ambiguities (Madbouly et al., 2014; Maiers et al., 2019; Israeli

et al., 2023), finding potentially matched donors to patients
(Dehn et al., 2016) or reporting match rates to government-
affiliated organizations (Gragert et al., 2014a). Even if funds were
available for some registries to perform genetic ancestry analyses
(Bryc et al., 2015), the quality of the estimated genetic admixture
results are heavily dependent on the sample size and structure of the
underlying reference data used to estimate these admixture
proportions. Individuals belonging to populations
underrepresented in these reference datasets may receive
inaccurate admixture calculations due to biases introduced by
unbalanced reference datasets. The problem is exacerbated for
individuals of mixed ancestry. Collecting SIRE information, even
if some inaccuracies are involved with self-identification, remains
useful for representing multiple human populations in medical
settings, particularly if paired with geographical ancestry
information (Hollenbach et al., 2015; Lu et al., 2022).

The remainder of this article describes different applications of
SIRE data in solid organ or stem-cell transplantation, with primary
focus on different stages of analyzing HLA data as applied by
different teams in the NMDP® stem-cell donor registry.

The importance of donor and patient SIRE
information

Donor and patient race and ethnicity data impact multiple
aspects of the stem-cell or solid-organ donor registry operations,
particularly the HLA matching process for Hematopoietic Cell
Transplantation (HCT). To appreciate the impact of SIRE data
on stem-cell registry operations, an understanding of HLA
haplotype frequencies (Kollman et al., 2007; Gragert et al., 2013;
Gragert et al., 2023) and related processes is necessary. For decades,
donor/recipient HLA matching has been crucial for the success of
solid organ and stem-cell transplantation (van Rood, 2000; Sheldon
and Poulton, 2006; Mahdi, 2013; Dehn et al., 2019). However,
genotyping methodologies (Erlich, 2012; Edgerly and Weimer,
2018), HLA genes/loci relevant to transplant success (Dehn et al.,
2019) and how HLA data are communicated and reported between
different transplant hubs have evolved over the decades. To keep up
with this changing landscape, donor registries continuously
developed algorithms to accommodate changes in genotyping
technologies and clinical practice. In the early days of stem-cell
transplantation, only HLA-A and HLA-B were tested for donor/
recipient matching. Following clinical research that showed the
favorable impact of matching HLA-DRB1, then HLA-C, then
HLA-DQB1 and most recently HLA-DPB1 on transplant
outcomes (Ruggeri et al., 2023), registries continued to screen
registry members for more HLA loci. Most major donor
registries currently genotype nine HLA loci at donor recruitment;
HLA-A, -B, -C, -DRB1, -DRB3/4/5, -DQB1, -DQA1, -DPA1 and
-DPB1 (HLA-DRB3, DRB4 and DRB5 genes behave as alleles of a
single locus (Bodmer, 1984; Nomenclature for factors of the HLA
system, 1988; Fernández-Viña et al., 2013)). However, much of the
NMDP registry HLA data (and potentially other registries) is still
missing most of these loci. For registries to be able to provide match
predictions for five or more HLA loci, statistical imputationmethods
(Gourraud et al., 2005; Madbouly et al., 2014) are applied to fill these
gaps and resolve any ambiguities reported in the data. On the solid-
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organ side, some transplant centers use publicly available
imputation tools such as Haplostats© (haplostats.org) (Gragert
et al., 2013), developed and maintained by the NMDP
Bioinformatics team, to resolve HLA data ambiguities or fill gaps
in the data.

Statistical imputation is the process of filling data gaps or
resolving data ambiguities using a guided statistical approach that
utilizes reference data and a maximum likelihood or other statistical
approach. Imputation of HLA data (Madbouly et al., 2014) utilizes a
maximum likelihood approach and reference data from population
haplotype frequencies (Gragert et al., 2013; Gragert et al., 2023)
generated via the Expectation Maximization (EM) algorithm (Single
et al., 2002; Kollman et al., 2007). Reference population-specific
datasets are important for the accuracy of imputation predictions
since HLA is closely linked to the evolutionary history of human
populations. While an HLA allele may have different frequencies in
different populations, it is the haplotypes that are mostly
representative of each population (Gragert et al., 2013; Gragert
et al., 2023). This is due to the linkage disequilibrium (LD)
patterns and the relatively low recombination rate particular to
the MHC region (Dawkins and Lloyd, 2019) which leads to the
inheritance of HLA alleles in conserved haplotypes (Dawkins and
Lloyd, 2019). These “ancestral haplotypes” are more population-
specific than alleles and therefore a particular HLA-haplotype could
be common in a certain population but not in another. Therefore,
knowledge of haplotypes specific to certain populations guides the
imputation process to fill the data gaps and resolve data ambiguities
by aligning the population of the genotype being imputed with these
ancestral haplotypes. This leads to proper alignment of the imputed
genotype with the population it is associated with.

A robust and reliable reference dataset must satisfy multiple
criteria, such as large samples from each population to represent the
diversity in ancestral haplotypes and proper separation of different
population sample sets to adequately capture the population genetic
characteristics while minimizing admixture with other populations.
These conditions are opposing in nature and form a significant
populations genetics challenge. A genetically diverse population will
have many more haplotypes that occur at smaller frequencies in the
population than a relatively homogeneous population with less
haplotypes that occur at larger frequencies. Large sample sizes
ensure that the majority of relatively common, and some
relatively rare haplotypes in the underlying populations are
represented in the haplotype frequencies which would improve
prediction accuracies for statistical imputation and donor
recipient HLA matching.

For example, when structuring reference data to generate
haplotype frequencies in a stem cell registry for donors of
African ancestry, aggregating HLA genotypes of donors whose
ancestors roots come from multiple African regions in a single
group can generate a large sample at the expense of combining
multiple underlying populations with significant HLA diversity that
could have different HLA profiles such as African- American, West
African, East African, Nigerian, Somali, Jamaican, etc. This
contradicts the conditions required to run the EM algorithm
(Single et al., 2002; Kollman et al., 2007) to generate haplotype
frequencies and masks the private population details needed to serve
specific populations for matching, recruitment, clinical care, and
government reporting. In contrast, grouping donor samples by

single population can provide valuable information private and
specific to a single population and would conform with the
Hardy-Weinberg equilibrium conditions mandated by the EM
algorithm (Excoffier and Slatkin, 1995), however the sample sizes
could be too small to capture the HLA haplotype diversity in the
population reference datasets which would lead to generating
frequency datasets inadequate for proper imputation and
matching. The challenge is to balance the population definition
and sample size. At the NMDP donor registry, 21 detailed
populations are designed for operational matching (Table 1)
(Gragert et al., 2013). These population categories were generated
by merging smaller populations that are within close geographic
proximity and of genetically similar HLA haplotypes while
maximizing sample sizes for these populations to produce
reliable haplotype frequency datasets that capture HLA diversity
in these populations (Gragert et al., 2013). Reliability of haplotype
frequency datasets is determined through an extensive validation
process of the frequency data and imputation and matching results
to guarantee proper alignment of imputation and match predictions
with expectations (Eberhard et al., 2013; Madbouly et al., 2014; Dehn
et al., 2016).

Population information used to generate the reference haplotype
frequencies are obtained from SIRE data collected during the
recruitment process of registry members. The presence of
inaccuracies in the collected data may introduce a source of error
for frequency estimation. These inaccuracies arise due to different
factors such as individuals identifying differently over time, lack of
alignment of declared race/ethnicity with genetic ancestry, unknown
ancestral roots by adopted individuals, among other reasons.
However, the availability of a large sample of individuals in each
population can minimize the impact of these inaccuracies (Single
et al., 2002).

Match predictions generated by HapLogic® (Dehn et al., 2016),
the NMDP matching algorithm, for each patient searching the
registry are directly affected by imputation methods. Embedded
SIRE–derived population genetics haplotype frequencies are used to
enumerate possible patient and unrelated donor or cord blood unit
allele-level haplotype pairs and associated likelihoods according to
an individual’s HLA typing and SIRE broad and detailed race/ethnic
categories (Table 1). We have previously reported matching
validation results reporting the performance of the HapLogic
matching process for each donor SIRE group. Validation was
performed on a large cohort of donor-recipient pairs with
varying HLA typing resolutions (Dehn et al., 2016). Overall,
HapLogic demonstrated superior performance for predicted HLA
matching for all donor SIRE groups. However, some prediction
uncertainty was observed for intermediate matching probabilities
which could be partially attributed to population substructure, SIRE
misreporting, and inability of the algorithm to deal with individuals
with recent continental admixture (i.e., parents or grandparents
from different ethnic backgrounds) (Dehn et al., 2016). This
confirms the importance of accurately collecting and reporting
SIRE data due to possible clinical influence.

Other applications that rely on haplotype frequencies include
Calculated Panel Reactive Antibody (CPRA) calculations for solid-
organ allocation (Kransdorf et al., 2017). Using expanded haplotype
frequencies for CPRA calculations, with more expanded SIRE data
and larger sample sizes to generate the frequencies, has
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demonstrated greater accuracies for sensitized candidates compared
to a version of the CPRA calculator that used limited SIRE data
(Rushakoff et al., 2022).

Like the donor side, the collection of accurate SIRE information
from patients is important and can impact multiple aspects of a
transplant. One of the most impactful applications of patient SIRE
information is diversity in healthcare research in general, and
clinical research in particular. There are added challenges in the
collection of patient SIRE information such as the significant gaps in
Electronic Health records (EHR) (Getzen et al., 2023) and the
reporting of SIRE information by third party observer in lieu of
self-identification (Hasnain-Wynia and Baker, 2006; Luisa et al.,
2021; Lu et al., 2022). The validity of race and ethnicity classification
may depend on whether it is self-reported by a research participant
or patient or assigned by a research assistant or healthcare worker
(i.e., observer-classified). An analysis of the US health survey data
from the Behavioral Risk Factor Surveillance System found that
agreement between self- and observer-identified race varied across
racial and ethnic groups. Higher agreement rates existed among self-
identified Black (96% agreement) and White (98% agreement)
participants, with lower agreement rates among non-Black
minority groups (35% agreement among Native Hawaiian and
other Pacific Island participants) (Jones et al., 2008). Similar
results were obtained from an analysis of the US Veterans Affairs

healthcare users (Sohn et al., 2006). Discrepancies between self-
reported and observer classification of race and ethnicity can have
substantial implications on health research findings. For example,
observer-assigned compared to self-identification of race has led to
underestimations of infant mortality and cancer incidence of Native
Americans (Williams, 1996). For all of the above reasons, it is
concluded that self-reported identity is preferred over observer
classification (Lu et al., 2022).

An important application of patient and/or donor SIRE is to
resolve ambiguities or gaps in HLA genotypes, whether to perform
donor/recipient matching for HCT or avoid donor-specific HLA
antibodies against donor antigens for mismatched HCTs or solid
organ transplants. SIRE information is crucial to the accuracy of
imputation results. A detailed imputation example is described in
the supplementary document that highlights possible inaccuracies in
imputation results that could be introduced by erroneous SIRE input
to imputation. In the first scenario, and HLA genotype is input to
Haplostats© for imputation without any SIRE input which results in
multiple possibilities for the imputed genotype results
(Supplementary Figures S1, S2). Because a different reference
frequency dataset is used for each population selection, a single
haplotype can have a different frequency in each population and
therefore the prediction likelihoods may differ in each population as
well as the alleles in each imputed genotype.

TABLE 1 Current operational race and ethnic groups at the NMDP registry (Gragert et al., 2013).

Detailed populations Description Broad population Description

AAFA African American AFA African American

AFB African

CARB Black Caribbean

SCAMB Black South or Central America

AINDI South Asian API Asian or Pacific Islander

FILII Filipino

HAWI Hawaiian or other Pacific Islander

JAPI Japanese

KORI Korean

NCHI Chinese

SCSEAI Other Southeast Asian

VIET Vietnamese

EURCAU European Caucasian CAU Caucasian

MENAFC MidEast/No. Coast of Africa

MSWHIS Mexican or Chicano HIS Hispanic

SCAHIS South/Cntrl Amer. Hisp.

CARHIS Caribbean Hispanic

CARIBI Caribbean Indian NAM Native American

AMIND North American Indian

AISC American Indian South or Central American

ALANAM Alaska Native or Aleut
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In the second scenario, SIRE information (AFA) was used in the
Haplostats input. The imputation result only shows predictions for
the input population (Supplementary Figures S3, S4). The
predictions are more concordant with genotypes expected in an
AFA population. Importantly, the prediction likelihoods indicate
the level of certainty in each of the predicted genotypes. It is crucial
not to conflate inaccuracy with uncertainty. Inaccuracies are
introduced by ambiguities in the genotyping process. These
inaccuracies are reduced and often eliminated by the imputation
process that provides a population-specific prediction with a
quantified level of prediction certainty.

The imputation example demonstrates the importance of SIRE
information for more precise prediction of unambiguous HLA
genotypes and other related processes that follow such as virtual
crossmatch and molecular mismatch analysis. Importantly,
registries do not proceed with donor predictions alone as the
true HLA genotypes for potentially matched donors, but rather
conduct confirmatory HLA typing prior to transplant. However,
imputation can leverage larger potential donor pools and save
valuable time and cost in identifying the most compatible donors.

There are numerous other applications for patient SIRE
information including informing donor recruitment for patients
unable to find HLA-matched stem-cell donors, government
reporting, and identifying important social determinants of
health to inform effective planning and administration of
multiple patient services and grant programs.

Beyond transplant, patient SIRE information within Electronic
Medical Records (EMR) is an important resource for numerous
clinical research disciplines (Uslu and Stausberg, 2021; Rotenstein
et al., 2022). Clinical studies that investigate topics around clinical
outcomes (Lee et al., 2007; Madbouly et al., 2017; Sigmund et al.,
2022), disease associations (Gragert et al., 2014b; Hachicha et al.,
2018; Drenovska et al., 2022; Ma and Kerkar, 2023; Li et al., 2024),
adverse drug reactions (Chen et al., 2011; O’Connor and Grissinger,
2014; Stephens et al., 2014), polygenic risk scores (Lewis and Vassos,
2020), genome-wide analyses (Li et al., 2008; Hindorff et al., 2009;
Laurie et al., 2010), etc. Require subject cohorts with underlying
diversity to reach robust results that can be applied to patients with
multiple ancestral roots. However, there are significant gaps and
inaccuracies in EMR SIRE information (Getzen et al., 2023; Samalik
et al., 2023), particularly for patients of color (Lu et al., 2022) due to
numerous reasons including observer-based reporting, mistrust in
the healthcare system, and possibly other. The presence of these
challenges restricts extending the findings of clinical research to
multiple populations which may add more challenges to the
healthcare system at large.

Improving the collection, classification, and
quality of SIRE data

Evolution of the donor SIRE form at the
NMDP registry

At the NMDP donor registry, the collection of SIRE information
has evolved over decades of registry operations starting from using
just the main broad race groups (prior to 1996) and evolving to more
population details for each of the main SIRE groups (1996–2002). In
2002, the NMDP adopted the change mandated by the Office of

Management and Budget to consider “Hispanic” an ethnicity rather
than a race (Ulmer et al., 2009). This change was applied to all donor
and patient registry forms. Since this change was made in effect,
continued review of the SIRE categories used to collect this
information from members joining the registry identified some
areas of improvement, including:

• The need to bring back the Hispanic/Latino detailed categories
(e.g., Cuban, Mexican, Puerto Rican, etc.). When these details
were removed and replaced by a single category (Hispanic
ethnicity), multiple registry members of Hispanic ethnicity
could not identify with any of the listed race categories on the
form and therefore some of the details on their ancestral
background were lost.

• Multiple world regions were not included on the SIRE form
adopted in 2002 such as Central Asia, African sub-regions, and
some populations in the Oceania region.

• Combining genetically diverse populations under single
categories (e.g., African or South Asian) concealed some
details that potentially removed information needed to
better serve populations of color such as African, Middle
Eastern, and South Asian populations.

• The existence of embedded sub-populations within our broad
groups masked some HLA details that can help better serve
some patients such as members of Jewish ethnicity embedded
within the larger European Caucasian group.

Based on this review and extensive prior conducted research, a
new, more inclusive donor recruitment form was launched by the
NMDP in summer 2020 that addresses the above issues. Table 2 lists
the new categories currently used by the NMDP registry to collect
SIRE information at donor recruitment.

The new categories merge race, ethnicity and geographical
ancestry categories based on feedback directly received from
registry members, published research, and designed solutions for
data issues caused by previous historic forms. Some of the
changes included:

- Expanding the broad groups to include Middle Eastern
(previously a detailed category) and Jewish (which includes
individuals of distinct HLA types) and the terminology was
modified to be more inclusive (for example: Hispanic or Latino
vs. Hispanic, Black or African vs. Black or African American)

- Adding geographical details under the Hispanic or Latino
broad group that were missing in the previous form.

- Dividing the Middle Eastern group into three distinct groups
based on published HLA literature (Al-Awwami et al., 2012;
Hajeer et al., 2013; Bishara et al., 2019; Alfraih et al., 2021) and
internal analysis of registry members.

- Including geographical regions absent in previous forms like
Central Asian, East and West African and detailed Pacific
Island regions.

- Adding details of Jewish ethnicity to capture the corresponding
HLA types.

The new categories captured from the donor recruitment form
are internally mapped to the operational detailed and broad groups
(Table 1) that are used to generate haplotype frequencies and match
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donors and patients. Internal validations are underway to investigate
expanding current operational SIRE categories using the updated
data being collected. Other efforts are underway to expand the
patient categories to match the new donor groups in Table 2.

Accurately mapping and aggregating SIRE groups
for haplotype frequency estimation

There are multiple efforts underway to improve the quality of the
estimated US population haplotype frequencies, including increasing
the sample size of the frequency generating samples for some of the
underrepresented populations in the NMDP registry. Only 18 of the
21 detailed SIRE frequencies are used for matching in HapLogic (Dehn
et al., 2016). The excluded frequencies are AISC, SCAMB and
ALANAM (Table 1) and are replaced by the corresponding broad
SIRE frequency file for matching (NAM, AFA, and NAM respectively).
The reason these three frequency datasets were exclude is because of the

small sample size used to generate the frequencies and poor
performance during matching validation. Recently generated
haplotype frequencies include much larger sample sizes from
NMDP registry members. Matching validation is underway to
evaluate the performance of each population frequencies.
Additionally, with the implementation of the new donor SIRE form
in 2020, more details are being collected on Hispanic and Latino
populations and other areas of the world which helps more accurate
inclusion of samples for population frequency estimation and better
representation of the HLA diversity in the underlying populations.

Collection of more detailed donor SIRE data and the growth in
the number of donors from multiple diverse populations on the
NMDP registry has informed amore recent evaluation of the current
operational broad and detailed SIRE categories at the NMDP
(table 1). Numerous analyses are underway to evaluate the
benefit of estimating dedicated population haplotype frequencies

TABLE 2 New race, ethnicity and geographical ancestry categories used for the NMDP donor recruitment form since summer 2020.

Broad category Detailed category Broad category Detailed category

White Central Asian Hispanic or Latino Caribbean Hispanic

Russian or former Soviet Union South or Central American Hispanic

Eastern European Brazilian

Southern European Other Hispanic or Latino

Northern European Asian Chinese

Western European Japanese

White Caribbean Korean

White south or central American Taiwanese

Other white Malaysian

Jewish Ashkenazi Mongolian

Sephardi Filipino

Mizrahi Vietnamese

Other Jewish Thai

Middle Eastern North African Indian

East Mediterranean Pakistani

Arab peninsula Other Indian subcontinent

Other Middle Eastern Other Southeast Asian

Black or African African American Native American Alaskan Native or Aleut

West African Indigenous North American Indian

East African American Indian/South or Central American

South African Caribbean Indian

Black Caribbean Other Native American

Black South or Central American Pacific Islander Polynesian

Other Black or African Native Hawaiian

Hispanic or Latino Mexican Melanesian

Cuban Micronesian

Puerto Rican Other Pacific Islander
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for some of the new population groups added to the new SIRE form,
including Jewish, East, and West African and multiple Latino and
Middle Eastern populations. This has the potential of addressing
some of the existing sources of error in the frequencies, including
splitting multiple combined diverse population and extracting
embedded population substructure which could lead to overall
improvements in the matching process (Dehn et al., 2016).
Figure 1 shows some experimental results investigating the
genetic distance between new member population categories
based on experimental HLA haplotype frequencies estimated
from these new groups. The phylogenetic tree was built using
Nei’s genetic distance (Hattemer, 1982). These preliminary results
demonstrate clear distinction of some populations previously
unidentified on the registry or combined with other groups such
as East and West African and multiple Jewish populations.
Additionally, the preliminary clustering results imply that not all
Hispanic and Latino populations are similar with clear genetic
separation of Cuban, Brazilian, Puerto-Rican and Caribbean
Hispanic groups from the Mexican population. Lastly, we
observed that registry members of multiple Jewish ethnicities
have more genetic proximity to Middle Eastern populations
rather than European (Figure 1). These are early experimental
results conducted on a limited set of NMDP registry members.
However, further validation is warranted to finalize new population
groups, with the goal of better distinction of member populations,
improving matching and registry operations.

SIRE prediction from HLA data and handling
mixed-ancestry

One limitation of all the methods described above used for
matching, imputation and other registry operations is the use of
haplotype frequencies based on single populations. None of these
methods can handle data on individuals of recently admixed
ancestral origin (e.g., parents belong to different continental
populations). As the number of individuals of mixed ancestry
grow worldwide, challenges arise for HLA matching and
genotype imputation for mixed ancestry individuals. Additionally,
gaps and inaccuracies in collected SIRE data form source of error for
imputation and matching algorithms as well as other registry
operations. We have recently implemented and extensively
validated a new imputation algorithm (Israeli et al., 2023) that
can impute both: HLA genotypes as well as assign a SIRE
category for the input genotype based on reference data from
population haplotype frequencies. This method can assign a
different SIRE value for each imputed haplotype and therefore
predict the single or mixed ancestry of the input HLA genotype.

Conclusion

Self-identified race, ancestry and ethnic information is crucial
for multiple healthcare applications and clinical research. This
information is particularly important for the operation of

FIGURE 1
Experimental phylogenetic tree that depicts clustering of NMDP registrymembers based on new ancestral categories collected at recruitment using
the new form implemented in 2020. Classification and tree are based on Nei’s genetic distance calculated from experimental haplotype frequencies
estimated from the new experimental population groups after internal processing and adjusting for donor sample size.
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volunteer stem-cell donor registries and multiple methods that
benefit solid organ transplantation. SIRE information for registry
members is used for multiple applications, including the estimation
of haplotype frequency datasets that serve as reference data for HLA
imputation and matching of donors with transplant patients. These
frequencies are also utilized for modeling and projection of match
rates and data-driven registry strategy planning and recruitment.
Patient SIRE data is crucial for patient-driven donor recruitment,
HLA imputation to resolve data gaps or ambiguities as well as
identifying social determinants of health.

While recent advancements in HLA genotyping enabled wide
access to affordable high-resolution HLA data, it is important to
note that some ambiguities (for example, allele codes) are still
reported in high-resolution data and substantial gaps still exist,
particularly for newly typed loci like DPB1, DPA1 and DQA1. The
majority of stem-cell registry members’ HLA data still have
substantial ambiguities and data gaps and will require
imputation to address these issues and enable future matching
of donors and recipients beyond the 5-locus level. Current
haplotype frequencies, imputation and matching methods are
designed to process HLA data at the Antigen Recognition
Domain (ARD) (exons 2 and 3 for class I and exon 2 for class
II HLA) to conform with current matching guidelines for HCT and
donor selection (Dehn et al., 2019). However, recent clinical
research has demonstrated potentially favorable transplant
outcomes with matching beyond the ARD (Vazirabad et al.,
2019; Mayor et al., 2021). Substantial updates will need to be
implemented to haplotype frequency estimation methods,
imputation and matching to process HLA data at the three and
four field resolution or upgrade the resolution of existing legacy
data. These methods will be crucial to handle HLA data for decades
to come. Lastly, current deceased donor typing for solid organ
transplants are still primarily performed at the low-resolution
level. If higher resolution HLA matching or multiple mismatch
analyses are needed, and if high-resolution genotyping is not
feasible or accessible, the application of imputation methods
will still be necessary.

Numerous research initiatives have been and are still being
conducted as we unravel areas of improvement in collecting and
mapping this data and continue to improve matching operations for
searching patients. The accuracy of SIRE data for both donors and
transplant recipients can impact many aspects of the transplantation
experience. While multiple challenges still exist in the collection,
processing, and application of SIRE data and while other alternatives
have been proposed like the use of genetic markers, this data will
continue to be crucial for clinical research and multiple applications.
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