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Background: Despite the recognized roles of Sialic acid-binding Ig-like lectins
(SIGLECs) in endocytosis and immune regulation across cancers, their molecular
intricacies in colon adenocarcinoma (COAD) are underexplored. Meanwhile, the
complicated interactions between different SIGLECs are also crucial but
open questions.

Methods: We investigate the correlation between SIGLECs and various
properties, including cancer status, prognosis, clinical features, functional
enrichment, immune cell abundances, immune checkpoints, pathways, etc.
To fully understand the behavior of multiple SIGLECs’ co-evolution and
subtract its leading effect, we additionally apply three unsupervised machine
learning algorithms, namely, Principal Component Analysis (PCA), Self-
Organizing Maps (SOM), K-means, and two supervised learning algorithms,
Least Absolute Shrinkage and Selection Operator (LASSO) and
neural network (NN).

Results: We find significantly lower expression levels in COAD samples, together
with a systematic enhancement in the correlations between distinct SIGLECs. We
demonstrate SIGLEC14 significantly affects the Overall Survival (OS) according to
the Hazzard ratio, while using PCA further enhances the sensitivity to bothOS and
Disease Free Interval (DFI). We find any single SIGLEC is uncorrelated to the
cancer stages, which can be significantly improved by using PCA. We further
identify SIGLEC-1,15 and CD22 as hub genes in COAD through Differentially
Expressed Genes (DEGs), which is consistent with our PCA-identified key
components PC-1,2,5 considering both the correlation with cancer status and
immune cell abundance. As an extension, we use SOM for the visualization of the
SIGLECs and show the similarities and differences between COAD patients. SOM
can also help us define subsamples according to the SIGLECs status, with
corresponding changes in both immune cells and cancer T-stage, for instance.

Conclusion: We conclude SIGLEC-1,15 and CD22 as the most promising hub
genes in the SIGLECs family in treating COAD. PCA offers significant
enhancement in the prognosis and clinical analyses, while using SOM further
unveils the transition phases or potential subtypes of COAD.
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1 Introduction

Colorectal cancer is a major worldwide cancer, making up 10%
of all cancer cases each year (Ionescu et al., 2023). In the category of
colorectal cancers, COAD is noteworthy, ranking as the secondmost
common in women and the third most common inmen (Bajramagic
et al., 2019; Sung et al., 2021). The prognosis of COAD depends on
its stage. Late-stage and metastatic cases usually have less favorable
outcomes (Siegel et al., 2020). Prognostic factors include how well
drugs work and the chance of cancer coming back after surgery
(Martini et al., 2020). Hence, early and accurate diagnosis is crucial
for effective COAD management.

In recent years, the clinical efficacy of immune checkpoint
inhibitors, such as PD-1, PD-L1, and CTLA-4, has been
demonstrated in COAD treatment (Le et al., 2017; Cantero-Cid
et al., 2018; Johdi et al., 2020). Noteworthy drugs in this category,
including Opdivo (nivolumab), Keytruda (pembrolizumab), and
Yervoy (ipilimumab), have been employed in clinical trials
(Boland et al., 2017). Concurrently, targeted therapies such as
panitumumab and cetuximab, which focus on EGFR, have
become important in treating metastatic colon cancer, opening a
new era in COAD treatment (Ketzer et al., 2018). Despite these
advancements, the 5-year survival rate for COAD patients is still
unsatisfactory (Lichtenstern et al., 2020). Changes in gene
expression are crucial in the development of COAD. Therefore, it
is essential to conduct additional research on COAD-related genes
and their underlying mechanisms to advance future diagnostic and
treatment strategies.

SIGLECs, also known as Sialic acid-binding Ig-like lectins,
constitute essential components of the immunoglobulin
superfamily (IgSF) and are exclusively expressed in immune cells
(Macauley et al., 2014). Presently, 14 human subtypes and 9 mouse
subtypes have been identified (Duan et al., 2020). These SIGLECs
play a crucial role in modulating immune responses and interactions
among immune cells by binding primarily to sialic acid residues on
cell surfaces. They regulate various physiological processes,
including immune cell activation, apoptosis, adhesion, and
inflammatory responses. Additionally, SIGLECs are pivotal in
immune tolerance, autoimmune diseases, and immune evasion.
Targeting SIGLECs holds promising implications for advancing
treatment strategies for immune-related diseases. Furthermore,
SIGLECs bind to specific ligands in the tumor
microenvironment, exerting significant influence on various
physiological and pathological processes within tumors
(Macauley et al., 2014; van Houtum et al., 2021). Notably,
inhibitory SIGLECs, such as CD33, SIGLEC-5, 7, 9, and 10, are
upregulated in tumor-infiltrating CD4 and CD8 T cells across
various cancer types, contributing to the failure of T cell
responses (Jiang et al., 2022). While tumor-associated
macrophages (TAM) traditionally activate immune responses
through the phagocytosis of damaged cancer cells (Murray et al.,
2014; Noy et al., 2014; Nahrendorf et al., 2016), in specific cases,
SIGLEC10 on macrophages can engage with CD24 expressed on
breast cancer cells, initiating a protective immune response and
hindering cancer cell phagocytosis (Barkal et al., 2019; DeNardo
et al., 2019).

A large amount of evidence suggests that SIGLECs receptors
hold promise as novel immune checkpoints and attractive targets for

cancer immunotherapy (Lim et al., 2021; Stanczak et al., 2023).
Research suggests that combining SIGLEC15 with PD-L1
antagonists holds promise for treating colorectal cancer (Ahmad
et al., 2023). SIGLEC7 is implicated in modulating the immune
response to Fusobacterium nucleatum in colorectal cancer
(Lamprinaki et al., 2021). Furthermore, SIGLEC6 may be
associated with mast cell activity in the tumor microenvironment
of colorectal cancer (Yu et al., 2018). Additionally,
SIGLEC15 demonstrates immunosuppressive effects in pre-
metastatic lymph nodes of colorectal cancer, presenting a
potential target for immunotherapy (Du et al., 2021). However,
our understanding of the specific mechanisms involving SIGLECs in
the initiation and progression of COAD is currently limited.
Furthermore, comprehensive reports addressing the expression of
SIGLECs in COAD and their correlation with immune molecules
are conspicuously absent in the existing literature. This underscores
the need for further research to unveil the intricate role of SIGLECs
in COAD, offering potential avenues for therapeutic intervention in
cancer immunotherapy.

In this study, our approach involves using a public database
alongside various statistical tools to meticulously examine the
variations in SIGLEC expressions among patients with COAD.
Specifically, we explore the statistical correlation between each
SIGLEC’s expression and the cancer status through 1-dimensional
correlation analysis (1-D correlation). Additionally, we delve into the
dynamic changes in correlation between different SIGLECs (2-D
correlation) and the simultaneous alterations in all SIGLECs (n-D
correlation) using five machine-learning algorithms, including the
Principal Component Analysis (PCA), the neural network (NN), the
Self-Organizing Maps (SOM), Least Absolute Shrinkage and Selection
Operator (LASSO) and K-means.

Expanding our analysis, we delve into clinical data to unravel the
roles of SIGLECs in relation to general clinical features, including
survival curves, Hazzard ratio, various cancer stages, gender, age, etc.
To gain a deeper understanding of the mechanisms underlying the
interactions that SIGLECs contribute to, our investigation encompasses
difference analysis, Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) Analyses, Protein-Protein Interaction-
Network (PPI-Network) exploration, and scrutiny of the immune-cell
landscape. The PCA algorithm is applied in addition to general SIGLEC
analysis to disentangle their complicated interactions and identify the
major contributions. The SOM algorithm is used for visualizations and
feature subtractions to demonstrate the co-evolution with other
properties, i.e., immune cells and cancer stages. Other machine
learning algorithms such as NN, LASSO and K-means work as
supporting tools for corresponding sub-topics. This multi-faceted
approach aims to provide a comprehensive and nuanced insight
into the intricate landscape of SIGLEC expressions in COAD
patients, shedding light on their potential roles in clinical outcomes,
and underlying molecular and immune processes.

2 Materials and methods

2.1 Data collection

The datasets utilized in this study were sourced from two
reputable repositories. The TCGA datasets, spanning 20 types of
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cancer, including the TCGA-COAD dataset, were acquired from the
TCGA database (https://portal.gdc.cancer.gov/). Additionally, the
COAD-related RNA sequencing dataset GSE110224 was retrieved
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). The
TCGA-COAD include 453 COAD and 41 normal samples. This
dataset not only included RNA sequencing data but also
incorporated valuable survival and clinical information for a
thorough analysis. Concurrently, the GSE110224 dataset was
employed as the validation dataset, featuring 17 samples each, for
COAD and normal. The GSE39582 dataset was also collected, with
19 normal samples and 566 cancer samples.

2.2 PCA of SIGLECs in COAD

PCA is a very powerful tool for subtracting key features, de-
noising, and dimensionality-reduction in a wide field of data
sciences. It performs a linear transformation of high-dimensional
data and results in a set of orthogonal PCs. For the detailed
methodology, we refer to some literatures for your interest (Ma
et al., 2011; Lever et al., 2017).

We first use the “sklearn” python package (https://scikit-learn.
org/stable/index.html) to rescale the 14 SIGLECs expression data
into standard Gaussian distributions and build a resulting
covariance matrix. Then “numpy” package (https://numpy.org/)
is used to calculate the eigen values and eigen vectors, which
directly give the projection matrix that linearly transforms the
14 SIGLECs into 14 PCs.

2.3 Prognostic analysis

The prognostic significance of SIGLECs in COADwas evaluated
through univariate Cox regression (uniCox) and Kaplan-Meier
(K-M) survival analyses (Liu et al., 2018). The Overall survival
(OS) and disease-free interval (DFI) of COAD patients with
differential expression of SIGLECs were evaluated using the
“survminer” and “survival” R package. COAD patients were
divided into low and high expression groups based on the
median expression level of SIGLECs, while validations with
different binning methods are also provided in the SI.

In addition to the univariate Cox regression, to account for the
complicated biological interactions and co-evolutions, we perform a
multivariate Cox regression, on top of the previous PCA analysis as
well as a Least Absolute Shrinkage and Selection Operator (LASSO)
regression. The LASSO regression is calculated with the “glmnet”
R package.

2.4 Neural network (NN)

We use the “neuralnet” R package to build a neural network as a
supporting tool, to show the sensitivity and promising capability of
machine learning in the future with large dataset. We use two hidden
layers of (8,2) neurons, with the small number of neurons aiming to
prevent overfitting, and enough depth of the network to account for
potential non-linearities in the data. We randomly select half of the
patients as training sample and use the other half as testing sample,

to prevent bias due to train/test imbalance as the number of patients
at risk is low. We train the network for 3,000 epochs with learning
rate 0.01 to prevent overfitting. Visualizations of the NN is done
with the “NeuralNetTools” R package.

2.5 Clinical correlation analysis

To investigate the relationship between SIGLECs expression and
clinical features, we compare the expression of SIGLECs across six
key clinical-pathological factors: age, stage, T-stage, M-stage,
N-stage and gender. This comparison was conducted using
COAD samples obtained from the TCGA-COAD dataset. The
correlation analysis was performed using the Wilcoxon test
(Krzywinski, 2014) for clinical features with 2 subgroups (age,
gender and M-stage), but use Kruskal-Wallis test (Kruskal et al.,
1952) for those with more than 2 subgroups (stage, N-stage,
T-stage). The results were visualized using the “ggplot2” and
“ggpubr” R packages.

2.6 Differentially expressed genes (DEGs)
identification

Differential expression analyses were conducted using the
“limma” R package (version 3.56) (Ritchie et al., 2015) (https://
bioconductor.org/packages/release/bioc/html/limma.html). DEGs
were identified based on a significance threshold, with a False
Discovery Rate (FDR) < 0.05 and |log2FC| > 1 (Benjamini, 1995;
Colaprico et al., 2016). The “ggplot2” R packages were used to
visualize the DEGs results through the generation of volcano plots.

2.7 Protein-protein interaction (PPI) network

The overlapping DEGs were analyzed by STRING online
databases (https://www.string-db.org/) to predict the PPI network
and to determine the hub genes (confidence level 0.4) (Szklarczyk
et al., 2015). The cytoHubba plugin of Cytoscape (Shannon et al.,
2003; Li et al., 2022) was used to score each node gene by
10 randomly selected algorithms, including MNC (Maximum
Neighbourhood Component), Degree, MCC (Maximal Clique
Centrality), EcCentricity, EPC (Edge Percolated Component),
Closeness, BottleNeck, Betweenness, Radiality, and Stress. The
top 20 hub genes from each algorithm were used to screen hub
genes through the “UpSetR” package.

2.8 Gene ontology (GO), kyoto
encyclopaedia of genes and genome (KEGG)

To gain the possible roles of the genes within the significant
module, we conducted analyses using GO and KEGG pathway. The
GO terms are categorized into biological process (BP), cellular
component (CC), and molecular function (MF). The
“clusterProfiler” R package (version 4.8.2) was used for
enrichment analysis and the “org.Hs.eg.db” R package (version
3.17.0) was used for ID conversion (Wu et al., 2021). Significance
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was established at different threshold, with a weak cut
(p-value <0.05), an intermediate cut (p-value <0.01), and a strong
cut (Benjamini-Hochberg adjusted p-value <0.05) (Benjamini et al.,
2018) for GO terms, and an intermediate cut (p-value <0.05) and a
strong cut (corrected q-value <0.05) for KEGG analysis.

2.9 Gene set enrichment analysis (GSEA)

The “clusterProfler” package (version 4.8.2) was used for GSEA
analysis, which analyzes the relevant functions and pathways of
genes. The results were visualized with “enrichplot” R package.

2.10 Immune infiltration analysis

The distribution of 22 immune cell types in both COAD and
normal samples within the TCGA-COAD dataset was evaluated
using the “CIBERSORT” algorithm (Newman et al., 2015; Chen
et al., 2018). Subsequently, we calculated the correlations between
SIGLECs and the immune cell composition using the “psych” R
package. Additionally, we explored the associations between
SIGLECs and four pivotal immune checkpoints—CD274,
HAVCR2, LGALS9, and PDCP1LG2—using the “Spearman”
correlation analysis (Fu et al., 2020).

2.11 Self-organizing maps (SOM) analysis

We apply the open-source tool “somoclu” (https://peterwittek.
github.io/somoclu/) (Peter Wittek, 2017) to perform the SOM
analysis. We reduce the 14-dimension SIGLECs data into 2-
dimension for visualization, setting a Toroid-map with a
resolution of 50*100. Based on the generated activation map,
which quantifies the similarities between two different samples,
we divide the full sample into different subsamples to study the
evolution of COAD and the associated transition phases. Further
correlation studies are also performed based on the SOM-defined
subsamples.

2.12 Expression verification of SIGLECs

The immunohistochemistry results of SIGLECs in COAD were
obtained by the Human Protein Atlas (HPA) database (Uhlén et al.,
2015; Yao et al., 2022), accessible at https://www.proteinatlas.org/.
This resource allowed us to explore the protein level expression and
spatial distribution of SIGLECs in COAD and normal tissues.

3 Results

3.1 SIGLECs expression in different samples
with PCA

Initially, we collect SIGLECs expression data from the TCGA
database and compare the expression values of different SIGLECs in
the normal/cancer cases, shown in Figure 1A. Our analysis revealed

that only SIGLEC15 displayed a notably and significantly elevated
expression, while 13 other SIGLECs (SIGLEC-
1,5,6,7,8,9,10,11,14,16, CD33, CD22, and MAG) were consistently
and significantly downregulated in COAD samples within the
TCGA-COAD dataset (p < 0.001). To further understand this
simultaneous change from normal cases to COAD patients, we
use PCA to project the 14-dimensional SIGLECs data into
14 orthogonal principal components (PCs), i.e., PC1 to PC14.
Similar to Figure 1A, their corresponding comparisons are shown
in Figure 1B, but with their variations reducing from PC1 to PC14.
We identify PC-1,2,5 as the hub PCs, with their statistical
significances highlighted as “!” (p < 0.000001). We note the hub
PCs are not treated as the hub genes, but as important roles in
finding the hub genes during the COAD transition. The PCA results
in Figure 1B suggest there are 11 out of 14 individual components
that changes significantly in the normal-cancer transition, therefore,
we choose to focus on the three most sensitive ones to add the
COAD context for future analysis.

In Figure 1C, we show the SIGLECs’ information covered by
each PCs in terms of the explained variance and its cumulative
values. PC1 appears to occupy >60% of the total information/
variance, while the top six PCs can explain >90% of the overall
14-dimensional information. By adding the contribution from all
14 PCs, 100% of the information of the 14 SIGLECs can be
recovered. We demonstrate the detailed composition (from the
SIGLECs) of each PC in Figure 1D, using the correlation
coefficients. It is clear that PC1 is positively correlated with most
of the SIGLECs, which can explain the simultaneous (normal-
cancer) changes in Figure 1A. We further identify the strongest
(anti-correlated) PC-SIGLEC pairs: PC2-SIGLEC15, PC3-MAG,
PC4-SIGLEC16, PC5/PC6-SIGLEC14.

Furthermore, we investigate the correlation, i.e., patterns of
simultaneous change, between the 14 SIGLECs, and find most
SIGLECs co-evolve after getting COAD. More specifically, we
adopt the cross-correlation coefficient to quantify this change,
shown in Figure 2A. It is shown that for the normal sample, the
correlation coefficient values are clustered into three main areas,
with their boundaries highlighted in grey in Figure 2A, while the
values for the tumor sample are more concentrated in a single
triangle. This is because we use a hierarchical clustering order for the
SIGLECs, so that if one SIGLEC is more correlated to the others,
they will be placed near each other in the figure. This pattern in the
correlation coefficient suggest SIGLECs in the normal sample are co-
evolving in two groups: SIGLEC-6,8,10, CD22, and SIGLEC5 are
evolving together, while SIGLEC-5,14,1,11, CD33, and SIGLEC-
7,9 are evolving together, leaving SIGLEC-15,16 and MAG almost
independent from those two groups (later we will show the hub
genes are from different groups). Most correlation coefficients also
experience an significant increase from the normal sample to the
tumor sample, suggesting COAD transition overwhelms some
biological processes. Overall, it suggests COAD patients not only
change SIGLEC expressions as shown in Figure 1A, but the
correlations/connections between two different SIGLECs also
increase. For example, we can see SIGLEC-9,7, and CD33 remain
the strongest correlations with the others in both the normal sample
and the tumor sample, while SIGLEC10’s correlation experienced a
strong boost after getting COAD. Here we summarize the top seven
most correlated SIGLECs in the tumor sample: SIGLEC-
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1,5,7,9,10,11 and CD33, meaning a single SIGLEC can represent a
majority of another, so that they are less independent.

We use Figure 2B to further demonstrate the changes due to
COAD. In this scatter diagram, each dot represents one person, with
the expression of SIGLEC1 on the x-axis and the expression of
CD22 on the y-axis. Having COAD will lead to a decrease in both
SIGLECs’ expressions, so that the center of the orange distribution is
at the lower-left corner compared with the blue distribution. This
was demonstrated also in Figure 1B. But we also notice
SIGLEC1 and CD22 become more correlated for COAD patients,
as their distribution contour in orange is more elliptically distorted.
How much more distorted the elliptical distribution is can be shown
by comparing the SIGLEC1-CD22 value in Figure 2A: 0.07 for
normal (which correspond to why they belong to different groups in
the previous paragraph) and 0.64 for COAD (the elongated
distribution making one SIGLEC associate to the other’s change,
leading to less independence). This figure also demonstrates that
exploring a single SIGLEC v.s. cancer feature might not be optimal.
A method that can link multiple SIGLECs’ status, i.e., a multi-
dimensional analysis is important. For instance, PC1 in Figure 1D

can explain a majority of the correlated direction in different
SIGLECs, thus it can represent the elongated direction in
Figure 2B, while the other PCs can represent other directions in
a full 14-dimensional scenario. We remark that as all the PCs are
orthogonal to each other, their cross-correlation coefficient is zero,
therefore we do not need to show their counterparts for Figure 2A.

Interestingly, PCA can also work as a tool to translate statistical
correlation into causality in this highly correlated SIGLEC-COAD
system. Generally, causal inference requires fine binning/sub-
sampling or re-weighting to control the variables, and it is
extremely hard to do so when the system is noisy and highly
correlated. We use Figure 2B & 2C as examples: (1) If we want
to control other variables, say SIGLEC1, and observe if CD22 is
differently expressed for normal/cancer samples, we can select data
within one of the grey narrow bins in Figure 2B. We can see that
selections in SIGLEC1 will lead to selections in CD22, due to their
strong correlation that makes them less independent. The noisy
distribution will make it worse, so that we cannot significantly
distinguish the normal/cancer samples. (2) After performing
PCA, by definition, the system is transformed into orthogonal

FIGURE 1
Expression of SIGLECs and its PCA performance. (A) This Boxplot depicts SIGLEC expression in normal tissues and COAD utilizing TCGA RNA-seq
data. The significance level of each SIGLEC is shown on the top, with *** denoting p < 0.001. (B) The Boxplot for 14 PCs that correspond to 14 SIGLECs,
with “!” indicates p < 0.000001. (C) The explained variance values for each PCs and their cumulative values. It indicates how the 14-dimensional SIGLECs
expression information is distributed in different PCs. (D) The cross-correlation coefficient between each SIGLEC-PC pair, indicating the
contribution from each SIGLEC in a chosen PC. Blue refers to a positive correlation, while red refers to a negative correlation.
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PCs, so that any selection in PC1 will not affect the distributions in
PC2, as well as all the other PCs. Thus, in the grey narrow bins that
controls PC1 in Figure 2C, we can still see a clear separation between
normal/cancer samples in PC2. In this way, we confirm there exists a
lot of independent components in the complicated SIGLEC family
that are directly linked to COAD (Figure 1B).

3.2 COAD prognosis enhancement with PCA

We match the SIGLECs expression data with COAD patients’
prognosis data, and separate the SIGLECs expression (or its PCs)
into two groups with an equal number of people, to investigate how
SIGLECs (and their associated PCs) affect patients’ survival rate as a
function of time, i.e., the survival curve. In evaluating the prognostic
significance of SIGLECs in COAD, distinctive associations emerged.
In Figure 3A, we show the Hazard Ratio (HR) of the OS time, with
SIGLEC14 being a significant (p = 0.026) positive indicator (HR < 1).
The HRs for the corresponding PCs are shown in Figure 3B as a

comparison. Similarly, in Figure 3C, we show the HR of the DFI
time, however, without any significant (p < 0.05) indicators for
prognosis. The HR of the DFI for the PCs are shown in Figure 3D.

In Figure 4A, we demonstrate that SIGLEC1’s high expression can
significantly (p = 0.041) suppress the survival probability considering
the Overall Survival (OS) time. In Figure 4B, we show that SIGLEC8’s
high expression can also significantly (p = 0.03) benefit the patient’s
Disease-Free Interval (DFI) time. Therefore, SIGLECs can work as a
potential indicator for COAD prognosis.

Interestingly, when comparing the power from the PCs, we find
no PC can exceed the significance of SIGLEC1 considering the
Survival Curve for OS time. This further emphasizes the importance
of SIGLEC1. On the other hand, we find PC-1,10,14 are very
competitive indicators considering the DFI time, compared with
SIGLEC8 in Figure 4B. They have significant impacts on DFI time
with p = 0.033 (Figure 4C), p = 0.018 (Figure 4D), and p = 0.013
(Figure 4E). It suggests PCs are even better tracers for prognosis,
especially considering they are orthogonal to each other, so a
combination of different PCs can give a much clearer result.

FIGURE 2
SIGLEC co-evolution in COAD. (A) Correlation coefficients for different SIGLECs in the normal sample (left) and COAD sample (right). (B) 2D scatter
diagram of SIGLEC1 and CD22 to show the distribution change before and after getting COAD. (C) Similar to (B) but for PC1 and PC2.
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To further extend the capability of PCA, we perform a
multivariate Cox regression together with PCA and LASSO
algorithms. With LASSO, we confirm PC-10,14 affect the
resulting risk at significant level (Figures 5A, B), therefore they
be treated as two inputs for the Cox regression. With the
multivariate Cox analysis, we separate the sample into high/low
risk subsamples using the resulting risk evaluation. We find they are
significantly (p = 0.0053) separated considering the DFI time
survival curve, as shown in Figure 5C. The corresponding one/
three/five years area-under-curve (AUC, Figure 5D) also suggest
using two PCs already give very promising predictions.

We find that SIGLEC15 manifested as a negative factor (HR >
1), whereas SIGLEC-6,7,14 emerged as positive factors (HR < 1)
in both DFI and OS analyses for COAD (Figures 3A, C).
Unfortunately, none of their significances exceed the p <
0.05 limit, possibly due to the limit of the current data size.
With PCA, the significance can be largely improved. In the OS
analysis, PC-4,6 exhibit a strong deviation from HR = 1, while in
the DFI analysis, PC-10,14 also offer strong evidences.
Nevertheless, PC-10,14 also shows strong differences in
Survival Curves as shown in Figures 4D, E. All the above
results in Figures 3–5 suggest PCA can dramatically improve

the significance of using SIGLECs in COAD prognosis. These
findings underscore the potential of SIGLECs, especially their
PCs, to serve as prognostic markers, providing valuable insights
into the clinical outcomes of COAD patients.

3.3 COAD prognosis sensitivity and full
SIGLEC information application with NN

As demonstrated previously, single SIGLEC v.s. prognosis
sensitivity is not optimal currently with TCGA data, possibly due
to the noisy data with very limited sample size. Even with PCA
enhancement, we can merely use two PCs to perform the
multivariate analysis. So, the current data quality does not
support us for a full-parameter-space, full-information
analysis. We only use NN to show its capability in future
prognosis analysis.

In Figure 6A, we show the structure of the NN, with positive/
negative contributions colored in red/grey, while thick/thin lines
denote large/small contributions. The sensitivity of risk v.s.
individual feature can be visualized by the partial derivatives or
the products of the connection weights (Olden et al., 2004), which

FIGURE 3
Correlations between SIGLECs/PCs expression and COAD patient survival. (A)Hazard ratio (HR) of SIGLECs for patients’Overall Survival (OS). (B)HR
of PCs for patients’ OS. (C) HR of SIGLECs for patients’ Disease Free Interval (DFI). (D) HR of PCs for patients’ DFI.
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we show in Figure 6B. The DFI time dominates over all the SIGLECs,
which we do expect, as the relative measurement noise for time is
clearly significantly smaller than in the gene expressions, making it
easier to subtract information from the DFI time for the NN. We
find SIGLEC9 dominates the positive contribution, while
SIGLEC8 dominates the negative contribution. Most SIGLEC
sensitivity do not differ too much, due to the complicated
biological correlations as well as similar signal-to-noise level.

We find NN is a good sanity check for PCA, as SIGLEC9 is one
of the main (and the only positive) contributors to PC14, and
SIGLEC 8 is the most significant contributor to PC10, which PC-
10,14 are the most important PCs that affect DFI survival according
to Figures 1D, 4, 5. This confirmation highlight the good linearity in
the data, and suggests NN is not strongly biased by contaminations.

We show the performance of the training sample and the test
sample in Figures 6C, D. It is clear both the training sample and the
test sample can have a significant separation of high/low risk
subsamples. The test sample exhibit a stronger significance (p =
0.00022), which is stronger than the previous combination of PCA,
LASSO, and Cox regression. But we note this is not a fair
comparison, as the previous analysis uses only two PCs, while
this NN approach uses all 14 SIGLECs, containing all the
information from 14 PCs, plus possible non-linear/non-Gaussian
information that PCA ignores, plus (most importantly) a much
stronger sensitivity from DFI time measurement.

This NN approach is only for the demonstration of its great
potential in the future. We will address its limitations in the
Discussion section.

FIGURE 4
Survival Curves for SIGLECs and PCs. (A) Survival Curves for SIGLEC1 in association with patients’ OS in COAD. Red represents the high expression
group, and cyan represents the low expression group. (B) Survival Curves for SIGLEC8 in association with patients’ DFI in COAD with the same color-
coding. (C) Survival Curves for PC1 in association with patients’ DFI. (D) Survival Curves for PC10 in association with patients’ DFI. (E) Survival Curves for
PC14 in association with patients’ DFI.
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3.4 Clinical correlation analysis
enhancement with PCA

To gauge the potential significance of SIGLECs in the
progression of COAD, we examine the correlation between
SIGLECs (or PCs) and key clinical features. We specifically
focused on Age, Gender, Stage, Metastasis (M), Lymph Node
Involvement (N), and Tumor Size (T). We find almost null
detection (see Supplementary Figure S6) across all these clinical
features for the SIGLECs, however, PCA can find significantly
correlation in terms of Stage, N-stage and T-stage, as shown in
Figure 7. Figure 7A exhibits PC13 has a much stronger correlation
with COAD stage than any individual SIGLEC. Similarly, in
Figure 7B, PC8 shows a significant correlation with COAD
N-stage. Last but not least, Figure 7C highlights the significant
correlation between PC13 and COAD T-stage. The above analysis
further confirms the importance of using PCA in the highly
correlated multi-dimensional SIGLECs data, so that its
correlation with different definitions of COAD stages is revealed.
Interestingly, Figure 7 reveals a non-monotonic correlation between
PC13 and COAD stage and T-stage, which suggest PC13 should be

involved in complicated biological processes that associate with
COAD in multiple but opposite ways.

3.5 DEGs, PPI and enrichment analysis
of COAD

We identified the differentially expressed genes (DEGs) to
unravel the co-evolution of other genes together with SIGLECs in
COAD. We find 1,254 DEGs, comprising 449 upregulated and
805 downregulated genes, shown in Figure 8A. By intersecting
the 1,254 DEGs with 949 genes that demonstrated high
correlations with SIGLECs, a set of 18 overlapped key genes
emerged. We analyzed these DEGs and construct a PPI network
with medium confidence (score >0.4), depicted in Figure 8B. The
rank of genes was demonstrated by color changes, and the first
ranked gene was marked with red bubble. We assess the significance
of each node gene through 10 randomly selected algorithms,
including MCC, MNC, EPC, Degree, BottleNeck, Closeness,
EcCentricity, Radiality, Betweenness, and Stress. The top 20 hub
genes identified by each algorithm were then compared, and the

FIGURE 5
Results for the PCA+LASSO+multivariate Cox analysis. (A) Finding the value for the tuning parameter λ. (B)Decide the coefficient given λ. (C)Use the
selected PC-10,14 to build a multivariate Cox model and the corresponding survival curves. (D) AUC for the model at 1,3,5 years.
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common hub genes across all 10 algorithms were determined, as
illustrated in Figure 8C. Ultimately, we identified 12 overlapping
hub genes (CD22, SIGLEC15, SIGLEC1, SIGLEC6, SIGLEC10,
CD33, CXCR5, SIGLEC9, SIGLEC5, FCRL1, TCL1A, and MAG).

The DEGs are involved in various biological processes,
including immune regulation, cell-cell interactions, signaling,
etc. This finding is consistent with literature (Lubbers et al.,
2018). In terms of functionality, these 18 key genes exhibited
significant enrichment in processes such as B cell activation,
leukocyte migration, platelet aggregation, and more,
encompassing a total of 216 Gene Ontology (GO) functions
that suit the p < 0.05 cut. Among those GO terms, a more
cautious cut of p < 0.01 highlights 24 of them (Figure 8D).

Under Benjamini-Hochberg correction, the corrected p <
0.05 highlight only two of them: B cell activation and
carbohydrate binding. Additionally, the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways associated with these key
genes included primary immunodeficiency, intestinal immune
network for IgA production, renin-angiotensin system, cytokine-
cytokine receptor interaction, and butanoate metabolism
(Figure 8E), while the q < 0.05 cut highlight the first two.

We conducted Gene Set Enrichment Analysis (GSEA) to
uncover relevant signaling pathways and potential biological
mechanisms associated with SIGLECs. The x-axis in the GSEA
represents individual genes, with each small vertical bar
symbolizing a specific gene. The overall trend of the pathway,

FIGURE 6
Results for NN analyisi. (A) Visualization of the structure and trained hyper-parameters of the network. (B) Importance of the input features from the
products of the connection weights. (C) Survival curves using the NN predicted risks for the training sample. (D) Similar to (C), but for the test sample.
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whether it is trending upward or downward, provides insights into
the potential activation or inhibition of specific pathways. For each
gene, the GSEA reveals the top five entries that are upregulated and
downregulated (Figure 8F). As illustrated in the figure below using
SIGLEC-1 as an example, this GSEA analysis serves as a valuable
tool for identifying key pathways and unraveling potential biological
mechanisms associated with SIGLECs in COAD.

3.6 Association of SIGLEC expressions with
immunotherapy

We examine the correlation between SIGLEC gene expression
and 22 immune cell content, shown in Figure 9A. The findings
revealed a significant negative correlation between genes related to
T cells CD4memory resting, activatedMast cells, and Dendritic cells

FIGURE 7
Evaluating the significances (** for p < 0.01) of SIGLECs (or PCs) in COAD with different clinical features. (A) PC v.s. Stage correlation; (B) PC v.s.
N-stage correlation; (C) PC v.s. T-stage correlation.

Frontiers in Genetics frontiersin.org11

Li and Yao 10.3389/fgene.2024.1375100

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1375100


when compared to other immune cell types. The activation of
SIGLECs may be associated with immune evasion, leading to a
decreased aggressive immune response against tumors (Macauley
et al., 2014). Conversely, Macrophages M1, Macrophages M2, and
various other immune cells exhibited marked positive correlations.
There may exist an immuno-modulatory mechanism connecting
SIGLECs activation and the inflammatory response of macrophages.
These findings provide valuable insights into the potential impact of
SIGLEC expressions on the immune cell landscape. We will revisit
this point later with the SOM machine-learning algorithm.

To further understand the complicated correlations between
SIGLECs and immune cells, we nonetheless apply the PCA and
show the correlation between the corresponding PCs and immune
cells in Figure 9B. We see that with PCA, the correlated patterns
appear to be more clear: (1) some null or weak correlations between
SIGLECs and immune cells start to reveal their core and significant
hidden truth with PCA, i.e., in B cells memory, Dendritic cells
resting, NK cells activated, T cells CD4 naive, T cells follicular
helper, etc.; (2) some immune cells with strong correlations to most
SIGLECs appear to be due to correlations to limited PCs,
i.e., Macrophages M0, M1, M2, Mast cells resting, T cells
CD4 memory resting, etc.; (3) PC-1,5 appear to be strongly
correlated with most immune cells, which confirms the findings

in Figure 1B. This again demonstrated PCA is a powerful tool that
can subtract the key features as well as enhance the signal strength.

We show significant positive correlation between SIGLECs and
immune checkpoints, including CD274, HAVCR2, LGALS9, and
PDCD1LG2, in Figure 9C. The analysis of Tumor Mutational
Burden (TMB) in relation to SIGLECs demonstrated significant
positive correlations, as shown in Figure 9D. SIGLEC-1,7,9,14,
exhibited notable positive correlations with TMB. This provides a
detailed understanding of how SIGLECs influence the immune
environment.

3.7 A multi-dimensional analysis of the
SIGLECs with SOM

As discussed above, the connection between SIGLECs and
COAD should be revisited at higher dimensions considering the
complex correlation between different SIGLECs (Figure 2). We
therefore adopt the SOM algorithm, which was historically
developed to reduce dimensionality, visualization, and pattern
recognition (Kohonen, 1982). We reduce the 14D SIGLECs’
expression data onto 2D and show the corresponding unified
distance matrix (U-matrix, which specifies the distance/similarity

FIGURE 8
Differential expression analysis and the corresponding enrichment analysis. (A) Volcanic plots depicting differentially expressed genes in both
normal and cancer groups are presented. (B) PPI network of SIGLECs and the selected DEGs. (C) Venn diagram showing genes associated with SIGLEC
expression and differentially expressed in COAD. (D) Circular diagram illustrating enriched GO entries. (E) Bubble plot of KEGG pathway enrichment
analyses. (F) Single-gene GSEA enrichment results for SIGLEC1.
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between a specific pixel and the neighboring pixel) in Figure 10A.
The normal samples (blue) are clustering in the center, giving only
SIGLECs’ expression data fed to the SOM algorithm, among all the
COAD samples (red). The background U-matrix color-map also
exhibits that the normal samples are similar to each other, with a
blue-green color showing each dot/pixel is similar to its neighbors.
We note there are three normal cases mixed into the COAD cases,
possibly due to noise in the data (measurement/instrument error,
individual difference, or contamination from other diseases, etc.)

In Figure 10B we apply a K-means clustering algorithm on top of
the SOM map being generated. The full sample is divided into eight
subsamples, and we arbitrarily assign a number from 0 to 7 to them,
while each sub-sample is marked with a different color. Again, we
see the machine learning algorithm defined a subsample “7” that is
highly overlapped with the given normal sample, demonstrating the
combination of 14 SIG-LECs can clearly identify the difference
between normal and COAD samples. It is natural to think that the
other seven subsamples could have other physical/
medical meanings.

We use Figures 10C, D to show in the eyes of the SOM
algorithm how the cases distinguish from one another.
Figure 10C is the activation map that presents how different

each case is from a chosen person (arrowed). The blue-green
color denotes high similarities, while the red-orange color
denotes large differences. We can see the chosen person is
similar to the type-7 (normal) sample, while quite different
from most of the other (cancer) samples. On the other hand,
in Figure 10D we find this given patient is not only different from
the healthy type-7, but also significantly different from type-3.
This suggests except for identifying if a person has cancer cells,
SIGLECs could potentially respond to other behaviors of
cancer cells.

We further show the detailed SIGLECs’ expressions in those
eight AI-assigned types in Figure 10E. In each individual SIGLEC,
we find ultra-significant patterns of differences, rejecting the no-
evolution hypothesis at p< 10−10 level with Kruskal-Wallis test. We
choose the following case-study:

(1) SOM type-7: In general, type-7 are expressed higher than the
other types, which is consistent with the healthy case
in Figure 1A.

(2) SOM type-3: It contains 26 COAD patients, with most of the
SIGLECs expressed similar to the other COAD types.
However, its SIGLEC14 expression is extremely low, at

FIGURE 9
(A)Heatmap of correlation between SIGLECs and immune cells. The color indicates the correlation strength, with red signifying positive correlations
and blue indicating negative correlations. (B) Heat map of correlation between PCs and immune cells. (C) Correlation between SIGLECs and immune
checkpoints. (D) Correlation between SIGLECs and TMB.
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almost 0. Later we will show type-3 have other effects, thus
this is not likely due to bad data.

(3) SOM type-0: It is significantly under-expressed in CD22 and
SIGLEC-6,8,10.

(4) SOM type-5,6: These two types have interesting similarities of
low expressions in SIGLEC-1,5,6,7,8,9,10,11,14, CD22 and
CD33, however, they differ a lot in SIGLEC15.

We note the SOM classification is only based on the SIGLECs
expression levels, which could potentially suffer from measurement
bias, equipment bias, or inter-individual variations. Thus, to tell if
the separated subsamples are due to true evolutional differences or
noise, it is essential to check whether the other biological features
change or not. In Figure 11, we present the validations of the SOM
subsamples with immune cell abundance and cancer stages. In
Figure 11A with immune cell abundance, we find:

(1) SOM type-7 is significantly different in Plasma cells,
Macrophages M0, Macrophages M2, and Mast cell

resting. This suggests these four immune cells could
play the most important role during the healthy-cancer
transition. Others such as NK cells resting, Macrophages
M1, and Mast cells activated also have a similar behavior,
but less significant.

(2) SOM type-3 is significantly under-expressed in T cells
follicular helper and Neutrophils, while the significance is
lower in Monocytes. Nevertheless, we see type-3 also
represents the latest Stage and T-stage in COAD, as shown
in Figure 11B. This indicates this type could also be physical,
and its very low SIGLEC14 might not due to
measurement errors.

(3) SOM type-0 is significantly under-expressed in B cells naive,
Plasma cells, Eosinophils, and over-expressed in
Macrophages M0, Mast cells activated. The fact that
immune cells co-evolve with SIGLECs also suggests this
type is realistic.

(4) SOM type-5,6 also have similar behaviors in immune cells,
similar to their SIGLECs. They are highly expressed in T cells

FIGURE 10
Self-Organizing Maps (SOM) unsupervised learning analysis. (A) Visualization with the Unified Distance Matrix (U-matrix) of SOM, demonstrating
SIGLECs are sensitive to COAD cancer cells. (B) Automatic categorization with SOM and K-means algorithm, divided into 10 sub-samples. (C)
Visualization of the activation map of SOM, to show the similarities (cold color: similar, warm color: different) to a chosen normal reference. (D) The
activation map when choosing a COAD patient as the reference. (E) SIGLECs expressions that strongly evolve with different SOM subsamples.
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CD4 memory activated, NK cells resting, confirming the
similarities in Figure 10E.

From the above results, it is clear SOM can further separate the
COAD patients into subgroups with features that change in both
SIGLECs and other properties such as immune cells or cancer stages.
These subgroups correspond to potential COAD cancer subtypes,
possibly with different origins or with different transition phases.
Additionally, as these potential subtypes are identified only with
SIGLECs expression data, it is possible to extend SIGLECs for future
treatments.

We, therefore, argue the SOM categorization is a very
promising tool to unveil COAD developments and its
associated origin or transition phases with SIGLECs. We
further note that due to some missing data in the original
database, we choose to remove B cells memory and T cells

gamma delta in Figure 11A, as some values have no
measurement or zero standard deviation.

3.8 Cancer pathway activation and drug
resistance

We utilized the GSCALite to examine the participation of
SIGLECs in 10 common cancer pathways. The analysis showed
that almost all of SIGLECs are involved in activating Hormone ERE
and MT pathways. (Figure 12A). This insight clarifies the potential
impact of SIGLECs on key cancer-related pathways.

In treating COAD, it is crucial to evaluate patient drug responses.
To achieve this, the correlation between drug susceptibility and
SIGLECs expression was investigated based on data from the Cancer
Drug Susceptibility Genomics (GDSC) database. The analysis

FIGURE 11
Changes in other features that correspond to different SOM subgroups. (A) Immune cell abundances are different, especially for type-7,3,0,5&6 (B)
Cancer stages are different, especially for type-3.

Frontiers in Genetics frontiersin.org15

Li and Yao 10.3389/fgene.2024.1375100

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1375100


encompassed a diverse list of drugs. The correlation analysis resulted in
the identification of seven SIGLEC-drug relationships (Figure 12B).
Significantly, CD33 showed the highest correlation with other drugs,
possibly due to the current extensive research focus on drug treatments
related to CD33 (Linenberger, 2004).

3.9 SIGLECs expression level verification

During the validation of SIGLECs expression levels, an analysis was
conducted using the GSE110224 dataset. The results generally agree
with our finding in Figure 1, with slight differences in SIGLEC-10,
which is due to the limited data size of this test sample (Supplementary
Figure S8). More importantly, we note the 34 samples from
GSE110224 are obtained from 17 patients, with one COAD sample
and one normal sample from each patient. This largely rule out the
possible contamination from interindividual variability. During the
validation with a larger dataset GSE39582, we search for very
significantly expressed (***, with p < 0.001) genes, but find only

SIGLEC-1,6,16 (Supplementary Figure S8) in both TCGA and
GSE39582. The fact they are all down-regulating in COAD confirms
our findings. However, we note there are a few SIGLECs with
inconsistent expressions in these two databases, but with low
significance in at least one database. We think this is due to data
imbalance, especially the lack of normal control samples in GSE39582.

Furthermore, for a deeper investigation into SIGLECs’ protein
expression levels, we acquired immunohistochemistry data for
SIGLECs in both COAD tissues and normal tissues from the HPA
database. Specifically, HPA053457 and HPA014377 were subjected to
quantification using ImageJ. As depicted in Figure 13, the results
revealed that SIGLEC1 and SIGLEC14 exhibited lower expression
levels in COAD tissues compared to normal tissues.

4 Discussion

In this work, we perform a comprehensive study on multi-
dimensional expressions of the SIGLECs, especially on their

FIGURE 12
(A) SIGLECs cancer pathway activation. (B) Relationship between SIGLECs expression and drug resistance.
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relations with COAD patients. Firstly, we find simultaneous
suppression in most SIGLECs in COAD patients, while the PCA
algorithm can subtract the most dominant component, i.e., PC-
1,2,5. The PCA can also tell the projectional/fractional contribution
of different SIGLECs in each PC, as demonstrated in Figure 1. We
also find PC1 is highly correlated with all the SIGLECs which are
significantly lower expressed in COAD patients, therefore it
represents the key correlated feature of the SIGLECs (possibly
corresponding to the elongated direction in Figure 2B).
Interestingly, the elongated direction in Figure 2B is along the
direction of the centers of normal/cancer distributions,
confirming the linearity assumption that validates the application
of PCA. Secondly, we investigate the SIGLEC-SIGLEC cross-
correlation coefficient in normal/cancer cases, and find
significantly enhanced correlations in the COAD patients, as
shown in Figure 2.

We present the HR calculations in Figure 3. We see that
SIGLEC14 is the only significant (p < 0.05) tracer in the HR
analysis considering the OS time, but with PCA, we find PC-4,6 are
both strong tracers. Similarly, considering the DFI time, we find no
significant tracer from the SIGLECs, but PC-10,14 from the PCA. In
Figure 4, we present the Survival Curves, showing that low
SIGLEC1 can significantly benefit the OS time, and high
SIGLEC8 can significantly benefit the DFI time. This highlights the
potential of using SIGLECs in prognosis studies. More importantly, we
find that PCA can significantly enhance the outcomes of DFI analysis,
with three orthogonal/independent PCs strongly correlated with the
survival rate, i.e., PC-1,10,14. The resulting significance can reach p =
0.0053 when a multivariate analysis is applied (only with PC-10,14), by
combining PCA, LASSO andCox regression, as shown in Figure 5. This
further proves PCA can de-noise this highly correlated SIGLECs system
and subtract the key biological information: the SIGLEC-survival
correlation was not significant enough to support a
LASSO+multivariate Cox regression, but PCA enables such analysis
to happen.

We additionally validate our binning methods in the SI, as a
sanity check. We follow the recommendations (Raman et al., 2019)
and select quantile splitting and K-means clustering, as we think
other methods like distribution based splitting, Cox regression
model and D-index have their own assumptions on the data,
while Figure 2B do not suggest strong deviations from Gaussian
distributions. We extend the SIGLEC1 v.s. OS time and the
SIGLEC8 v.s. DFI time survival analysis in Supplementary Figure
S5, while also perform K-means clustering and splitting by <25%
and >75%. We find very consistent results comparing with the
fiducial median-binning. We note although K-means gives more
significant separations, it is based on the unsupervised clustering in
the time v.s. gene expression space with different units, while
changing the units being used can significantly change the
results. The splitting by <25% and >75% method will remove
half of the available data, leading to a larger noise. Therefore, we
stick to the binning by median method throughout this paper.

Alternatively, a NN is constructed to explore the potential of the
SIGLEC family in COAD prognosis. Different from the above
approach, in the NN, we choose to include all the SIGLEC
expressions, despite how significantly they are correlated to the
prognosis. In addition, the DFI time is also included as an input
feature, which exhibit a stronger sensitivity than the SIGLECs in
Figure 5B. We note NN is extremely powerful when given a larger
and unbiased dataset, and is therefore very limited now for the same
reasons. The size of our training sample is small, so the noise in gene
expression is still a dominant factor, making the NN easily go
overfitting. We choose to reduce the hyper-parameters and
training epochs to limit this problem, but it can still be presented
by the different p-values in Figures 6C, D. Meanwhile, the difference
between training sample and test sample ---- the distribution bias
---- is also a known problem for NN, as it has limited power in
extrapolations. This could be even worse whenNN do not have any a
priori knowledge, such as Cox regression model being assumed in
the Cox analysis. So, we do not treat this NN results as our fiducial

FIGURE 13
Immunohistochemistry of SIGLEC1 and SIGLEC14 in COAD and normal tissues from the Human Protein Atlas database.
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prognosis analysis, even it has stronger significance in risk
estimation. We leave more detailed tuning, such as network
structure, changing learning rate, optimizer, priors (L1/
L2 regularization), etc., for future studies with larger dataset.

Nonetheless, we find PCA can also enhance and subtract the key
biological information that is correlated with COAD cancer stages,
shown in Figure 7. We find no significant correlation between any
individual SIGLEC with a list of clinical features, including age,
gender, cancer stage, N-stage, M-stage, and T-stage. However, when
applying PCA, we find PC13 is strongly correlated with the cancer
stage and T-stage, while PC8 is strongly correlated with N-stage.
This works as additional proof of the importance of PCA as a tracer
for clinical diagnosis.

In Figure 8, we apply a broad search and find 1,254 DEGs that
are highly correlated with COAD and 949 genes that are highly
correlated with SIGLECs. The overlapped 18 genes can help us
further understand the roles of SIGLECs. With PPI (Figure 8B) and
associate Venn diagram (Figure 8C), we identify a list of 12 hub
genes, i.e., CD22, SIGLEC15, SIGLEC1, SIGLEC6, SIGLEC10,
CD33, CXCR5, SIGLEC9, SIGLEC5, FCRL1, TCL1A, and MAG,
while the top three genes from any of the ten algorithms are always
CD22, SIGLEC-1,15. We tested when a higher threshold of 0.7 is
applied for the PPI, most DEGs’ correlation will vanish, leaving only
two chains: one with SIGLEC-9,7,1,15, CD22, CXCR5, and another
with SIGLEC-5,14. Such a high threshold will disentangle the
SIGLEC-DEG connection, therefore losing the COAD context.
The associated GO analysis and GSEA analysis are also presented
to illustrate the functions of SIGLECs. Based on all the above
analyses, we conclude CD22 and SIGLEC-1,15 are the most
promising hub genes in COAD based on their significance and
special functions.

Moreover, we find very significant (mostly p< 0.001) fingerprints of
SIGLECs on immune cell abundance, immune checkpoints, and TMB,
as shown in Figure 9.With PCA, we find consistent results as in Figure 1
that PC-1,5 are strongly correlated with most immune cells. PCA can
help concentrate the complicated correlations into limited PCs for
Macrophages M0, M1, M2, Mast cells resting, T cells CD4 memory
resting, etc. It can also largely boost the significance of the correlation to
some other immune cells, such as B cells memory, Dendritic cells
resting, NK cells activated, T cells CD4 naive, T cells follicular helper,
etc. This emphasizes the importance of understanding the co-evolution
of different features in multi-dimensions. Such mechanism studies will
benefit future studies of cancer evolution as well as treatments.

For typical PCA analysis, PCs with least contribution to the total
signal is conventionally removed for the purpose of de-noising.
However, in this work under the topic of COAD, due to limited
sample-size (<500), measurement noises/biases could be more
dominant than part of the weak signals, so we do not perform
the removal process. For example, we report significant correlations
in PC-1,2,5,8,10,11,13,14 in the previous results, while PC12 has the
least significant correlations in Figure 9B, which could contain a
large fraction from noise that overwhelms weak biological signal
(PC14 for example,). PC3, which ranks 3rd in variance, is also very
weakly correlated with immune cells comparing with the other PCs.
Unlike PC14, PC3 represents an uncorrelated part between SIGLECs
and COAD (PC3-MAG/SIGLEC15 correlation as shown in
Figure 1D), which we also successfully subtract. With larger
dataset in the future, PCA can exhibit a variety of better results.

As an extension to Figure 2B, we explore the multi-dimensional
expression of the SIGLECs family by adopting an unsupervised
learning algorithm, the SOM, to further investigate the COAD
evolutions. Here we note PCA and SOM are both
dimensionality-reduction tools, but focusing on different aspects.
PCA is an application of linear algebra, providing translations and
rotations in 14D in this analysis. However, it prefers data with
Gaussian distribution, which is untrue for many complicated
biological data, and it cannot keep the distance between two
samples unchanged after the transformation. SOM, on the other
hand, keeps the distance/similarities unchanged through a non-
linear transformation. Thus, it is a better tool for visualization and
pattern-search. Consequentially, due to the complication of the
SOM algorithm, it normally requires a very large dataset. Hence,
we present the SOM results only as a proof-of-concept study.

We show in Figure 10 that SOM can automatically distinguish
the normal sample and the tumor sample in higher dimensions, and
successfully categorize them into different groups, while showing the
similarities/differences between any two different cases. With SOM,
we can also capture how the immune cell abundances change
associated with the SIGLECs. We find SOM type-7, type-3, type-
0 and type-5,6 correspond to differently expressed SIGLECs
(Figure 10), together with other feature changes (Figure 11). This
confirms both the sensitivity of SIGLECs to COAD and the
promising power of SOM to identify substructures due to
potential COAD subtypes. We identify four types of immune
cells that play the most important roles together with SIGLECs,
namely, Plasma cells, Macrophages M0, Macrophages M2, andMast
cells resting. We conclude that SOM is of great importance in
precisely identifying the roles of SIGLECs in the future with
larger datasets.

We also note due to the fact SOM and the associated K-means
results relay on the random initial weights before training the
network, the generated U-matrix (Figure 10A) and type indexes
(Figure 10B) are not identical in different runs. Still, we emphasize it
is the properties of the separated subgroups (Figures 10E, 11) that
matters, while the SOM visualizations in Figures 10A, D are not
fixed results, but they work as examples (in different runs with
different initial random seeds) to tell the differences between normal
sample and COAD subsamples.

Generally speaking, SIGLECs are of great importance in various
situations, including their systematical changes with COAD, affecting
COAD prognosis, co-evolve with other genes in COAD, its strong
correlation with immunotherapy, etc. Through the PCA approach, we
identified SIGLEC-1,14,15 plays the most important roles in COAD
(Figures 1–4), while through the DEG-PPI approach, we identify
SIGLEC-1,15 and CD22 are the hub genes (Figure 8). They are
generally consistent, validating the important roles of SIGLEC-1,15.
We note themain reason for SIGLEC14 being less significant in the PPI
is due to its weaker connections to the DEGs. But the key role of
SIGLEC14 can be find from other analysis, i.e., strong correlation to
COAD (Figure 1), independent information (Figure 2), significance in
prognosis (Figure 3), strong correlation to the immune cells (Figure 9)
that identified from SOM (Figure 11). Thus, we still consider it as a
promising candidate. Overall, we conclude SIGLEC-1,15 and CD22 are
the most sensitive ones in the above analysis based on their outstanding
behaviors in Figures 1–4, 6–11. The high sensitivity suggests they can be
promising biomarkers for COAD treatments. Future investigation of
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finding the interaction between them and their sialic-glycan ligands is
therefore an important direction of research (Sullivan-Chang et al.,
2013; Gianchecchi et al., 2021; Laubli et al., 2022; Saini et al., 2023).

We note that, error analysis is of great importance in statistical
studies. In this study with public database, we do not have indicators for
different sources of errors. But we can separate them into two categories:
statistical error (random motions that shift the expressions
independently) and systematical error (which bias the data towards a
specific direction). We note statistical error will add random noise into
the data (for example, artificial measurement error, day/night difference,
before/after food), so theywill shift the data points in Figure 2B along the
SIGLEC1 direction or CD22 direction independently, therefore weaken
the correlation coefficient but without changing the center of the
distribution. If the current results are already affected by the
statistical error, we can only have stronger intrinsic correlations than
the current measurements. This kind of statistical errors can be largely
suppressed in the future with larger dataset.

On the other hand, we do not deny the probability of
systematical errors. For example, the change of SIGLECs in
COAD patients might not be directly due to the cancer cells and
the associated immune response, but also affected by the
complications (such as perforation, sepsis, or fever condition).
Current data do not contain enough information to distinguish
the systematical errors. But we note systematical errors are normally
meaningful processes that physically exist, and they can be separated
in the future with larger and more comprehensive dataset. The
existence of systematical errors sometimes leads to inconsistent
results when different methods/algorithms are applied. But we
also did not observe strong inconsistencies in this study.

Besides, we choose SIGLEC15 as a special case to discuss, due to
(1) its different behavior in Figure 1; (2) its weak changes in
correlation coefficient, as in Figure 2A; (3) its weak, yet
significant, correlation to all the immune checkpoints, as in
Figure 9C; (4) its unique behavior in SOM categorizations with
type-4,5,6 in Figure 10E. The investigation of SIGLEC15 as a
potential target in cancer immunotherapy, highlighted by Wang’s
insights (Wang et al., 2019; Sun et al., 2021), opens a promising
pathway for advancing diagnostic and therapeutic approaches in
COAD (Sun et al., 2021). We argue the role of SIGLEC15 could be
important in COAD and require further exploration in the future.

The integrated role of SIGLEC in immune cells, immune
checkpoints, and cancer pathways may be a key aspect of its
involvement in tumor immune regulation. SIGLEC’s ability to
activate Hormone ERE and MT cancer pathways suggests its
involvement in signaling pathways associated with cancer. This
activation may lead to promoting tumor cell proliferation, migration,
and survival, thus facilitating cancer development. The positive
correlation of SIGLEC with immune checkpoints indicates that
SIGLEC may co-regulate the tumor microenvironment with key
factors in immune regulation. This could involve SIGLEC
modulating immune evasion strategies. This integration could be
realized through SIGLEC-mediated cell signaling networks involving
multiple interconnected molecules and pathways. In summary,
SIGLEC, through its coordinated regulation of immune cells,
immune checkpoints, and cancer pathways, participates in immune
evasion and tumor development. These associations provide new
research directions for future immunotherapy and cancer biology
studies, offering clues to uncover the exact mechanisms of SIGLEC

in tumors. Further experimental validation and in-depth molecular
biology research are needed to unveil these complex immune
regulatory networks.

In the future with larger datasets and better data quality, we expect
other machine learning algorithms can play a more important role in a
similar analysis. For example, a larger dataset can enable us to further
use neural networks to connect SIGLEC with all kinds of features
explored in this work. By taking the partial derivative with the neural
network, we can directly get the sensitivity of those features to the
SIGLECs. This can open a window for finding the optimal biomarker
for different types of patients. Additionally, image processing tools such
as convolutional neural networks (CNN) can be used directly on the
cells (similar to Figure 11) to subtract more complicated information
beyond only the expressions of SIGLECs. The co-evolution between
amount (SIGLECs expressions, immune cell abundances, etc.) and
morphology (cell/structure shape) can be directly connected with such
advanced techniques.

5 Conclusion

In this work, we exploremultiple effects on how SIGLECs co-evolve
with COAD, in terms of expressions, prognostic behaviors, clinical
trends, enrichment analysis, immune mechanisms, etc. We find
SIGLEC family, especially SIGLEC-1,14,15 and CD22, are promising
tracers for COAD, while SIGLEC-1,15 and CD22 are identified as hub
genes. Beyond conventional single gene-feature analysis, we present
high-dimensional analysis with PCA, SOM, NN, LASSO and K-means.
We demonstrate PCA is a very powerful tool, which can subtract and
enhance essential biological information, especially in COADprognosis
and cancer stages. We visualize the different COAD patterns with SOM
and reveal the potential evolutional signals of COAD, which could
correspond to COAD subtypes. We emphasize its great potential in
finding the potential evolutional paths of COAD in the future with
larger datasets.
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