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Background: Neutrophil extracellular traps (NETs) cause delayed wound closed
up in type 2 diabetes mellitus (T2DM), but the specific regulatory mechanism of
NETs-related genes (NETs-RGs) in T2DM is unclear.

Methods: We acquired GSE21321 and GSE15932 datasets from gene expression
omnibus (GEO) database. First, differentially expressed genes (DEGs) between
T2DM and control samples of GSE21321 dataset were sifted out by differential
expression analysis. NETs scores were calculated for all samples in
GSE21321 dataset, and key module genes associated with NETs scores were
screened by constructing co-expression network. Then, DEGs and key module
genes were intersected to yield intersection genes, and candidate genes were
identified by constructing a protein protein interaction (PPI) network. Least
absolute shrinkage and selection operator (LASSO) regression analysis was
implemented on candidate genes to screen out diagnostic genes, and they
were subjected to single sample gene set enrichment analysis (ssGSEA).
Finally, immune characteristic analysis was carried out, and we constructed
the gene-drug and transcription factor (TF)-miRNA-mRNA networks. Besides,
we validated the expression of diagnostic genes by quantitative real-time
polymerase chain reaction (qRT-PCR).

Results: In total, 23 candidate genes were gained by PPI analysis. The 5 diagnostic
genes, namely, inter-trypsin inhibitor heavy chain 3 (ITIH3), fibroblast growth
factor 1 (FGF1), neuron cell adhesion molecule (NRCAM), advanced glycosylation
end-product-specific receptor (AGER), and calcium voltage-gated channel
subunit alpha1 C (CACNA1C), were identified via LASSO analysis, and they
were involved in carboxylic acid transport, axonogenesis, etc.
M2 Macrophage, Monocyte, Natural killer (NK) cell, and Myeloid dendritic cells
(DC) were remarkably different between T2DM and control samples. Diagnostic
genes had the strongest and the most significant positive correlation with B cells.
The gene-drug network included CACNA1C-Isradipine, CACNA1C-Benidipine
and other relationship pairs. Totally 76 nodes and 44 edges constituted the TF-
miRNA-mRNA network, including signal transducer and activator of transcription
1(STAT1) -hsa-miR-3170-AGER, CCCTC-binding factor (CTCF)-hsa-miR-455-
5p-CACNA1C, etc. Moreover, qRT-PCR suggested that the expression trends
of FGF1 and AGER were in keeping with the results of bioinformatic analysis.
FGF1 and AGER were markedly regulated downwards in the T2DM group.
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Conclusion: Through bioinformatic analysis, we identified NETs-related diagnostic
genes (ITIH3, FGF1, NRCAM, AGER, CACNA1C) in T2DM, and explored their
mechanism of action from different aspects, providing new ideas for the studies
related to diagnosis and treatment of T2DM.
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1 Introduction

With the progress of society, the incidence and prevalence of type
2 diabetes mellitus (T2DM) has sharply risen due to the change of
lifestyle, environmental pollution, mental stress and other factors, and
has become a serious global health problem. T2DM is caused by a
combination of genetic and environmental factors that affect the
metabolism of sugar, fat and protein. Extended lasting
hyperglycemia can cause multi-system harm to organs and tissues,
such as, eyes (Tan andWong, 2023), kidneys (Thipsawat, 2021), nerves
(Yang et al., 2022), heart and blood vessels (Marassi and Fadini, 2023).
The pathogenesis of T2DM is complex. There is research indicating a
certain correlation between T2DMandAlzheimer’s disease (Surguchov,
2020; Caveolin et al., 2020). We know that there are many tissues and
organs, such as pancreas, liver, muscle, kidney, heart, brain and adipose
tissue, are involved in regulating blood glucose metabolism. Although
there are many clinical hypoglycemic drugs that can bring many
benefits to patients, they still cannot prevent the emergence of
serious complications of T2DM, such as diabetic foot, diabetic
nephropathy, coronary heart disease, etc., which not only cause
patients great physical and psychological pain, but also a heavy
financial burden. Many studies have shown that T2DM is also
considered an autoimmune disease (Itariu and Stulnig, 2014; Wang
et al., 2023; Zhou et al., 2018). Including congenital immune response
deficits (neutrophils and macrophages dysfunction) and adaptive
immune response dysfunction (T cells) (Berbudi et al., 2020).
Chronic hyperglycemia increases levels of various chemokines like
monocyte chemokine protein-1 (MCP-1) and pro-inflammatory
cytokines such as Tumour Necrosis Factor alpha (TNF-α),
interleukin-1beta (IL-1β), and interleukin-6(IL-6) (Amorim et al.,
2023). These inflammatory factors can infiltrate macrophages in the
pancreas and adipose tissue, leading to insulin resistance and islet cell
dysfunction (Jo and Fang, 2021).

Neutrophil extracellular traps (NETs) are made up of filaments of
chromatin DNA coated with granular proteins that can be released by
neutrophils to trap microorganisms (Brinkmann and Zychlinsky, 2007;
Yang et al., 2020). NETs are part of the innate immune response, which
is beneficial to the human body, but in some cases, the disorder of NETs
can also cause pathological effects on the human body (Yang et al., 2020;
Papayannopoulos et al., 2010). The formation of NETs is due to the
induction of NETosis (inflammatory cell death mode of neutrophils)
under the stimulation of various pathogens, activated platelets,
chemokines, phorbol esters, etc., directly activating the protein
kinase C (PKC) and Raf-MEK-ERK-MAP kinase pathways (Reeves
et al., 2002; Smith et al., 2014). The activation ofMAP kinase will initiate
the formation of NADPH oxidase complex, rapidly generating reactive
oxygen species (ROS). Meanwhile, key proteins in NETosis, neutrophil
elastase (NE) and myeloperoxidase (MPO) (Parker and Winterbourn,
2012; Hawez et al., 2019), contribute to nuclear membrane permeability

and further development of chromatin; Peptidylarginine deiminase 4
(PAD4) modifies histones by converting arginine to citrulline, leading
to chromatin depolymerization (Lewis et al., 2015; Wang et al., 2009).
Chromatin is released outside the cell through membrane pores,
ultimately releasing DNA, citrulline histone (citH3), and other
intracellular particles to form a cell capture network. Owing to the
unspecific action of the emitted enzyme proteins, NETs may bring out
an unregulated inflammatory response leading to pathological changes
resulting in direct cell damage. NETs also recruit extra pro-
inflammatory cytokines, inducing the production of autoantibodies,
forming immune complexes, and causing tissue damage (Petretto et al.,
2019; Bruschi et al., 2020). NETs have been demonstrated to join in the
pathophysiological processes of various diseases, for instance
autoimmune diseases, cancer, chronic inflammation, delayed wound
healing (Liu et al., 2019; Hirota et al., 2020), etc. In recent years, relevant
literature has reported that NETs are related to the occurrence and
development of diabetic nephropathy, diabetic foot ulcers and diabetes-
related atherosclerotic diseases in diabetic cases (Xu et al., 2019;
Borissoff et al., 2013).However, the definite regulatory mechanism of
NETs-related genes (NETs-RGs) in T2DM remains indefinite.

In this study the relevant data sets of T2DM, including
GSE21321 and GSE15932, was obtained from the Gene Expression
Omnibus (GEO) database. NETs-RGs were drawn out from the
literature (Wu et al., 2022). Then the diagnostic genes were screened
through bioinformatic analyses such as differential expression analysis
and weighted gene co-expression network analysis (WGCNA) and least
absolute shrinkage and selection operator (LASSO) analysis. Moreover,
the gene set enrichment analysis (GSEA), immune profile analysis,
construction of the gene-drug network and transcription factor (TF)-
miRNA-mRNA network were also performed on diagnostic genes to
explore their mechanism of action in T2DM.This research is of great
significance for the diagnosis and treatment of T2DM.

2 Materials and methods

2.1 Sources of data

T2DM-related datasets, microarray and RNA-seq of GSE21321 and
GSE15932 were acquired from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/). Among them, GSE21321 contained blood samples
from 9T2DMand 8 control, andGSE15932 contained peripheral blood
samples from 8 T2DM and 8 control. The platform of GSE21321 was
GPL6883 Illumina HumanRef-8 v3.0 expression beadchip, and
GSE21321 was applied as training set. The platform of
GSE15932 was GPL570 [HG-U133 Plus 2] Affymetrix Human
Genome U133 Plus 2.0 Array, and GSE15932 was employed as
validation set to verify the expression of the diagnostic genes and
the diagnostic performance for the disease (Table 1). The 137 NETs-
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RGs were extracted from the literature (Supplementary Table S1) (Wu
et al., 2022).

2.2 Differential expression analysis
and WGCNA

In the GSE21321 dataset, the differentially expressed genes (DEGs)
between T2DM and control samples were sifted out by limma package
(version 3.46.0) (Wang et al., 2021) setting p < 0.05 and |log2FC| > 0.5.
Next, NETs scores were calculated for all samples in GSE21321 dataset
utilizing the GSVA package (version 1.38.2) (Su et al., 2022), and the
difference of NETs score between T2DM and control samples was
compared by rank sum test. Then, to screen for key module genes
associated with NETs scores, we constructed a co-expression network
usingWGCNA (Langfelder and Horvath, 2008). WGCNA serves as an
algorithmic approach tailored for scrutinizing gene expression patterns
across a multitude of samples. It possesses the ability to cluster genes
and erect modules predicated on akin gene expression patterns, all the
while scrutinizing the correlations between said modules and biological
traits. Firstly, the samples in the training set were clustered and outliers
were eliminated, then this network was constructed based on a soft
threshold of R2 over 0.85 and connectivity close to 0. The adjacency
matrix was then converted into the topological overlap matrix (TOM).
Subsequently, the similar genes were classified into different modules
based on dynamic tree cutting, and different colors were employed to
express different modules. The NETs score was treated as the trait,
Preason was then utilized to explore the correlation between these
modules and the traits (p < 0.05), and the most remarkably correlated
module was selected as the keymodule, and then the genes therein were
filtered according to |gene significance (GS)| > 0.6 and |module
membership (MM)| > 0.8) as key module genes.

2.3 Functional enrichment analysis of
intersected genes and framework of a
PPI network

We identified the intersection genes by intersecting differentially
expressed genes (DEGs) with key module genes. Subsequently, the
intersection genes were enrichment analysed using clusterProfiler
(version 4.4.4) (Yu et al., 2012) and org.Hs.eg.db (version 3.12.0)
(Lowe et al., 1986) packages to explore the pathways and functions
they were related to, encompassing gene ontology (GO) and kyoto
encyclopedia of genes and genomes (KEGG) (adj.p < 0.05). To
further understand the interaction relationships among intersection
genes, PPI network (Confidence = 0.4, the discrete proteins were
removed) of intersecting genes was constructed in the STRING
database (https://string-db.org) and set degree cutoff = 2, node score

cutoff = 0.2, k-core = 0.6, max. depth = 100 to screen
candidate genes.

2.4 Acquisition of diagnostic genes

First, in the GSE21321 dataset, LASSO analysis was
implemented on candidate genes to screen out diagnostic
genes, and we compared the expressions of diagnostic genes
between T2DM and control samples in training set and
validation set. Then, receiver operating characteristic (ROC)
curves were plotted utilizing the pROC package (version
1.17.0.1) (Robin et al., 2011), and area under the curve (AUC)
values were calculated to assess the diagnostic ability of
diagnostic genes for T2DM. Further, the nomogram
containing diagnostic genes was constructed using rms
package (version 6.2–0) (Liu T. T. et al., 2021) to predict risk
rates for T2DM, and its predictive value was assessed by ROC
curve. Similarly, the diagnostic performance of diagnostic genes
for T2DM was verified in the validation set. To probe the relevant
pathways involved in diagnostic genes, we conducted gene set
enrichment analysis (GSEA) on them by clusterProfiler package
(version 3.18.0) (Yu et al., 2012) based on the GO-Biological
process (BP) database.

2.5 Immune characteristic analysis

The study calculated the 10 immune cell proportions (scores) for
all samples utilizing the quantiseq algorithm of immunedeconv
(version 2.0.4). After that, the immune cell proportions were
compared between T2DM and control samples by rank sum test.
Eventually, spearman correlation analysis between among immune
cells, and diagnostic genes and immune cells were carried out.

2.6 Framework of gene-drug and TF-
miRNA-mRNA networks

In order to identify small-molecule compounds with potential
therapeutic effects on T2DM, we predicted the target drugs
associated with diagnostic genes via DrugBank database (https://
go.drugbank.com/), and constructed gene-drug network by
Cytoscape software. Then, TFs and target miRNAs of diagnostic
genes were predicted via NetworkAnalyst (https://www.
networkanalyst.ca/) and miRWalk (http://mirwalk.umm.uni-
heidelberg.de/) databases, respectively, the TF-mRNA and
miRNA-mRNA relationship pairs were merged to yield the TF-
miRNA-mRNA regulatory network.

TABLE 1 Information on the datasets used in this study.

Dataset T2DM Control Platform

GSE21321 9 8 GPL6883

GSE15932 8 8 GPL570
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FIGURE 1
Differential expression analysis and Weighted Gene Co-expression Network Analysis (WGCNA) in the GSE21321 dataset. (A, B) The volcano map (A)
and heatmap (B) of differentially expressed genes (DEGs) between type 2 diabetes mellitus (T2DM) and control samples. (C) Sample clustering and
phenotypic heatmap. (D) Selection of the optimal soft-thresholding (power). (E) Module clustering tree. (F) Heatmap of the relationships between gene
modules and NETs score. (G) Correlation between MEturquoise module gene and NETs scoring traits.
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2.7 Quantitative real-time polymerase chain
reaction (qRT-PCR)

We collected fresh blood samples of T2DM (n = 10) and control
(n = 10) groups from the central hospital of Taiyuan city. All
participants have signed informed consent forms and have been
agreed by the hospital ethics committee. The characteristic
information of these patients is in Supplementary Table S2. We

extracted 500 μL of frozen blood from the samples and added TRIzol
reagent to extract total RNA. Afterwards, 1 μL of RNAwas taken and
the concentration was measured using a nanophotometer N50.
Reverse transcription of mRNA was performed using Servicebio’s
Surscript First Strand cDNA Synthesis Kit. Dilute the reverse
transcription product cDNA with ddH2O without RNase/DNase
and perform qPCR reaction by diluting it to 5–20 times. GAPDH
serves as an internal reference. Eventually, compare the expression

FIGURE 2
Identification of intersected genes and functional enrichment analysis. (A) The venn diagram of intersection gene between DEGs and key module
genes in WGCNA. (B) The Gene Ontology (GO) terms enriched in intersected genes. (C) The Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways enriched in intersected genes. (D) The Protein Protein interaction (PPI) network of intersected genes between DEGs and key module genes. (E)
The interaction among 23 candidate genes.
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of diagnostic genes in T2DM and normal blood. The primer
sequence is shown in Supplementary Table S3.

2.8 Statistical analysis

In this study all bioinformatics analyses were conducted using
the R package. Differential expression analyses between T2DM and
controls were executed via the limma package. Co-expression
network construction utilised the WGCNA package. Enrichment
analyses were performed in clusterProfiler and org.Hs.eg.db
packages. ROC was plotted through pROC package. Nomograms
were constructed utilising the rms package. Immunological analysis
was implemented in immunedeconv. Differences between groups
were compared using wilcoxon test. If not otherwise specified, p <
0.05 indicates statistical significance.

3 Results

3.1 Identification of DEGs and key module

There were 671 DEGs between T2DM and control samples
(Figure 1A), and the heat map illustrated the top50 of them
(Figure 1B). As seen from the violin plot, the NETs score was
remarkably higher in T2DM samples than that in the control
samples (Supplementary Figure S1). In Figure 1C, it’s evident
that the clustering performance of the dataset samples was
remarkably strong, indicating no necessity for sample exclusion.
A soft threshold of 11 was applied to construct the scale-free
network when R2 was approximately 0.85 and the connectivity
was close to 0 (Figure 1D). Subsequently, genes were grouped into
11 modules (Figure 1E). Among which, MEturquoise
(Cor = −0.63 and p < 0.05) had the strongest correlation with
NETs score, so we treated it as the key module (Figure 1F).
MEturquoise module contained 3,368 key module genes (|GS| >
0.6 and |MM| > 0.8), and they were positively correlated with the
NETs score (Figure 1G).

3.2 Functional enrichment and PPI analyses
of intersection genes

DEGs and key module genes were intersected to yield
302 intersection genes (Figure 2A). GO items displayed that
these genes were enriched to cellular response to amyloid−beta,
growth factor activity, transporter complex and so on
(Figure 2B). KEGG pathways revealed that intersection genes
were primarily related to lipid and atherosclerosis, aldosterone
synthesis and secretion, Interleukin 17(IL−17) signaling
pathway, etc. (Figure 2C). A total of 165 nodes and 203 edges
constituted the PPI network, containing Interleukin 17 Receptor
E (IL17RE)-FAM92B, Brain-derived neurotrophic factor
(BDNF)- calcium voltage-gated channel subunit alpha1 C
(CACNA1C), peroxisome proliferator-activated receptor
gamma (PPARG)- Paired box protein 6(PAX6) and other
reciprocal relationship pairs (Figure 2D). After analyzing the

topological properties of the PPI network, we acquired
23 candidate genes, such as PPARG, acetyl-CoA synthetase 2
(ACSS2), Complement factor I (CFI) (Figure 2E;
Supplementary Table S4).

3.3 Excellent diagnostic power of diagnostic
genes for T2DM

The five diagnostic genes, namely, inter-trypsin inhibitor
heavy chain 3 (ITIH3), fibroblast growth factor 1 (FGF1),
neuron cell adhesion molecule (NRCAM), advanced
glycosylation end-product-specific receptor (AGER), and
CACNA1C, were identified when the lambda min = 0.0106 via
LASSO analysis (Figure 3A), and they were all downregulated in
T2DM samples of the GSE21321 dataset (Supplementary Figure
S2). Further,AUC values of ITIH3 (AUC = 0.833), FGF1 (AUC =
0.792), NRCAM (AUC = 0.847), AGER (AUC = 0.764), and
CACNA1C (AUC = 0.750) were all greater than 0.7, indicating
that diagnostic genes had strong diagnostic power for T2DM
(Figure 3B). The nomogram suggested that the diagnostic genes
had strong risk prediction ability for T2DM, and the results were
further validated by the ROC curve (AUC > 0.7) (Figures 3C,D).
Similarly, the diagnostic efficacy of diagnostic genes for T2DM
was validated in the validation set (Supplementary
Figures S3, S4).

3.4 Diagnostic genes were involved in
multiple pathways

We applied GSEA to further explore the biological pathways
that diagnostic genes were involved in T2DM, and found that all five
diagnostic genes were mainly associated with detection of
chemical stimulus, detection of chemical stimulus involved
in sensory perception, detection of chemical stimulus involved in
sensory perception of smell, detection of stimulus involved
in sensory perception, pattern specification process, sensory
perception of chemical stimulus and sensory perception of
smell (Figure 4). This suggests that these genes may
influence the onset and development of T2DM through
multiple pathways.

3.5 Immuno-infiltration analysis

From the box plot, it could be concluded that the proportion of
Neutrophil and Tregs in the samples were relatively high
(Figure 5A). M2 Macrophage, Monocyte, Natural killer (NK) cell,
and Myeloid dendritic cells (DC) were dramatically different
between T2DM and control samples (Figure 5B). The all
diagnostic genes had positive and the most significant correlation
with B cells (Figure 5C). Correlation analysis showed differences in
correlations among 9 immune cells, among them, Monocyte was
markedly positively correlated with Myeloid DC, while it was
remarkably negatively correlated with Regulatory T cells
(Tregs) (Figure 5D).
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FIGURE 3
Identification of diagnostic genes for T2DM. (A) The plot of gene coefficients and error plots for 10-fold cross-validation in least absolute shrinkage
and selection operator (LASSO) analysis. (B) The receiver operating characteristic (ROC) curves of diagnostic genes. AUC: area under the curve. (C)
Construction of the nomogram based on the diagnostic genes in the GSE21321 dataset. (D) The ROC curve of the nomogram.
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FIGURE 4
Gene Set Enrichment Analysis (GSEA) enrichment analysis of diagnostic genes. (A) AGER; (B) CACNA1C; (C) FGF1; (D) ITIH3; (E) NRCAM.
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FIGURE 5
Immune infiltration analysis. (A) The boxplot of immune cell composition in all samples. (B) Comparison of immune cell infiltration between T2DM
and control samples. ns, not significant; *p <0.05; **p < 0.01. (C) Relevance of diagnostic genes and immune cells. (D) The heatmap of correaltion analysis
among immune cells. *p < 0.05; **p < 0.01.
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3.6 Construction of gene-drug and TF-
miRNA-mRNA networks

The gene-drug network included CACNA1C-Isradipine,
CACNA1C-Benidipine, AGER-Pyridoxamine, ITIH3-Clozapine,
FGF1-Muparfostat and other relationship pairs (Figure 6A).
Figure 6B demonstrated the 2D structure of some drugs. A total
of 76 nodes and 44 edges constituted the TF-miRNA-mRNA
network, including signal transducer and activator of
transcription 1(STAT1)-hsa-miR-3170-AGER, CCCTC-binding
factor (CTCF)-hsa-miR-455-5p-CACNA1C, GA binding protein
transcription factor Alpha (GABPA) -hsa-miR-452-5p-NRCAM,
TEA domain transcription factor 3 (TEAD3)-hsa-miR-4749-3p-
ITIH3, ZFP2 zinc finger protein (ZFP2)-hsa-miR-4265-AGER
et al. (Figure 6C).

3.7 Validation of diagnostic genes
expressions by qRT-PCR

In comparison with the control group, FGF1 and AGER were
markedly regulated downwards in the T2DM group (Figure 7). The
expression trends of these two diagnostic genes were consistent with
the consequences of bioinformatic analysis.

4 Discussion

The pathogenesis of T2DM is multifaceted, primarily
characterized by insulin resistance and relative insulin
insufficiency. The greatest challenge in our treatment of T2DM
remains the significant harm caused by its complications. Immune

FIGURE 6
Exploration of potential regulatory mechanisms and drug prediction. (A) Construction of the drug-diagnostic gene network. (B) The 2D structure of
several drugs. (C) The interaction among transcription factors, microRNAs (miRNAs), and diagnostic genes. The red line graphic represents diagnostic
genes, green represents miRNAs, and orange represents lncRNAs.
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dysfunction is increasingly recognized as a fundamental
pathophysiological mechanism underlying both T2DM and its
chronic complications (Coope et al., 2016). Studies have
displayed that NETs have a crucial role in the initiation and
development of diabetes-associated atherosclerosis (AS) (Poznyak
et al., 2020), diabetic nephropathy (Zheng et al., 2022), diabetic
retinopathy (Magaña-Guerrero et al., 2023) and diabetic foot ulcer
(Yang et al., 2023). However, the pathogenesis of NETs and T2DM is
still not clear. Through bioinformatics analysis, this study
successfully identified and characterized NETs-RGs in T2DM.
The diagnostic genes ITIH3, FGF1, NRCAM, AGER, and
CACNA1C showed significant association with NETs in T2DM,
underscoring their potential as valuable biomarkers for diagnosing
T2DM. Furthermore, studies on their mechanisms using immune
infiltration analysis, enrichment analysis and regulatory network
analysis have provided important insights into the role of NETs-RGs
in T2DM. These findings present innovative ideas for the diagnosis
and treatment of T2DM patients.

FGF1 is involved in the regulation of glycolipidmetabolism. Studies
have shown that FGF1 reduces blood sugar by increasing insulin
sensitivity, providing a new approach for the treatment of metabolic
diseases like fatness, NAFLD and T2DM (Jonker et al., 2012; Suh et al.,
2014). It plays a role in coronary heart disease, myocardial ischemia,
nerve injury and wound healing (Li, 2019). FGF1 can enhance the
healing process of diabetic wounds (Liu Y. et al., 2021). In individuals
with diabetes, during the late stages of inflammation in injured tissue,
macrophages often remain in an inflammatory state, failing to
transition into a reparative phenotype. Consequently, they are
unable to secrete factors that facilitate tissue repair, hindering the
transition of the wound into the proliferation phase and leading to
the development of chronic inflammation (Boniakowski et al., 2018).
Our study showed that in contrast with the control group, the

proportion of neutrophils in T2DM was remarkably increased, and
the proportion of M2 macrophages was significantly reduced, thus
promoting the occurrence and development of inflammation. It was
also found that excessive neutrophils release NETs in diabetes tissue
damage. NETs can activate NLRP 3 inflammasomes in macrophages,
thereby releasing IL-1β. These inflammatory cytokines exist in diabetes
wounds for much longer than normal, which may prolong the
inflammatory phase and inhibit the formation of granulation tissue
(Liu et al., 2019). In this study, FGF1 was significantly downregulated in
both bioinformatics analysis and qRT-PCR validation in T2DM
patients, which may exacerbate abnormal glucose and lipid
metabolism and promote the occurrence and development of
diabetic complications and delayed wound healing. Therefore,
FGF1 may be a latent new aim for the treatment of insulin
resistance and T2DM in the future.

AGER is a highly polymorphic gene involved in multiple pathways,
such as nuclear factor (NF-κB), protein kinase B (AKT), p38 and
mitogen-activated protein (MAP) kinase, which are activated to cause
proinflammatory states in the body and may be linked to the growth
and development of human autoimmune diseases (Nienhuis et al.,
2009), diabetes complications, cancer (Malik et al., 2015), coronary
heart disease and lung disease. In this study, we found that intersection
genes are trapped in IL-17 signaling pathway, aldosterone synthesis and
secretion, cyclic adenosine monophosphate (cAMP), rat sarcoma
(RAS), phosphoinositide 3-kinase (PI3K) Akt and mitogen-activated
protein kinases (MAPK) signaling pathway, advanced glycation end
product (AGE)-receptor for AGE (RAGE) signaling pathway in
diabetes complications, which is consistent with literature results. In
patients with T2DM, prolonged hyperglycemia leads to the
accumulation of advanced glycation end products (AGEs). AGER
serves as a receptor for AGEs, initiating AGE-AGER interaction,
which in turn activates nuclear factor-kappaB (NF-κB). NF-κB

FIGURE 7
Validation of the expression levels of diagnostic genes. ns, not significant; *p < 0.05; **p < 0.01.
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activation triggers the transcription of various pro-inflammatory
cytokines such as IL-1α, IL-6, and TNF-α, as well as growth factors
and adhesionmolecules. This cascade promotes the production of ROS,
membrane oxidation, increasedmembrane permeability, and activation
of phospholipase A2 (PLA2). These events collectively contribute to the
onset and progression of vascular complications in diabetes (Yuan et al.,
2019; Rowisha et al., 2016). Research shows that (Schmidt, 2017), there
are significantly more macrophages in diabetes plaques, and the
expression of AGER is increased in monocytes/macrophages, the
key cells in atherosclerosis, so diabetes plaques show more
expression of AGER. This study demonstrated that the expression of
AGER in T2DM was lower than that in the control group, which may
be associated with the decrease of AGER expression due to the excessive
accumulation of AGEs caused by long-term hyperglycemia. Therefore,
AGER may get trapped in the occurrence and development of T2DM,
but its specific mechanism needs further exploration and research.

CACNA1C encodes the L-type voltage-dependent calcium
channel. Insulin secretion is regulated by two distinct phases:
early-phase secretion and late-phase secretion, each governed by
different regulatory mechanisms. Early-phase insulin secretion is
initiated by the uptake of glucose via glucose transporter (GLUT)
transporters. Subsequently, the activation of potassium channels
leads to the influx of Ca2+ through calcium channels, facilitating the
release of insulin stored in vesicles through exocytosis (Araki et al.,
2019). Glucose-stimulated insulin secretion (GSIS) of pancreatic
beta cells plays a key role in maintaining glucose homeostasis and
preventing hyperglycemia. It has been shown that Ca2+ flows
primarily into beta cells via L-type voltage-dependent Ca2+ (Ca
V) channels, which are necessary for GSIS (Dickerson et al., 2020).
This study revealed a significant decrease in the expression of
CACNA1C in T2DM patients compared to the control
group. This decrease in CACNA1C expression could potentially
impair early insulin secretion and GSIS, suggesting it may play a
crucial role in the pathogenesis of T2DM. Interestingly, inhibition of
excess Ca2+ inflow in pre-diabetic islets by the drug isradipine to
prevent Ca2+ induced hypersensitivity may be an option for early
intervention, at least to delay the onset of T2DM (Reinbothe et al.,
2013; Pĭtre et al., 1999).

In this study, M2 Macrophage, Monocyte, NK cell, Myeloid DC
were found to be significantly different between T2DM and control
samples. The positive correlation between diagnostic genes and
B cells was the strongest and most significant. T2DM is
recognized as a chronic low-grade inflammatory condition,
driven by the inflammatory activation of both recruited and
resident macrophages, known as the classical pathway. This
entails the infiltration and activation of macrophages within
adipose tissue, which is closely linked to insulin resistance
induced by obesity (Wang et al., 2023). Most metabolic organs
are made up of dense cells of the inborn and adaptive immune
systems. Macrophages play an important role in atherosclerosis (Si
et al., 2020). M2 Macrophages has anti-inflammatory and
immunomodulatory effects, which helps to promote tissue repair,
remodeling, healing, etc. (Li et al., 2022; Rayego-Mateos et al., 2022;
Arabpour et al., 2021). This study demonstrated a notable decrease
in M2 Macrophages in T2DM patients in comparison with control
group, which may be an important reason for delayed wound
healing in T2DM. Research has shown that hyperglycemia
accelerates the formation of AGEs. Compared with non-diabetes

plaques, diabetes plaques have significantly more macrophages. At
the same time, diabetes plaques show more expression of AGER
(especially in Macrophages). The interaction between AGEs and
AGER promotes the occurrence of inflammation and OS, leading to
the formation of foam cells in macrophages, which leads to the
occurrence and development of diabetes related atherosclerosis
(Schmidt, 2017). Therefore, studying the relationship between
T2DM and immune cells is particularly important. NK cells are
believed to be associated with T2DM by regulating systemic
inflammation (Caligiuri, 2008; Zitti and Bryceson, 2018). The
study reported that the NK cells contribute to inflammation and
insulin resistance induced by obesity (Theurich et al., 2017). The NK
cell activity of T2DM patients is significantly reduced and linearly
deteriorates with the degree of hyperglycemia, which in turn
disrupts the maintenance of the immune system (Dalmas, 2019).
This study demonstrated a notable decrease in NK cell levels among
T2DM patients, with consistent results across the board.
Consequently, comprehending the functional alterations of NK
cells presents novel avenues for addressing T2DM resulting
from obesity.

This study was conducted through DrugBank (https://go.
drugbank.com/) online databases predict targeted drugs related to
diagnostic genes. In our study, we found that Pyridoxamine was one
of the drugs searched for by AGER. Pyridoxamine is a derivative of
vitamin B6, an inhibitor of advanced glycation and lipid oxidation
end products. Studies have shown that pyridoxamine can inhibit the
kidney lesions caused by AGEs, and can also significantly reduce
plasma cholesterol, triglyceride, creatinine and urinary albumin in
diabetic rats, and reduce the content of skin collagen AGEs (Khalifah
et al., 1999). Muparfostat is also known as PI-88, an inhibitor of
heparinase (HPSE). HPSE is an endo-β-D-glucuronidase capable of
degrading heparan sulfate (HS). Studies have reported that the
increase of blood glucose can lead to the upregulation of HPSE
expression, and with the prolongation of diabetes, HPSE may cause
more serious damage to islet function (Simeonovic et al., 2013;
Dhounchak et al., 2021). At the same time, HS acts in the FGFs
signaling pathway. FGFRS mediates FGFs signal transduction
through heparan sulfate or Klotho-dependent ways. Long-term
hyperglycemia leads to the overexpression of HPSE and the
destruction of HS, which in turn affects the FGFs signaling
pathway and has a negative impact on blood glucose control
(Masola et al., 2011; Ferro et al., 2004). In the future, specific
studies can be conducted on the treatment of T2DM with
Pyridoxamine and Muparfostat.

In this study, the relationship between T2DM and NETs-RGs
was discussed through bioinformatics analysis, and five diagnostic
genes related to NETs were identified in T2DM, including ITIH3,
FGF1, NRCAM, AGER, and CACNA1C. The mechanism of action
of diagnostic genes on T2DM was also explored from different
perspectives. It provides a new way to study the diagnosis and
treatment of T2DM. However, the method of confidence generation
limited our ability to predict the TFs and related regulatory networks
of only five diagnostic genes using the online database. The
association between certain diagnostic genes, such as ITIH3 and
NRCAM, and diabetes remains understudied. Only FGF1 and
AGER genes were validated by qRT PCR in this study, while the
other three genes were not validated. This may be related to small
sample sizes, limited to specific populations, or possible biases
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during the validation process. As a result, the other three were not
validated successfully. The precise regulatory mechanisms of NETs-
RGs AGER, FGF1, and CACNA1C in T2DM have not been fully
elucidated. Moving forward, we will continue to closely monitor the
research progress concerning these diagnostic genes and their
roles in T2DM.
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