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Background: Preeclampsia (PE) is a global pregnancy concern, characterized by
hypertension with an unclear etiology. This study employs Mendelian
randomization (MR) and single-cell RNA sequencing (scRNA-seq) to clarify its
genetic and molecular roots, offering insights into diagnosis and
treatment avenues.

Methods: We integrated PE-specific genome-wide association study (GWAS)
data, expression and protein quantitative trait loci (eQTL and pQTL) data, and
single-cell data from peripheral blood mononuclear cells (PBMCs). We identified
highly variable genes using single-cell information and employed MR to
determine potential causality. We also combined pQTL and GWAS data,
discerned genes positively associated with PE through scRNA-seq, and
leveraged the Enrichr platform to unearth drug-gene interactions.

Results: Our scRNA-seq pinpointed notable cell type distribution variances,
especially in T helper cells (Th cells), between PE and control groups. We
unveiled 591 highly variable genes and 6 directly PE-associated genes.
Although MR revealed correlations with PE risk, pQTL analysis was
inconclusive due to data constraints. Using DSigDB, 93 potential therapeutic
agents, like Retinoic acid targeting core genes (IFITM3, NINJ1, COTL1, CD69, and
YWHAZ), emerged as prospective multi-target treatments.

Conclusion: Utilizing MR and scRNA-seq, this study underscores significant
cellular disparities, particularly in Th cells, and identifies crucial genes related
to PE. Despite some limitations, these genes have been revealed in PE’s
underlying mechanism. Potential therapeutic agents, such as Retinoic acid,
suggest promising treatment pathways.
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1 Introduction

Preeclampsia (PE) is a complex pregnancy-specific hypertensive
disorder that manifests after 20 weeks of gestation (Burton et al., 2019;
Aneman et al., 2020). It accounts for 4.6% of pregnancies worldwide
(Abalos et al., 2013), with its incidence sharply rising over the past 30 years
(Opichka et al., 2021). PE is characterized by hypertension, proteinuria,
andmulti-system involvement and can develop into complications such as
eclampsia or HELLP syndrome. PE not only impairs fetal brain
development, increasing the risk of intellectual disabilities, autism and
schizophrenia (Dachew et al., 2018;Ursini et al., 2018), but also contributes
to premature birth and fetal malformations (Weiler et al., 2011). Thus,
continuous research is essential to improve outcomes for affectedmothers
and their children (ACOG, 2019).

The etiology of PE is complex and remains not fully understood.
Previous studies have established associations between PE and factors such
as endothelial dysfunction, intravascular inflammation,
syncytiotrophoblast stress, placental aging, and the breakdown of
maternal-fetal immune tolerance (Johnsen et al., 2018). The pathogenic
mechanisms include failure of spiral artery remodeling (Staff et al., 2022),
imbalance of vascular endothelial growth factor and sFlt1 (Vieillefosse
et al., 2016), placental oxidative stress (Guerby et al., 2021), immune
dysregulation (Wang et al., 2013), and progressive deterioration that can
only be cured by delivery (Gestational Hypertension and Preeclampsia,
2020). A deeper understanding of how genetic factors contribute to PE is
essential for enhancing diagnosis and treatment levels.

Mendelian randomization (MR) is an innovative statistical
method that utilizes genetic variations as instrumental variables to
assess causal relationships between exposures and outcomes (Grover
et al., 2017).Mendelian principles of randomly assigning gene variants
during conception enable MR to effectively reduce confounding bias
and reverse causality, enhancing its utility for dissecting complex
genetic and environmental interactions in diseases (Verduijn et al.,
2010). Its inherent ability to reduce bias underscores its reliability and
critical role in the field of genetic epidemiology (Bowden andHolmes,
2019). In recent years, the application of MR has expanded into areas
such as the gut microbiome, the relationship between obesity and
female reproductive conditions, and the effects of antihypertensive
drugs on pregnancy-related diseases. For instance, a two-sample MR
study by Pengsheng Li and colleagues identified a causal relationship
between Bifidobacteria and the onset of preeclampsia-eclampsia
(Pengsheng et al., 2022); genetic analyses by Samvida S Venkatesh
et al. revealed heterogeneous associations between overall and central
obesity and risks of reproductive disorders (Samvida S et al., 2022);
research in the Mendelian randomization paradigm by Maddalena
Ardissino et al. suggested that the use of BBs can reduce birth weight,
while CCBs can decrease the risk of preeclampsia and eclampsia
without affecting the risk of gestational diabetes or birth weight
(Maddalena et al., 2022). These studies further demonstrate the
efficacy and broad applicability of the MR approach across
multiple fields.

Furthermore, single-cell RNA sequencing (scRNA-seq) permits
a detailed analysis of gene expression in individual cells, revealing
molecular heterogeneity (Tanay and Regev, 2017). Techniques
integrating scRNA-seq with Mendelian analysis have revealed
complex patterns of gene expression and genetics, allowing
researchers to identify gene loci that influence expression,
understand patterns of transgenerational inheritance, and

elucidate the molecular regulatory mechanisms underlying PE
(Visscher et al., 2017). In this study, we utilized MR methods,
tissue-specific quantitative trait loci (QTL) data, and scRNA-seq
to deeply explore the etiology and pathogenic mechanisms of PE.
Our findings highlighted the importance of core genes IFITM3,
NINJ1, COTL1, CD69, and YWHAZ in PE’s etiology and proposed
retinoic acid as a viable therapeutic candidate for PE, effectively
linking molecular discoveries to potential clinical treatments.

2 Methods

2.1 Study design

The effectiveness ofMR analysis is contingent upon three critical
assumptions. Firstly, the selected genetic variants must be
significantly associated with the exposure; secondly, these
variants, as instrumental variables, should not be associated with
confounding factors, ensuring their independence; finally, the
genetic variants should influence the outcome exclusively through
the exposure, without any horizontal pleiotropic effects. These
assumptions ensure the integrity and dependability of MR for
investigating causal inferences (Zheng et al., 2017). In this study,
we began by identifying genes with high variability via scRNA-seq.
We then utilized MR, using the expression quantitative trait loci
(eQTL) data of these genes as exposures and PE as the outcome to
identify relevant genes. Following this, we obtained protein
quantitative trait loci (pQTL) data for these identified genes and
performed additional MR analysis using the genome-wide
association study (GWAS) data related to PE. Finally, by
integrating single-cell sequencing data, we determined the cellular
distribution of the significant genes in relation to PE. The
experimental process was depicted in Figure 1.

Rationale for Selection of Genes and Cell Types: Genes with high
variability in scRNA-seq data were selected to capture those most
likely to exhibit significant associations with PE. This approach
focuses on identifying key players in the disease mechanism.
Similarly, specific cell types, particularly immune cells, were
targeted due to their known involvement in PE pathogenesis.

2.2 Source of PE GWAS data

We sourced the GWAS dataset pertinent to PE from the IEU
Open GWAS project (https://gwas.mrcieu.ac.uk/), designated with
the ID number ukb-b-13535. Assembled in 2018, this dataset
predominantly comprised genetic information from the European
demographic. It encompassed data from 1,864 individuals
diagnosed with PE and 461,069 controls. An extensive analysis
within this dataset scrutinized 9,851,867 single nucleotide
polymorphisms (SNPs), facilitating a comprehensive investigation
into the genetic determinants of PE.

2.3 Source of quantitative trait locus data

For the investigation of eQTLs in blood tissues, summary
statistics were acquired from the eQTLGen consortium (https://
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www.eqtlgen.org/cis-eqtls.html). Our analysis concentrated on cis-
eQTLs that exhibit a strong association with gene expression,
confined to a 1-Mb window flanking the coding sequences. The
dataset comprised data for 10,317 SNPs and gene expression levels
of 19,942 genes across the entire set of 31,684 blood samples that had
been sequenced (Võsa et al., 2021). Notably, eQTLGen did not
encompass variations associated with gene expression levels on the
X and Y chromosomes and mitochondrial DNA (mtDNA).

To delve into the complex relationships between plasma protein
levels and specific genetic loci, we employed a linear mixed model
for pQTL analysis. Linear mixed models not only revealed
associations between pQTL and protein levels but also took into
consideration potential confounding factors and correlations
between samples. Our data originated from the GWAS
conducted by Ferkingstad, E. et al., which studied plasma
proteins in 35,559 Icelanders and analyzed 4,907 aptamers (Mark
et al., 2009). The dataset was accessible at https://www.decode.com/
summarydata/.

2.4 Source of PE peripheral blood
mononuclear cell single-cell
sequencing data

In the methodology of this study, we referred to the dataset
GSE192693 from the GEO database. This dataset, compiled by HU J
et al., included scRNA-seq analysis of 80,429 cells from 6 patients

with PE and 4 healthy controls. It primarily encompassed various
immune cell subsets within peripheral blood mononuclear cells
(PBMCs), such as T cells, B cells, NK cells, and Myeloid cells.
Through our analysis, we aimed to explore the immunological
response patterns associated with PE throughout pregnancy and
compare them with those in a healthy control group. Our objective
was to delineate the immunological alterations and the underlying
mechanisms in PE, thereby laying the groundwork for further causal
inference and the development of potential therapeutic strategies.

2.5 Single-cell analysis of PE peripheral
mononuclear cells

Quality Control: We utilized R (v.4.1.2) and the Seurat package
(v.4.3.0) for scRNA-seq data analysis. Initial quality control filtered
out cells with gene detection counts outside the range of
200–10,000 and cells with mitochondrial genes exceeding 20% or
hemoglobin genes over 3%. These metrics were displayed through
violin plots. Normalization procedures included “LogNormalize”
and “SCTransform” methods, targeting 10,000 as a scaling factor.
Subsequently, the top 2,000 highly variable genes were identified for
principal component analysis (PCA) reduction. Clustering and
dimensionality reduction were performed using the UMAP
technique and the “FindClusters” function, respectively. For
marker gene expression, potential markers for each cell cluster
were identified using Seurat’s “FindAllMarkers” function. These

FIGURE 1
Overview of the MR Analysis Framework in This Study: The flow chart illustrates the step-by-step process through which the MR analysis was
systematically conducted in this research (eQTL: expression quantitative trait loci; GWAS: genome-wide association study; pQTL: protein quantitative
trait loci).
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genes, differentially expressed across clusters, were manually
reviewed for biological relevance and consistency with known
cell-type-specific markers, by referencing existing literature and
databases. This manual verification focused on genes with clear
expression patterns specific to cell clusters and known roles in cell
identity and function. This step validated the cell cluster labels
derived from statistical analysis, ensuring they accurately reflected
the distinct cell populations in PBMCs from PE patients
and controls.

Differential Gene Selection: In the process of analyzing
differentially expressed genes (DEGs), we employed the
“FindMarkers” function in Seurat for cell type-specific differential
expression analysis. This analysis utilized a two-sided Wilcoxon
rank-sum test to identify genes showing significant expression
differences when comparing 6 patients with PE to 4 healthy
controls, based on an adjusted p-value below 0.05 and an
absolute log2FC greater than 0.3.

2.6 Two-sample MR analysis

In our research methodology, we employed a MR approach to
investigate a possible causal relationship between the highly variable
genes screened at the single-cell level and the ukb-b-
13535 phenotype. Specifically, the MR method utilized genetic
variants strongly associated with exposure factors as instrumental
variables (IV), thereby evaluating the causal effect between exposure
factors and the study outcome. Utilizing MR enabled us to avoid
interference from common problems in traditional observational
studies, such as confounders, reverse causation, and
measurement errors.

To conduct the MR analysis, we first ensured consistency in
exposure and outcome data regarding reference alleles, effect alleles,
and direction, and made necessary adjustments. We then completed
matched reference and effect alleles during the SNPs selection phase.
By employing the primary MR analysis function of the
“GagnonMR” package, we conducted a detailed MR analysis for
each SNP-phenotype pair to discern the causal impact of the DEGs’
eQTLs on the ukb-b-13535 phenotype. Finally, we visualized the
DEGs with significant causal effects (p < 0.05) through forest plots
and bar graphs.

2.7 Statistical analysis

All analyses were performed using R (version 4.1.2, www.r-project.
org). For constructing MR estimates, we utilized the “TwoSampleMR” R
package (version 0.5.7) (Hemani et al., 2018). A suite of advanced MR
techniques—Inverse Variance Weighting (IVW), MR-Egger, Weighted
Median, and Mode-Based Estimation—were employed to rigorously
calculate effect sizes, standard errors, and P-values. We utilized
Seurat’s “FindMarkers” for cell-specific DEG analysis using a two-
sided Wilcoxon test. We assessed the statistical power of our MR
analyses by considering a comprehensive set of parameters: sample
size, a significance threshold of 0.05, the variance explained (R2) in
the exposure by the instrumental variables, and the case-control ratio,
while ensuring that the core assumptions of MR were met.

2.8 Drug-gene interactions reveal potential
therapeutic targets

The DSigDB was a comprehensive database encompassing
numerous drug-gene interactions and drug-effect signatures. We
utilized the online platform Enrichr (https://amp.pharm.mssm.edu/
Enrichr/) to access the DSigDB (Drug Signatures Database),
facilitating the identification of drugs potentially relevant to our
research targets. By comparing our experimental results with
DSigDB’s drug signatures, we were able to pinpoint promising
drug candidates for further study. Enrichr’s integration of various
drug-gene interaction databases significantly enhanced the
efficiency and accuracy of our analysis.

3 Results

3.1 Identification of 591 DEGs between
healthy controls and PE samples

In our study, scRNA-seq enabled the categorization of cells into
ten distinct types through detailed clustering and analysis of marker
gene expression. This approach effectively identified various
immune cell populations, such as T helper cells (Th cells),
Monocytes, and B cells, which were further depicted in the
UMAP plot (Figure 2). By leveraging these technologies, we
gained a comprehensive understanding of the immune landscape
in PE patients. We then investigated the immune profiles of patients
with PE in comparison to healthy subjects. Figure 3 showed that
individuals diagnosed with PE had increased proportions of
Monocytes, Th cells, and Plasmacytoid dendritic cells (pDCs)
compared to healthy subjects, while the abundance of B cells was
marginally reduced in the eclamptic cohort. Other immune cells,
including Natural killer cells, Cytotoxic T cells, Megakaryocytes,
Mast cells, and Plasma cells, showed no significant differences

FIGURE 2
Cluster annotation and cell type identification by means of
UMAP. All cells were classified into ten types and displayed across
two UMAPs.
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between the two groups, indicating that the immune cell
perturbations in PE were cell type-specific.

Based on this cell type categorization, our analysis revealed
591 genes with differential expression specifically related to these
cell types in PE patients compared to healthy controls, identified
based on stringent criteria: an adjusted p-value of less than
0.05 and an absolute average log2 fold change (avg log2FC)
greater than 0.3. These criteria ensured robust identification of
genes significantly altered in PE. For each cell type, we
highlighted the top five upregulated and bottom five
downregulated genes with the largest log2FC, each annotated

with its respective gene symbol (Figure 4). This detailed gene
profiling provided a clearer picture of the molecular mechanisms
underlying PE. These DEGs may provide insights into the
molecular mechanisms underlying PE, offering potential
targets for therapeutic intervention.

3.2 MR analysis of gene quantity trait loci

In exploring the pathogenic genes associated with PE, we applied
MR to integrate and analyze summary data from GWAS and eQTL

FIGURE 3
Cell type distribution in PE vs Healthy control samples. Each bar represents the percentage of cells within a sample. The orange bars denote the PE
samples, while the green bars represent the healthy controls. Data points overlaying the bars indicate the actual percentage values obtained from
cell counting.

FIGURE 4
Manhattan plot depicted 591 DEGs across nine cell types, contrasting healthy controls with PE samples, and highlighted the top five upregulated and
bottom five downregulated genes in each cell type (log2FC: log2 fold change).
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related to PE. MR analysis was employed to infer potential causal
relationships between gene expression and PE risk, minimizing
biases common in observational studies. This MR analysis aimed
to elucidate potential genetic contributors to the pathogenesis of PE
by examining the association between gene expression and disease
risk. For this analysis, we specifically focused on six genes: COTL1,
CD69, RBM39, NINJ1, IFITM3, and YWHAZ, selected based on
their significant differential expression in PE patients and their
potential roles in immune response and placental function. We
assessed their MR effect sizes (b), odds ratios (OR), 95% confidence
intervals (CI), and P-values (pval) (Figure 5).

Our analysis demonstrated that higher expression levels of
CD69, IFITM3, and YWHAZ were associated with a reduced risk
of PE, suggesting a protective effect against the disease. Conversely,
increased expression of COTL1, RBM39, and NINJ1 was correlated
with a heightened risk, indicating their potential roles in
exacerbating PE. These findings highlight the complex genetic
architecture of PE and underscore the importance of specific
genes in its pathogenesis.

3.3 MR analysis of pQTL

In our analysis, we explored protein-expression dynamics in PE
by examining cis-pQTL data from key genes, including COTL1,
RBM39, YWHAZ, and CD69. Protein-level analysis provides
another layer of insight into the biological processes involved in
PE. However, our MR analysis did not identify any causal
relationships. A potential reason for this could have been the
underutilization of the current pQTL dataset, with few identified
genetic variations closely related to protein levels in PE (Figure 6).
The lack of comprehensive pQTL data highlights a significant gap in
current research, emphasizing the need for more extensive datasets
to fully understand the protein-level changes in PE. This finding
underscored the need for more comprehensive pQTL data to
enhance our understanding of the molecular mechanisms
underlying PE.

3.4 Single-cell sequencing analysis to
determine gene distribution

To investigate the role of genes in PE within immune cells, single-
cell sequencing was utilized to evaluate gene expression in PBMCs, and
thefindingswere detailed in Figure 7. COTL1, a gene associatedwith PE
pathogenesis, showed significant overexpression in Monocytes,
Megakaryocytes, and Myeloid dendritic cells (mDCs) in the PE
group, indicating its substantial role in disease processes. In contrast,
RBM39, also implicated as a pathogenic gene, was predominantly
expressed in a variety of immune cells including Monocytes, Th
cells, NK cells, Tc cells, B cells, mDCs, and pDCs in healthy
individuals, suggesting its regulatory function in immune
homeostasis, which might have been disrupted in PE. Similarly,
NINJ1, identified as pathogenic, was found to have had increased
expression in Monocytes in the PE group, suggesting a potential
monocyte-centric mechanism in the disease. The consistent
expression of non-pathogenic genes CD69 and IFITM3 in both PE
and healthy cohorts indicated a baseline immune activation, while
YWHAZ, also non-pathogenic, was specifically identified in
Megakaryocytes within the healthy group. These distinct expression
patterns of pathogenic and non-pathogenic genes in various immune
cells emphasize their differential roles in the immune response and the
progression of PE. The distinct expression patterns of these genes in
various immune cells underscored their potential roles in the
dysregulated immune response observed in PE.

3.5 Predictive drugs for pathogenic genes

In our comprehensive analysis using DSigDB, we identified
93 drugs with therapeutic potential for PE, as listed in
Supplementary Table S1. Among these, Retinoic acid was selected
for focused discussion. Retinoic acid, known as a metabolite of
Vitamin A, played a crucial role in immune regulation and cellular
differentiation, both of which were vital in the development of PE
(Pawlikowski et al., 2000; Rajakumar et al., 2020). Research revealed that

FIGURE 5
MR results between blood tissue gene expression and the risk of PE onset. The symbol “b” denotes the effect size (β) of the variant site on mRNA
expression. A β > 0 indicates a positive correlation, whereas β < 0 indicates a negative correlation. The odds ratio (OR) is computed from the causal
estimate of the expected value (β coefficient). The 95% confidence interval (95CI) is calculated using β and the standard error (SE).
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the modulation of immune responses and placental development by
Retinoic acid was essential in PE, with abnormalities in its signaling
pathways leading to immune dysregulation and affecting key genes like
IFITM3, NINJ1, COTL1, CD69, and YWHAZ. These insights suggest
that Retinoic acid could be a promising therapeutic candidate for PE,
warranting further investigation in clinical settings. Our analysis found
that these genes were significant in the pathogenesis of PE. The ability of
Retinoic acid to influence the expression of these genes aligned with our
findings and highlighted its potential utility inmodulating key aspects of
PE pathogenesis.

4 Discussion

In this study, we embarked on a systematic analysis of immune
cell subgroups within PBMCs by employing scRNA-seq data

sequencing technology, aiming to elucidate the molecular and
cellular-level characteristics of PE. This investigation identified
10 major immune cell subgroups and revealed 6 genes
significantly associated with PE: COTL1, CD69, RBM39, NINJ1,
IFITM3, and YWHAZ. The expression patterns of these genes
within specific cell subgroups underscored their potential central
roles in the pathological processes of PE. Notably, the expressions of
CD69 and COTL1 were correlated with a decrease and increase in
the risk of PE, respectively. Furthermore, MR analysis and
differential expression detection reinforced these findings. Our
results proposed retinoic acid as a viable therapeutic candidate
for PE, effectively linking molecular discoveries to potential
clinical treatments.

The precise etiology and pathogenesis of PE remained not fully
understood, though some factors related to its development had
been identified. Due to this uncertainty, its prevention and treatment

FIGURE 6
Illustrates the MRresults correlating blood tissue protein expression with the risk of PE onset. “Exposure” refers to the protein name, and “Method”
indicates the specific statistical or computational method utilized. The variable “b” represents the effect size (β) of the variant site on mRNA expression,
with β > 0 indicating a positive correlation and β < 0 a negative correlation. The Odds Ratio (OR) and its 95% confidence interval (OR_95CI) are derived
from the causal estimate of the expected value (β coefficient), with the 95CI computed using β and the standard error (se). The p-value (Pval) is
included as a measure for statistical hypothesis testing.

FIGURE 7
Single-cell sequencing to determine gene cell distribution. The figure presented a dot plot that depicted differential gene expression in various cell
types between preeclampsia and healthy control samples. Each row represented a specific gene, and columns corresponded to cell types such as
Monocytes, T Cells, and B Cells. Dot sizes indicated the percentage of cells expressing each gene, while color intensity reflected the average
expression level.

Frontiers in Genetics frontiersin.org07

Zhong et al. 10.3389/fgene.2024.1372164

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1372164


strategies continued to be debated (Ives et al., 2020). In our study, we
identified various cell types in PE through scRNA-seq, including Th
cells, Monocytes, Megakaryocytes, etc. Particularly noteworthy was
the largest proportion of Th cells in our samples. Existing studies
had suggested that PE patients might alter the normal T-lymphocyte
response, especially the ratio increase of Th1/Th2 lymphocytes, with
Th1 cell totals similar to non-pregnant women and a cytokine profile
leaning towards pro-inflammatory cytokines like IFNγ and IL-4
(Hashemi et al., 2017). Concurrently, regulatory T cell numbers had
also been reduced in the placental bed and chorionic membrane of
PE patients (Boij et al., 1989). Moreover, in the process of
Megakaryocyte formation and platelet homeostasis in preterm
infants born to PE patients, soluble FMS-like tyrosine kinase 1
(sFlt1) had been found to play a crucial role (Yang et al., 2016). The
proportion of CD14+ Monocytes also increased in women in the
prepartum or postpartum period of PE (Brien et al., 2019), further
emphasizing the key role of Monocytes as the most common cell
type in the circulating immune system in the disease. Our research,
through analysis down to the single-cell level, had confirmed many
previous perspectives regarding PE-related cellular immune
responses and further revealed the functions and roles of these
immune cells in PE.

By integrating the MR method with GWAS and expression eQTL
analysis in PE, we confirmed six genes significantly associated with PE:
COTL1, CD69, RBM39, NINJ1, IFITM3, and YWHAZ. Specifically, the
expressions of CD69, IFITM3, and YWHAZ were negatively correlated
with the risk of PE. The suppressive function of CD69 gene had been
observed in TH17-mediated immune responses (Martín et al., 2010),
possibly explaining its role in reducing the risk of PE. The IFITM3 gene
was involved in cell adhesion, migration, proliferation, and immune
response (Siegrist et al., 2011), consistent with previous research on the
regulation of cell adhesionmolecules in PE pathophysiology (Jung et al.,
2022). Furthermore, the YWHAZ gene, related to cell cycle and
proliferation regulation (Zhao et al., 2018), might have revealed its
precise role in the disease mechanism in connection with PE’s cell cycle
abnormalities and trophoblastic cell over-proliferation (Fishel Bartal
and Sibai, 2022), offering intriguing perspectives for future research.

In contrast to the genes CD69, IFITM3, and YWHAZ, the
expression levels of COTL1, RBM39, and NINJ1 were positively
correlated with the risk of PE. The COTL1 gene encoded an essential
actin-binding protein, playing a critical role in maintaining cell
morphology and regulating vascular structure function (Xia et al.,
2018). Changes in vasculature and inflammatory response in PE
pathophysiology (Erez et al., 2022) might have been associated with
COTL1 gene functional modulation, potentially linking it closely to
vascular structure maintenance and inflammatory response
regulation in PE. RBM39 was involved in transcription co-
regulation and alternative RNA splicing, having core functions in
various biological processes like vascular function, immune
response, and cell signaling. Existing research had revealed
possible associations between PE and abnormal HLA-G
expression and RNA splicing (Djurisic et al., 2015), hence
RBM39 might have been related to the complex pathophysiology
of PE. The NINJ1 gene encoded a neural protein essential in
controlling cell proliferation, migration, and invasion, especially
in trophoblastic cells, where its knockdown might have promoted
these processes but inhibited apoptosis (Zhang et al., 2022).
Trophoblastic cells played a key role in placental development,

and controlling their proliferation and migration was vital for
pregnancy health (Marsh et al., 2022). PE was associated with
placental dysfunction, and abnormal proliferation, migration, and
apoptosis of the placenta were intimately related to disease
processes. Therefore, NINJ1 might have had a direct association
with the onset and development of PE, and its knockdown in
trophoblastic cells might have triggered placental abnormalities,
disrupted normal oxygen and nutrient supply, and induced
clinical manifestations of PE. It was important to emphasize that
these gene associations with PE risk do not necessarily imply
causality. It was important to emphasize that these gene
associations with PE risk do not necessarily imply causality.
However, by analyzing these genes’ functions in cellular
processes, we could unveil potential biological pathways, laying
the groundwork for a deeper understanding of the pathogenic
mechanisms of PE as well as potential intervention strategies.

eQTL and pQTL analyses were two distinct methods targeting
gene expression and protein levels, respectively. Although both could
be utilized to detect associations between specific gene variants and
phenotypes, inconsistencies might have arisen due to their
involvement in different biological processes and analytical scopes
(Wei et al., 2023). While extracting corresponding cis-pQTL data
from previously identified eQTL-positive genes, we found no evidence
of causality. This inconsistency might have stemmed from eQTL
analysis focusing on changes at the mRNA level, while pQTL analysis
was influenced by post-transcriptional modifications, degradation,
and other processes. Some post-transcriptional modification
processes might have altered the efficiency with which mRNA was
translated into protein, resulting in unobservable effects at the protein
level (Li et al., 2023). Additionally, sample heterogeneity might also
have led to inconsistencies between eQTL and pQTL analyses, as
different samples exhibited biological and environmental variations
(Wang et al., 2020). Therefore, such inconsistencies might reflect the
complexity and multi-layered regulation of biological systems.

In our study, retinoic acid had attracted significant attention due
to its potential interactions with several key genes. Combining
existing literature, the relationship between retinoic acid and PE
was particularly noteworthy. Prior research had emphasized the role
of cell differentiation and growth in the mechanisms of PE (Xu et al.,
2020), suggesting that genes regulated by retinoic acid might have
been involved in PE development. Retinoic acid’s modulation of
these genes could have offered novel avenues for the treatment and
prevention of PE. For instance, IFITM3, a member of the IFITM
family, participated in adaptive immunity (Yánez et al., 2020), while
CD69 regulated immunity through Th/Treg cell balance (Gorabi
et al., 2020). Recent studies had highlighted the association between
aberrant immune responses, including adaptive and innate
immunity, and PE (Lu and Hu, 2019). IFITM3 might have
influenced PE through adaptive immune modulation, and CD69’s
Treg balance mechanism could have been implicated in PE
pathophysiology. By modulating these genes, retinoic acid could
have engaged in immune regulation, potentially mitigating the risk
of PE—an enticing hypothesis. However, while our study had
offered promising preliminary insights, elucidating the precise
mechanisms and potential therapeutic applications of retinoic
acid in PE necessitated further in vitro and in vivo investigations.

The experiment had presented multiple advantages, primarily
the ability of MR to mitigate many confounders inherent in
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observational studies due to the random genetic allocation at
conception (Bowden and Holmes, 2019). Additionally, combining
MR with single-cell data had offered insights into potential causal
genetic-phenotypic relationships at the cellular level (Ziegenhain
et al., 2017). The amalgamation of eQTL, pQTL, GWAS, and
scRNA-seq data had further enhanced multi-faceted analyses.
Nevertheless, certain limitations were evident. The analysis had
predominantly targeted blood tissue expressions, potentially
overlooking variations in other PE patient tissues. Its sole
reliance on European population genetic datasets might have
narrowed its inferential scope, and the exclusive use of summary
statistics could have limited deeper exploration of specific causal
relationships, such as differentiating early from late-onset PE or
investigating non-linear associations. Furthermore, potential
sources of bias or confounding in the MR analysis and the
generalizability of the findings to other populations or ethnic
groups should be discussed in more detail to provide a more
comprehensive understanding of the study’s limitations.

5 Conclusion

Utilizing both MR and scRNA-seq techniques, this study
highlighted significant cellular differences, especially within Th cells,
and pinpointed IFITM3, NINJ1, COTL1, CD69, and YWHAZ as key
genes implicated in PE’s pathogenesis. Despite certain limitations, these
identified genes offered insight into PE’s fundamental mechanisms.
Retinoic acid emerged as a potential therapeutic intervention,
presenting promising avenues for treatment. Future research should
validate these findings across diverse populations and explore the
therapeutic potential of identified targets.
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