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In recent years, many excellent computational models have emerged inmicrobe-
drug association prediction, but their performance still has room for
improvement. This paper proposed the OGNNMDA framework, which applied
an ordered message-passing mechanism to distinguish the different neighbor
information in each message propagation layer, and it achieved a better
embedding ability through deeper network layers. Firstly, the method
calculates four similarity matrices based on microbe functional similarity, drug
chemical structure similarity, and their respective Gaussian interaction profile
kernel similarity. After integrating these similarity matrices, it concatenates the
integrated similarity matrix with the known association matrix to obtain the
microbe-drug heterogeneous matrix. Secondly, it uses a multi-layer ordered
message-passing graph neural network encoder to encode the heterogeneous
network and the known association information adjacency matrix, thereby
obtaining the final embedding features of the microbe-drugs. Finally, it inputs
the embedding features into the bilinear decoder to get the final prediction
results. The OGNNMDA method performed comparative experiments, ablation
experiments, and case studies on the aBiofilm, MDAD and DrugVirus datasets
using 5-fold cross-validation. The experimental results showed that OGNNMDA
showed the strongest prediction performance on aBiofilm and MDAD and
obtained sub-optimal results on DrugVirus. In addition, the case studies on
well-known drugs and microbes also support the effectiveness of the
OGNNMDA method. Source codes and data are available at: https://github.
com/yyzg/OGNNMDA.
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1 Introduction

The human microbiome consists of trillions of microbes that reside inside and outside
the human body, and these microbes play an essential role in maintaining the overall health
of the human body (Ogunrinola et al., 2020). The host-microbe plays a crucial role in several
physiological processes in the human body, such as energy collection and storage (Amato
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et al., 2019), facilitating carbohydrate absorption, and protecting the
body from foreign microorganisms and pathogens (Hajiagha et al.,
2022). Moreover, the changes in microbiota composition can
significantly affect human health Kim et al. (2018); Partula et al.
(2019); Catinean et al. (2018). Many studies have shown that the
dysbiosis or unbalance of microbiota is closely related to disease, and
the microbiota is an important causative factor for many diseases.
Therefore, microbes are considered new therapeutic targets for
precision medicine (Cullin et al., 2021), and the research on the
relationship between microbes and drugs not only aids in drug
development but also the diagnosis and treatment of human
diseases. However, the popularization and widespread use of
antibiotics in modern medicine have led to the emergence of an
increasing number of drug-resistant microbes, which seriously
threaten human health (Pugazhendhi et al., 2020). Although
many researchers have provided extensive evidence on the
association between microbes and drugs, traditional biomedical
experiments are time-consuming, labor-intensive, and costly
(Paul et al., 2010). These reasons hinder the efficiency of drug
development and hardly satisfy the massive demands for novel
drugs. Therefore, it is necessary to explore the microbe-drug
associations at a large-scale level for drug development.

To overcome the above challenges, computational models have
emerged as an effective method for identifying microbe-drug
associations, and these models are used to predict microbe-drug
associations by integrating different genomic information, including
genomics, macro genomics, and metabolomics. With the rapid
development of high-throughput sequencing technology and
advanced genomics techniques, the research on microbe-drug
association prediction has developed rapidly, generating a large
amount of valuable research data. To further investigate the
potential association between microbes and drugs, a series of
microbe-drug association databases have been constructed in
recent years, such as aBiofilm (Rajput et al., 2018), MDAD (Sun
et al., 2018) and DrugVirus (Andersen et al., 2020), which have
immensely promoted the development of microbe-drug association
prediction models. Over the past few years, many computational
models have emerged that utilize the above databases to infer
potential associations between microbes and drugs. As an
illustration, Zhu et al. proposed a computational method,
HMDAKATZ, which applied the KATZ measure to predict
inherent associations between microbes and drugs (Zhu et al.,
2019b). Long et al. (2020) proposed a computational method
called GCNMDA, which combined graph convolutional networks
(GCNs) and conditional random fields (CRFs) with an attentional
mechanism aiming to identify the hidden associations between
microbes and drugs. In 2021, GATMDA was proposed, which
utilized inductive matrix completion and graph attention
networks (GNNs) to predict associations between microbes and
diseases (Long et al., 2021). The Graph2MDA model combined the
constructed multimodal attribute graphs and variational graph
autoencoder (VGAE) to predict microbe-drug associations
accurately (Deng et al., 2022). GSAMDA is likewise a microbe-
drug association prediction model, which primarily applies graph
attention networks (GATs) and sparse autoencoders (Tan et al.,
2022). The computational model NIRBMMDA (Cheng et al., 2022)
combines neighborhood-based inference (NI) and restricted
Boltzmann machine (RBM) methodologies to predict Microbe-

Drug Associations (MDA). By leveraging NI, it extracts
proximity information from microbes or drugs, while RBM is
used to learn the latent probability distribution inherent in the
known association data. This integrative approach harnesses the
strengths of both components, resulting in a more robust predictive
framework. In the study of Tian et al. (2023), they proposed the
SCSMDA model, which was based on GCN and integrated
structure-enhanced contrast learning and self-paced negative
sampling strategies to improve the accuracy in microbe-drug
association prediction. In addition, the GACNNMDA model
integrated a GTA-based autoencoder and a CNN-based classifier,
which transforms multiple attribute combinations of the microbes
and drugs into two feature matrices to predict the associations of the
microbes and drugs (Ma et al., 2023). Qu et al. (2023) proposed
MHBVDA to predicts virus-drug associations by integrating
multiple biological data sources and employing integrating two
matrix decomposition-based methods. And it innovatively applies
Bounded Nuclear Norm Regularization (BNNR) with regularization
terms to mitigate the impact of noisy data and overfitting issues,
thereby enhancing prediction accuracy. However, these methods
based on graph neural networks still have room for improvement in
prediction performance. When multi-layer networks are stacked,
there is some confusion between different orders of neighborhood
information, the node representations become indistinguishable,
and the network performance decreases, which tends to prevent
GNN with multiple layers from effectively utilizing the higher-order
neighborhood information (Li et al., 2018).

Therefore, to achieve better prediction performance, inspired by
the work of Song et al. (2023), this paper proposed an ordered gating
mechanism-based ordered message-passing GNN method to infer
potential microbe-drug associations, called OGNNMDA. In
OGNNMDA, the known association data are preprocessed to
compute Gaussian interaction profile kernel similarity and
additional biomedical information similarity (microbe functional
similarity, drug structural similarity) for drugs and microbes,
respectively. Then, the multiple similarity matrices are fused and
stitched together to obtain the heterogeneous networks. The
heterogeneous network was fed into the encoder consisting of the
two-layer fully connected network and the 12-layer ordered
message-passing GNN to derive embedding representations of
the drugs and microbes, respectively. Finally, the bilinear decoder
was adopted to reconstruct the microbe-drug association matrix to
infer possible associations between the microbes and drugs.
Furthermore, to evaluate the predictive performance of
OGNNMDA, in-depth comparative experiments, ablation
experiments, and case studies are conducted in this paper. The
results demonstrate that OGNNMDA outperforms current
representative existing methods and achieves satisfactory results
in potential drug-microbe association prediction.

TABLE 1 Statistical information about the datasets.

Dataset Drugs Microbes Associations

aBiofilm 1740 140 2,884

MDAD 1,373 173 2,470

DrugVirus 175 95 933
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2 Datasets

All the aBiofilm, MDAD and DrugVirus datasets provide
important insights into the complex interactions between the drugs
and the microbes, providing researchers in the fields of bioinformatics
and graphical neural networks with a wealth of information to analyze
and utilize to advance their studies and methods. The basic statistical
information of the three datasets is presented in Table 1.

2.1 aBiofilm

In 2018, Rajput et al. introduced the aBiofilm (http://bioinfo.
imtech.res.in/manojk/abiofilm/) dataset, which is of great
significance for the development of the bioinformatics and graph
neural network fields (Rajput et al., 2018). Over the last
three decades, many anti-biofilm agents have been experimentally
verified to disrupt biofilms. aBiofilm organizes these data, which

FIGURE 1
Flowchart of the OGNNMDA.

FIGURE 2
Taking a two-layer GNN as an example, layer 0 represents the initial node embedding, and the adjacency of nodes between layers forms multiple
trees. In the figure, u is a neighbor node of v. N(2)

v and N(1)
u are shown in the image with two colors respectively. The right side shows the tree structure of

neighbor information with v node as the viewpoint, and the arrow represents the direction of neighbor information transfer.
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contain a database, a predictor, and a data visualization module. The
database contains biological, chemical, and structural details of
5,027 anti-biofilm agents (1720 different ones) reported from
1988 to 2017. After eliminating redundant associations among
them, a total of 2,884 known interaction associations of
1720 drugs and 140 microbes were finally obtained.

2.2 MDAD

MDAD (https://github.com/Sun-Yazhou/MDAD/) is also a
valuable microbe-drug association dataset, which was proposed
by Sun et al. based on a variety of drug-related databases as well as
a large amount of literature (Sun et al., 2018). Specifically, MDAD
contains 5,505 associations between 180 microbes and
1,388 drugs collected from 993 documentation. After filtering
out redundant information, a total of 2,470 microbe-drug
associations were obtained, involving 173 microbes
and 1,373 drugs.

2.3 DrugVirus

DrugVirus (https://drugvirus.info/) compiles interactions
involving 118 virus-targeting drugs and 83 human viruses,
encompassing SARS-CoV-2 (2019-nCoV) (Andersen et al., 2020).
Building upon this foundation, Lond et al. systematically extracted
and curated 57 drug-virus associations from pertinent drug
databases and scholarly publications, which involved 76 unique
drugs and 12 distinct viruses. Ultimately, they assembled a dataset
comprising 175 drugs and 95 viruses, yielding a total of
933 documented drug-virus interaction records.

3 Preprocessing

In this section, firstly, the definition of the association
adjacency matrix is given, secondly, the similarity calculation
of drugs and microbe based on the adjacency matrix is given, and
finally, the heterogeneous network is obtained based on multiple
similarities.

For simplicity, for each dataset, let D � d1, d2, . . . , dNd{ }
denote the set of different drugs, and M � m1, m2, . . . , mNm{ }
denote the set of different microbes. Therefore, a primitive
known microbe-drug association network Net � D ∪ M, E{ }
can be constructed: for each given drug di(1≤ i≤Nd) and
microbe mj(1≤ j≤Nm) there exists a unique edge
corresponding to it in E if and only if there is a known
association between them. Based on the above definition, the
adjacency matrix A ∈ RNd×Nm can be obtained as shown in Eq. 1.

Ai,j � 1 if drug di andmicrobemj has interaction association,
0 otherwise

{
(1)

That is, for any given di(1≤ i≤Nd) and mj(1≤ j≤Nm), there is
Ai,j = 1 if and only if there is an edge between them in E.
Otherwise, Ai,j = 0.

3.1 Constructing drug-drug
similarity networks

First, considering that the functions of drugs are determined by
their microstructures, and drugs with similar structures have similar
chemical properties. So, the SIMCOMP2 tool based on the
maximum common substructure between drugs is used in this
paper to calculate the drug structure similarity (Hattori et al.,
2010). For two drugs di and dj respectively, their structure-based
similarity can be expressed as DSS(di, dj). After calculating all the
similarities between all drug pairs, an Nd × NdmatrixDSS ∈ RNd×Nd

can be obtained to represent the chemical structure similarities
between Nd different drugs.

Next, for any two given drugs or microbes, the Gaussian
interaction profile kernel similarity between them is calculated
herein by utilizing a Gaussian kernel function based on known
microbe disease associations as shown in Eq. 2:

DGS di, dj( ) � exp −γd A i, :( ) − A j, :( )				 				2( ) (2)

where A (i, :) and A (j, :) denote the ith and jth rows of the adjacency
matrix A, respectively, and γd denotes the drug-normalized kernel
bandwidth, which can be calculated by Eq. 3.

γd �
1

1
Nd
∑Nd

i�1 A i, :( )‖ ‖2( ) (3)

3.2 Constructing microbe-microbe
similarity networks

Also, this paper measures microbe similarity in two ways. The
first one is the functional similarity of microbe proposed by
Kamneva (2017). This computational method is mainly based on
the microbial gene family information kernel protein-protein
interaction association network. The second similarity between
microbes is the Gaussian interaction profile kernel similarity
MGS. similar to the drug similarity based on the Gaussian
interaction profile kernel, for any given microbe pair mi and mj,
it is computed using the Gaussian kernel function based on the
known microbe drug associations as shown in Eq. 4.

MGS mi,mj( ) � exp −γm A : , i( ) − A : , j( )				 				2( ) (4)

where A (:, i) and A (:, j) denote the ith and jth columns of the
adjacency matrix A, respectively, and γm denotes the microbe
normalized kernel bandwidth that can be computed according to
Eq. 5.

γm � 1
1

Nm
∑Nm

i�1 A : , i( )‖ ‖2( ) (5)

3.3 Constructing the
heterogeneous network

Considering that not all drugs have their structures retrieved
from databases, it is not possible to obtain all chemical structure
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similarities between drugs lacking structural information and other
drugs. Therefore, in this paper, a comprehensive similarity is
constructed to estimate the similarity between drugs and
microbes by integrating Gaussian interaction profile nuclear
similarity, microbe functional similarity, and drug chemical
structure similarity. Specifically, for any two given drugs di and
dj, the integrated similarity between them is calculated as shown in
Eq. 6:

DS di, dj( ) �
1
2

DSS di, dj( ) +DGS di, dj( )( ) if DSS di, dj( ) ≠ 0,

DGS di, dj( ) otherwise

⎧⎪⎪⎨⎪⎪⎩
(6)

In addition, for any given microbe pair mi and mj, the combined
similarity between them is calculated as shown in Eq. 7:

MS mi,mj( ) �
1
2

MFS mi,mj( ) +MGS mi,mj( )( ) if MFS mi, mj( ) ≠ 0,

MGS mi, mj( ) otherwise

⎧⎪⎪⎨⎪⎪⎩
(7)

Then, the heterogeneous network H ∈ R(Nd+Nm)×(Nd+Nm), shown in
Eq. 8, can be constructed by combining the above integrated
microbe similarity network DS ∈ RNd×Nd , the integrated disease
similarity network MS ∈ RNm×Nm and the known drug-microbe
association network A ∈ RNd×Nm .

H � DS A
AT MS

[ ] (8)

Next, the model uses above newly constructed heterogeneous network
H as an input to the GNN-based encoder to learn the low dimensional
embedding representations of the drugs and microbes.

4 Methods

Figure 1 illustrates the framework of OGNNMDA, comprising
three primary modules: the input module, encoder module, and
decoder module. The input module is responsible for extracting
multiple biomedical information features to be utilized as inputs for
OGNNMDA. The encoder module focuses on learning the node
embedding representation of the microbes and drugs. Lastly, the
decoder module employs bilinear decoders to predict new drug-
microbe associations.

4.1 Encoder

OGNNMDA is a graph neural network that directly processes
the graph as input, effectively utilizing both node information and
structural characteristics. Graph neural networks have gained
significant popularity in link prediction tasks (Zhang and Chen,
2018), showcasing their widespread adoption. By leveraging the
adjacency matrix H obtained earlier, Eq. 9 defines the specific
formulation of the GNN.

h l( )
v � γ h l−1( )

v ,□u∈N v( ), ϕ h l−1( )
v , h l−1( )

u ,H( )( ) (9)

Here, l ∈ 1 . . . Lconv{ }, h(l)v ∈ R1×k is the embedding feature of the
layer l, N (v) denotes the set of neighboring nodes for the node v,
Lconv corresponds to the number of layers in the GNN network and
the number of message-passing rounds. The dimension of the node’s
embedding feature is denoted by k. In this study, the final
embedding dimension is set to match the embedding dimensions
used across the GNN layers. H is the microbe-drug heterogeneous
network graph defined in Eq. 8, which is processed for embedding
and provides edge information for the GNN. The node
representation h(0) ∈ R(Nd+Nm)×k is obtained by a two-layer MLP
defined by Eq. 10 and 11. The trainable variables
W(1)

fc ,W
(2)
fc ∈ R(Nd+Nm)×k and B(1)

fc , B
(2)
fc ∈ Rk are involved in this

process. Additionally, Hinit ∈ R(Nd+Nm)×(Nd+Nm) represents the
initial node representation, and σ denotes the ReLU
activation function.

FIGURE 3
(A) Model hyperparameter analysis on the aBiofilm dataset. (B)
Model hyperparameter analysis on the MDAD dataset.
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h 0( ) � σ W 2( )
fc σ W 1( )

fc Hinit + B 1( )
fc( ) + B 2( )

fc( ) (10)

Hinit � 0 A
AT 0

[ ] (11)

The function ϕ calculates the messages transmitted between nodes,
where the edge attribute is directly used as the message. The symbol
□ represents the message aggregation function, and in this paper, the
mean method is employed (Huan et al., 2021). This means that
messages received from multiple neighboring nodes are aggregated
by taking their average, resulting in message characteristics used for
updating node representations. Finally, γ represents the node
representation update function, which implements the ordered
message-passing mechanism discussed in this paper.

In the message-passing process of a single-level GNN, a node
only exchanges messages with its immediate neighbors. This pattern
of neighbor message transmission at different orders aligns with the
structure of the node root tree in a multi-layer GNN (Liu et al.,
2020). As illustrated in Figure 2, for a node v, N(l)

v represents the
neighbor information of node v at the lth layer, and the nesting
relationship of its neighbor messages at each layer can be described
using Eq. 12.

N 1( )
v ⊆ N 2( )

v ⊆/⊆ N Lconv( )
v (12)

In single-layer message passing, direct-neighbor node messages and
higher-order neighbor node messages are differentially encoded to
ensure orderly message delivery. Specifically, the neuron rows are
aligned with the node root tree at each layer, enabling the acquisition
of node feature representations with consistent nesting relationships. To
implement this alignment encodingmethod, the neurons can be ordered
by linearly arranging the neurons of each layer and considering a
segmentation point, denoted as s. The information of the neighbors
of the current node v, at order one or higher, can be encoded as s(l)v (Song
et al., 2023). The segmentation point s corresponds to the nested nature
of node v, and its size relationship is determined by Eq. 13.

s 1( )
v ≤ s 2( )

v ≤/≤ s Lconv( )
v (13)

Next, we describe the node feature update function γ, which is
exemplified below for a specific node v. The function can be divided
into three distinct steps.

1. Compute the aggregated message representation
m(l) ∈ R(Nd+Nm)×k for layer l.

m l( ) � MEAN h l−1( ),H( ) (14)

2. For node v, this paper utilizes the gating vector ĝ(l)
v of

dimension (Nd +Nm) to describe the segmentation point
s(l)v . Specifically, the value of the left part [0, s(l)v − 1] is set
to 1, indicating the neighboring neurons of node v that are
higher than the first order. Conversely, the value of the right
part [s(l)v ,Nd +Nm − 1] is set to 0, denoting direct neighboring
neurons. This is achieved by calculating the cumulative sum of
the probability that each position in the node servers as a split
point s(l)v . The expectation gating vector ĝ(l)

v is obtained
through a biased linear projection of the node
representation vector in layer l − 1 and the message vector
in layer l, as shown in Eq. 15.

ĝ l( )
v � cumsum← sof tmax h l−1( )

v ;m l( )
v[ ]W l( )

g + B l( )
g( )( ) (15)

In Eq. 15, the trainable parameters W(l)
g ∈ R2k×k and B(l)

g ∈ Rk are
utilized. Additionally, [h(l−1)v ;m(l)

v ] represents the concatenation of
two vectors h(l−1)v andm(l)

v . To ensure that the predicted gated vector
ĝ(l)
v adheres to the relative size relationship of the splitting points

mentioned earlier, the operation described in Eq. 16. This operation
yields the final gated vector g(l)

v .

g l( )
v � g l−1( )

v + 1 − g l−1( )
v( ) · ĝ l( )

v (16)

3. Equation 17 demonstrates the utilization of the gating vector
g(l)
v to regulate the integration of the layer l − 1 node

representation h(l−1)v with the layer l aggregated context
m(l)

v . This process results in the acquisition of the new node
representation h(l)v .

h l( )
v � LN g l( )

v · h l−1( )
v + 1 − g l( )

v( ) ·m l( )
v( ) (17)

In Eq. 17, the symbol · represents element-by-element
multiplication, and LN refers to the layer normalization
operation (Chen et al., 2022).

4.2 Decoder

After the previous rounds of the ordered message passing
process, the final node embedding representation
h(Lconv) ∈ R(Nd+Nm)×k is obtained. This representation can be

TABLE 2 Comparison of AUC, AUPR, Acc, and F1-score obtained by each method based on aBiofilm dataset at 5-cv.

Methods AUC AUPR Accuracy F1-score

GCNMDA 0.9465 ± 0.0001 0.9376 ± 0.0001 0.8772 ± 0.0004 0.8819 ± 0.0002

GSAMDA 0.8955 ± 0.0051 0.9073 ± 0.0053 0.8345 ± 0.0058 0.8295 ± 0.0055

HMDAKATZ 0.8982 ± 0.0027 0.9018 ± 0.0026 0.7811 ± 0.0112 0.8088 ± 0.0040

LAGCN 0.8991 ± 0.0032 0.9084 ± 0.0030 0.8710 ± 0.0032 0.8651 ± 0.0036

NTSHMDA 0.8633 ± 0.0050 0.8204 ± 0.0076 0.8073 ± 0.0082 0.8117 ± 0.0045

SCSMDA 0.9628 ± 0.0021 0.9504 ± 0.0035 0.9083 ± 0.0038 0.9121 ± 0.0035

OGNNMDA 0.9693 ± 0.0008 0.9690 ± 0.0009 0.9141 ± 0.0031 0.9152 ± 0.0026

Bold values are the best performing of all these comparison methods, and the next best values are underlined.
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considered as the concatenation of the final embedding features of
the drugs, hd ∈ RNd×k, and the microbes, hm ∈ RNm×k. In this paper,
the final embedding features hd and hm are obtained separately using
the matrix splicing approach defined in Eq. 18.

hd

hm
[ ] � h Lconv( ) (18)

To reconstruct the adjacency matrix A′ representing
possible microbe-disease associations, the bilinear decoder is
employed. It is a structural component employed for predicting
the probability of potential edges or links based on node
embedding vectors. These decoders commonly integrate the
embedding vectors of node pairs within a graph to generate a
score function that assesses the likelihood of a link between two
nodes. The key characteristic of bilinear decoders lies in their
utilization of bilinear transformations to capture the interaction
effects among nodes. Specifically, for a drug node and microbe
node pair (u, v) with their respective embedding vectors hd(u)
and hm(v), a bilinear decoder might compute the score by
Eq. 19.

score hd u( ), hm v( )( ) � hd u( )TWhm v( ) (19)
WhereW is a learnable weight matrix. This score can be interpreted
as the probability of link occurrence after a nonlinear activation
function transformation, so that A′ can be obtained by the bilinear
decoder as shown in Eq. 20.

A′ � σ hdWBh
T
m( ) (20)

In the above formula, where WB ∈ Rk×k represents a trainable matrix
and σ(x) � 1/(1 + e−x) is the sigmoid function. Overall, the complete
computational flow of OGNNMDA can be seen in Algorithm 1.

Require: Known associations matrix A ∈ RNd×Nm, drug

similarity matrix DS ∈ RNd×Nd, microbe similarity matrix

MS ∈ RNm×Nm and α = 600 is the number of iterations

for OGNNMDA

Ensure: The constructed drug-microbe associations

matrix A′ ∈ RNd×Nm

1: Construct the heterogeneous network H according

to formula (8)

2: Initialize the embedding feature matrix Hinit
according to formula (11).

3: Initialize the gate vector = 0

4: for i = 1 → α do

5: calculate h0 according to formula (10)

6: for l = 1 → Lconv do

7: calculate message matrix m(l) formula (14).

8: calculate ĝ(l) by formula (15)

9: calculate ~g(l) formula (16)

10: calculate h(l) formula (17)

11: end for

12: get the embedding feature for drugs and microbes

with hd and hm according to formula (18)

13: get the reconstruction matrix A′ by formula (20)

14: end for

Algorithm 1. OGNNMDA.

TABLE 3 Comparison of AUC, AUPR, Acc and F1-score obtained by each method based on MDAD dataset at 5-cv.

Methods AUC AUPR Accuracy F1-score

GCNMDA 0.9365 ± 0.0001 0.9300 ± 0.0002 0.8617 ± 0.0011 0.8675 ± 0.0004

GSAMDA 0.8760 ± 0.0197 0.8823 ± 0.0164 0.7979 ± 0.0279 0.8028 ± 0.0176

HMDAKATZ 0.8717 ± 0.0039 0.8798 ± 0.0045 0.7691 ± 0.0167 0.7856 ± 0.0046

LAGCN 0.8974 ± 0.0056 0.9062 ± 0.0050 0.8572 ± 0.0067 0.8536 ± 0.0061

NTSHMDA 0.8512 ± 0.0043 0.8094 ± 0.0055 0.7820 ± 0.0137 0.8028 ± 0.0044

SCSMDA 0.9574 ± 0.0022 0.9478 ± 0.0036 0.8953 ± 0.0045 0.8996 ± 0.0038

OGNNMDA 0.9616 ± 0.0021 0.9645 ± 0.0024 0.9048 ± 0.0032 0.9047 ± 0.0026

Bold values are the best performing of all these comparison methods, and the next best values are underlined.

TABLE 4 Comparison of AUC, AUPR, Acc and F1-score obtained by each method based on DrugVirus dataset at 5-cv.

Methods AUC AUPR Accuracy F1-score

GCNMDA 0.8541 ± 0.0004 0.8441 ± 0.0006 0.7732 ± 0.0045 0.7912 ± 0.0007

HMDAKATZ 0.5356 ± 0.0080 0.5669 ± 0.0057 0.5397 ± 0.0054 0.6835 ± 0.0022

LAGCN 0.8044 ± 0.0079 0.8460 ± 0.0076 0.7794 ± 0.0067 0.7744 ± 0.0055

NTSHMDA 0.7482 ± 0.0087 0.7039 ± 0.0092 0.6789 ± 0.0130 0.7395 ± 0.0070

SCSMDA 0.8810 ± 0.0053 0.8590 ± 0.0102 0.8098 ± 0.0071 0.8201 ± 0.0038

OGNNMDA 0.8591 ± 0.0076 0.8633 ± 0.0078 0.7916 ± 0.0115 0.7990 ± 0.0077

Bold values are the best performing of all these comparison methods, and the next best values are underlined.
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4.3 Optimization

During the experiment, positive samples were the drug-microbe
pairs with known associations, while negative samples were the
drug-microbe pairs without known associations. These sets of
positive and negative samples are denoted as Ω+ and Ω−,
respectively, for ease of description. It is important to note that
the number of pairs with known associations in both the aBiofilm
dataset and the MDAD dataset is significantly smaller than the
number of pairs without known associations. Therefore, when
training OGNNMDA, the loss function incorporates a weighted
cross-entropy loss, as defined in Eq. 21.

L � − 1
Nd × Nm

λ ∑
i,j( )∈Ω+

log ai,j′( ) + ∑
i,j( )∈Ω−

log 1 − ai,j′( )⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ (21)

In the above formula, (i, j) represents a pair of the drug di and
microbe mj. λ is introduced as a balancing factor, calculated as the
ratio of the number of samples inΩ− to the number of samples inΩ+.
This factor helps attenuate the impact of data imbalance and
emphasizes the reinforcement of known correlation information.

In this paper, the Xavier initialization method (Duong et al.,
2019) is employed to initialize the trainable parameter matrices in
various components of the model. These include the 2-layer fully
connected layer, the ordered message-passing graph neural network
layer, the bilinear decoder, and others, denoted as
W(l)

fc , B
(l)
fc |W(l)

fc ∈ R(Nd+Nm )×k , B(l)
fc ∈ Rk , 1≤ l≤Kfc{ }, W(l)

g , B(l)
g |W(l)

g ∈ R(2*k)×cs , B(l)
g ∈ Rcs , 1≤ l≤Kconv{ },

and the bias matrix WB ∈ Rk×k. Furthermore, the Adam
optimizer (Wang et al., 2023) is utilized to minimize the loss
function. Adam combines the benefits of momentum
optimization and adaptive learning rate, enabling quick

FIGURE 4
(A) ROC curves for each modeling approach based on the
aBiofilm dataset 5-cv. (B) PR curves for each modeling approach
based on the aBiofilm dataset 5-cv.

FIGURE 5
(A) ROC curves for each modeling approach based on the MDAD
dataset 5-cv. (B) PR curves for each modeling approach based on the
MDAD dataset 5-cv.
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convergence and adaptation to different parameter learning rates
during the training process. This optimization technique enhances
the training effectiveness of the deep learning model.

To prevent overfitting, the paper introduces node dropout
(Piotrowski et al., 2020) and regularized dropout (Berg et al.,

2017) schemes in the graph convolution layer. Node dropout can
be seen as training multiple models on various sub-nodes, and the
combination of these sub-nodes is used to predict unknown
microbe-drug pairs (Tan et al., 2020).

5 Results

This paper begins by providing a brief overview of the experimental
setup and the analysis and selection of certain hyperparameters. The
aim is to validate the predictive performance advantages of
OGNNMDA through intensive comparison experiments. These
experiments involve 6 representative microbe-drug association
prediction models, including state-of-the-art approaches. The
evaluation is conducted on three well-known public datasets,
namely, aBiofilm, MDAD and DrugVirus, within a 5-fold cross-
validation framework. Furthermore, ablation experiments are
performed to investigate the effectiveness of the ordered message-
passing mechanism employed in OGNNMDA. Finally, a case study
is presented to validate OGNNMDA using two commonly used drugs,
ciprofloxacin andmoxifloxacin, along with two common oral microbes,
Actinobacillus aggregatum and Clostridium nucleatum.

5.1 Experimental parameter setting

In this paper, all experimental evaluations are conducted within
a five-fold cross-validation setup. To ensure statistical robustness,
each method is executed ten independent times for every
experiment, thereby enabling the calculation of the mean value
for each performance metric across these repetitions. In detail, this
involves dividing all known associations in the dataset equally into
5 parts, denoted as testp � tp1, tp2, tp3, tp4, tp5{ }. Additionally, a
subset of the same size as the known associations is randomly
selected from the unknown association set. This subset is divided
equally into 5 parts, denoted as testn � tn1, tn2, tn3, tn4, tn5{ }.

During the i− th (1≤ i≤ 5) cross-validation iteration, the training set
is defined as traini � testp − tpi{ }, and the test set is defined as
testi � tpi{ } ∪ tni{ }. The final test result of the 5-fold cross-validation
experiment is calculated based on the combined test set, test= testp∪ testn.

Based on the previous description of the model structure,
OGNNMDA incorporates several hyperparameters, including the
dimension size (k) of embedded features, the number of fully-
connected layers (Lfc), the number of ordered message-passing
GNN layers (Lconv), the initial learning rate (r) of Adam’s
optimizer, the total training period (α), the node dropout metrics
(β), and the regularized dropout parameter (γ).

FIGURE 6
(A) ROC curves for each modeling approach based on the
DrugVirus dataset 5-cv. (B) PR curves for each modeling approach
based on the DrugVirus dataset 5-cv.

TABLE 5 Results of ablation experiments.

Dataset Method AUC AUPR Accuracy F1-score

aBiofilm GNN 0.8940 ± 0.0025 0.9090 ± 0.0040 0.8359 ± 0.0036 0.8337 ± 0.0033

aBiofilm OGNN 0.9673 ± 0.0014 0.9681 ± 0.0021 0.9111 ± 0.0025 0.9119 ± 0.0024

MDAD GNN 0.8872 ± 0.0026 0.9027 ± 0.0037 0.8333 ± 0.0043 0.8334 ± 0.0035

MDAD OGNN 0.9595 ± 0.0020 0.9616 ± 0.0022 0.9014 ± 0.0025 0.9013 ± 0.0027

Bold values are the best performing on the same dataset.

Frontiers in Genetics frontiersin.org09

Zhao et al. 10.3389/fgene.2024.1370013

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1370013


To establish initial values for these parameters, we set Lfc = 2, r =
0.008, α = 600, β = 0.6, and γ = 0.4. Subsequently, we examine the
effects of different values for parameters k and Lconv through
experimental analysis.

To investigate the impact of different hyperparameter values on
the model, this paper performed 5-fold cross-validation (5 cv)
experiments on the aBiofilm and MDAD datasets. The results for
the AUROC were plotted in Figure 3, showcasing the outcomes for
various combinations of the parameters Lconv and k.

From Figures 3A, B, it is evident that the optimal
combination of Lconv and k is Lconv = 12 and k = 512.
Therefore, this parameter setting will be utilized for
OGNNMDA in subsequent experiments.

5.2 Comparison experiments

In this study, we replicate the code and data based on publicly
accessible resources of these six methodologies, with all competing

methods’ parameter configurations set according to their optimal
values as reported in their respective publications. The 6methods we
compared OGNNMDA with are HMDAKATZ (Zhu et al., 2019a),
GCNNMDA (Long et al., 2020), GSAMDA (Tan et al., 2022),
SCSMDA (Tian et al., 2023), LAGCN (Yu et al., 2021), and
NTSHMDA (Luo and Long, 2018), which are widely used in
linkage prediction problems across various bioinformatics
domains. However, due to GSAMDA not having performed
experiments on DrugVirus in their paper nor specifying the
construction process for the microbe-disease associations and
drug-disease associations used to derive disease-based microbial
and drug-Hamming similarities, comparative evaluations on
DrugVirus are limited to the remaining five competing approaches.

To train and evaluate these methods, a 5-fold cross-validation
experimental framework was employed. Performance evaluation
was based on metrics such as AUC, AUPR, accuracy, and
F1 score, chosen for their effectiveness in assessing performance.
The experimental results, including the performance metrics, are
presented in Tables 2–4. Additionally, ROC curves (see Figure 4A,

TABLE 6 Top 20 related microbes to Ciprofloxacin predicted by OGNNMDA.

Rank Microbe name Evidence Rank Microbe name Evidence

1 Proteus vulgaris PMID: 27303616 11 Candida albicans PMID: 35404123

2 Morganella morganii PMID: 25107625 12 Burkholderia thailandensis PMID: 31404671

3 Providencia stuartii PMID: 23029216 13 Serratia marcescens PMID: 27085794

4 Pseudomonas aeruginosa PMID: 30605076 14 Streptococcus mutans PMID: 33402618

5 Stenotrophomonas maltophilia PMID: 30448331 15 Vibrio cholerae PMID: 28270803

6 Escherichia coli PMID: 29228224 16 Vibrio harveyi PMID: 32019500

7 Staphylococcus aureus PMID: 36499677 17 Pseudomonas putida PMID: 19280293

8 Burkholderia pseudomallei PMID: 27936915 18 Bacillus subtilis PMID: 33218776

9 Klebsiella pneumoniae PMID: 28223459 19 Staphylococcus epidermidis PMID: 9111541

10 Proteus mirabilis PMID: 27303616 20 Burkholderia cenocepacia PMID: 34116184

TABLE 7 Top 20 related microbes to Moxifloxacin predicted by OGNNMDA.

Rank Microbe name Evidence Rank Microbe name Evidence

1 Candida albicans PMID: 12121916 11 Streptococcus mutans PMID: 29392681

2 Stenotrophomonas maltophilia PMID: 31748318 12 Candida dubliniensis PMID: 30237975

3 Pseudomonas aeruginosa PMID: 31643179 13 Candida parapsilosis PMID: 20455400

4 Mycobacterium avium PMID: 31239192 14 Mixed Culture of bacteria and fungus PMID: 31732485

5 Candida glabrata PMID: 30768071 15 Staphylococcus epidermidis PMID: 35214102

6 Staphylococcus aureus PMID: 33512346 16 Eikenella corrodens PMID: 35023367

7 Candida tropicalis PMID: 20455400 17 Escherichia coli PMID: 36250047

8 Burkholderia multivorans Unconfirmed 18 Burkholderia thailandensis Unconfirmed

9 Burkholderia cenocepacia PMID: 33120688 19 Candida guiliermondi Unconfirmed

10 Candida krusei PMID: 22993935 20 Acinetobacter baumannii PMID: 12951327
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5A, 6A) and PR curves (see Figure 4B, 5B, 6B) were plotted to
facilitate comparison among the different methods on the
respective datasets.

Based on the experimental results from Table 2, it is evident that
OGNNMDA achieves the highest AUC values on the aBiofilm
dataset, with an average AUC of 0.9693 ± 0.0008. This is 0.65%
higher than the next highest AUC value of 0.9628 ± 0.0021 obtained
by SCSMDA. OGNNMDA also outperforms other methods in
terms of AUPR, Accuracy, and F1-Score, with values of 0.9690 ±
0.0009, 0.9141 ± 0.0031, and 0.9151 ± 0.0026, respectively.

Similarly, in Table 3, which presents the results on the MDAD
dataset, OGNNMDA exhibits superior performance across all four

evaluation metrics. The comparison between the two tables suggests
that OGNNMDA performs better on the aBiofilm dataset compared
to MDAD. This disparity can be attributed to the sparser nature of
the data in MDAD, resulting in a smaller ratio of positive to negative
samples and a more pronounced sample imbalance issue.

Finally, we examine the results from Table 4, which presents the
performance of all methods on the DrugVirus dataset. OGNNMDA
achieved the highest AUPR score with a mean value of 0.8633 ±
0.0078; however, SCS-MDA outperformed others in terms of the
AUC (0.8810 ± 0.0053), Accuracy (0.8098 ± 0.0071), and F1-score
(0.8201 ± 0.0038). Notably, OGNNMDA did not maintain its
leading position on the DrugVirus dataset as it did on the

TABLE 8 Top 20 drugs associated with the microbe Aggregatibacter actinomycetemcomitans predicted by OGNNMDA.

Rank Drug name Evidence Rank Drug name Evidence

1 LL-37 PMID:
23836819

11 N-Acetylcysteine PMID:
18038907

2 Cathelicidin PMID:
23836819

12 L-Aspartate PMID:
10769165

3 Hamamelitannin PMID:
26561076

13 3-(2-Furylmethyl)-2-{[(5-hydroxy-1H-pyrazol-3-yl)methyl]sulfanyl}-
3,5,6,7-tetrahydro-4H-cyclopenta [4,5]thieno [2,3-d]pyrimidin-4-one

Unconfirmed

4 Scrambled LL-37 PMID:
23836819

14 Curcumin PMID:
33065303

5 Culture supernatant of Bacillus
licheniformis sp. SP1

Unconfirmed 15 SMAP-29 PMID:
26196513

6 Vancomycin PMID:
31516229

16 Toremifene PMID:
26426681

7 AHL lactonase PMID:
30894996

17 Stem extract of Acacia arabica PMID:
25114940

8 DispersinB-KSL-W wound gel Unconfirmed 18 Bark extract of Tamarix aphylla L PMID:
22963838

9 Epigallocatechin Gallate PMID:
33793838

19 Magainin-I PMID:
32104827

10 Farnesol PMID:
32808302

20 Patulin PMID:
34271147

TABLE 9 Top 20 drugs associated with the microbe Fusobacterium nucleatum as predicted by OGNNMDA.

Rank Drug name Evidence Rank Drug name Evidence

1 Green tea polyphenols PMID: 28322293 11 Lactoferricin B PMID: 33249255

2 Bark extract of Tamarix aphylla L Unconfirmed 12 Vancomycin PMID: 30349083

3 Stem extract of Acacia arabica PMID: 25654035 13 Penicillic acid PMID: 10223950

4 AHL lactonase PMID: 32555242 14 LL-37 PMID: 21220789

5 Patulin PMID: 26574491 15 Hamamelitannin PMID: 27983597

6 L-Aspartate PMID: 3875311 16 Competence Stimulating Peptide PMID: 36371909

7 Culture supernatant of Bacillus licheniformis sp. SP1 PMID: 22730907 17 Cell-free supernatant of Pseudomonas fluorescens PMID: 36891385

8 Lys-a1 Unconfirmed 18 C6-HSL PMID: 32555242

9 Curcumin PMID: 26246690 19 G H12 PMID: 31389653

10 Epigallocatechin Gallate PMID: 34402021 20 N-Acetylcysteine PMID: 25568806
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aBiofilm and MDAD datasets. This relative underperformance may
be attributed to the smaller scale of the DrugVirus dataset compared
to aBiofilm andMDAD, potentially limiting OGNNMDA’s ability to
effectively train its more complex weighting parameters for optimal
prediction.

5.3 Ablation experiment

To evaluate the efficacy of the ordered message-passing
mechanism, this section presents ablation experiments, the results
of which are presented in Table 5. In this context, GNN refers to a
simple graph neural network model utilizing a mean aggregator as
an encoder, while OGNN represents an enhanced ordered message-
passing graph neural network model based on GNN, specifically the
model proposed in this paper, OGNNMDA. The evaluation entails
5-fold cross-validation experiments on the aBiofilm and MDAD
datasets, with specific parameter settings described in
previous sections.

Based on the data presented in Table 5, the underlying GNN
encoder exhibits poor performance on both datasets, showing a
significant gap in all metrics compared to the OGNNMDA model
utilizing OGNN as the encoder. Therefore, it is reasonable to
conclude that the ordered message-passing mechanism effectively
enhances the embedding performance of GNN, leading to improved
prediction results in microbe drug association prediction.

5.4 Case study

To validate the prediction performance of OGNNMDA, case
study experiments were conducted using two popular drugs and two
microbes as targets. First, OGNNMDA was trained on the complete
aBiofilm dataset to obtain the predicted association information
neighbor matrix. Then, the top 20 most relevant objects for each
target microbe and drug were filtered out. Finally, the relevant
published PubMed literature was searched to validate the
predicted microbe-drug association pairs against existing
references. The first drug selected for the case study was
ciprofloxacin, a fluorinated quinolone antibiotic, which has been
extensively studied and shown to be associated with a wide range of
human microbiome (Yayehrad et al., 2022). For instance, Rehman
et al. (2019) demonstrated the effectiveness of amphotericin-B and
5% ciprofloxacin in blocking the growth mechanisms of
Pseudomonas aeruginosa and Candida albicans. Ciprofloxacin has
also shown susceptibility against Staphylococcus aureus,
Staphylococcus epidermidis, Mycobacterium subspecies,
Escherichia coli, and Mycobacterium tuberculosis (Smirnova and
Oktyabrsky, 2018). The second drug chosen for the case study is
moxifloxacin, a fluoroquinolone antibiotic (Rodríguez-López et al.,
2020), known to be associated with antibiotic-resistant bacteria
(ARB) (Loyola-Rodriguez et al., 2018) and Listeria
monocytogenes (Rodríguez-López et al., 2020). The specific
experimental results for the two drugs are presented in Tables 6,
7, respectively. These tables provide supporting literature
information for the top 20 predicted microbes associated with
ciprofloxacin and moxifloxacin. Upon observing Tables 6, 7, it is
evident that 20 and 17 out of the top 20 predicted microbes

associated with ciprofloxacin and moxifloxacin, respectively, have
been validated by the available literature.

Furthermore, the first microbe selected for the case study was
Aggregate Actinobacteria Accompanying Bacteria, a Gram-negative
bacterium belonging to the family Pasteuriaceae (Krueger and
Brown, 2020). It is primarily found in the oral cavity and is
associated with various oral diseases and systemic infections
(Jensen et al., 2019). In terms of its impact on human health,
aggregates of Actinobacillus companionis are commonly linked
to periodontal diseases, particularly aggressive forms of
periodontitis. This bacterium has the ability to invade and
colonize periodontal tissues, leading to inflammation, destruction
of the periodontal ligament, and bone loss. Consequently, it is often
found at a higher rate in individuals with severe periodontal disease.
Sol et al. demonstrated that sub-killer concentrations of LL-37,
Cathelicidin, and Scrambled LL-37 inhibit the biofilm formation
of Actinobacillus actinomycetemcomitans and act as conditioning
agents and lectins, greatly enhancing clearance by neutrophils and
macrophages (Sol et al., 2013). Basavaraju et al. found that AHL
lactonase hydrolyzes the lactone ring in the high serine portion of
AHL, without affecting the rest of the signaling molecular structure.
This inhibitory effect of AHL lactonase on group sensing of
actinomycete aggregates has been observed (Basavaraju et al.,
2016). The second microbe chosen for the case study was
Clostridium nucleatum, a bacterium known for causing
opportunistic infections and recently associated with colorectal
cancer (Brennan and Garrett, 2019). In this study, Tables 8, 9
present the top 20 predicted drugs that are most relevant to
Aggregate Actinobacteria Accompanying Bacteria and
Clostridium nucleatum, respectively. Based on the information in
the tables, 17 out of the top 20 predicted drugs for Aggregate
Actinobacteria Accompanying Bacteria and 18 out of the top
20 predicted drugs for Clostridium nucleatum have been
validated in the existing literature. Therefore, it can be concluded
that OGNNMDA achieves satisfactory predictive performance in
both microbe and drug case studies.

6 Conclusion and discussion

This paper proposes OGNNMDA, a novel deep learning model
for predicting potential microbe-drug associations, based on graph
neural networks (GNNs) with an ordered message-passing
mechanism. OGNNMDA utilizes multiple sources of biological
data to construct similarity features for drugs and microbes,
which are combined to form a heterogeneous network containing
association and similarity information. To obtain drug and microbe
embeddings, a multilayer GNN with ordered message passing is
employed to differentiate node neighborhood messages during the
message passing stage. A bilinear decoder is then used to generate
association prediction scores. The OGNNMDA methodology was
subjected to a rigorous evaluation regimen, encompassing
comparative experiments on the aBiofilm and MDAD datasets as
well as the DrugVirus dataset, where it utilized a 5-fold cross-
validation scheme. The empirical outcomes revealed that
OGNNMDA surpassed the current state-of-the-art performance
benchmarks on both the aBiofilm and MDAD datasets. However,
in the context of the DrugVirus dataset, OGNNMDA demonstrated
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a commendable yet second-best performance compared to existing
methods. For clarity, while comprehensive experimental evaluations
including comparative analyses were conducted for the DrugVirus
dataset, the ablation experiments and case studies were confined to
the aBiofilm and MDAD datasets alone. Despite this, the overall
results affirm OGNNMDA’s robustness and competitive advantage
in predicting potential microbe-drug associations across different
datasets. The main contributions of this model can be summarized
as follows.

1. It fully leverages additional biomedical data, such as microbe
functional similarity based on microbial genomic information
and drug molecular structural phase-based feature similarity.

2. It introduces an improved GNN model with an ordered
message-passing mechanism, which achieves better
embedding performance by distinguishing node
neighbor messages.

3. The overall model outperforms existing state-of-the-art
methods for predicting potential microbe-drug associations.

However, OGNNMDA is not without its limitations. The
model’s performance is contingent upon the scale of the
accessible dataset; with a relatively modest-sized corpus, the
inherent sparsity in the microbial-drug association adjacency
matrix can potentially impede the exhaustive exploitation of the
graph’s structural information and limit the expressiveness of the
learned embeddings. Furthermore, OGNNMDA homogenously
handles microbial and drug nodes within the network without
explicitly accounting for their distinctive patterns of interaction.
In light of these challenges, future research directions can be
directed towards:

1. Expanding Feature Representation: Augmenting the
existing feature space by integrating supplementary
biomedical data such as genomic sequences of microbes
(Deng et al., 2022) and pharmacological similarity based on
side effect profiles (Zheng et al., 2019). This enrichment
could provide deeper insights into the intrinsic properties of
both microorganisms and drugs, thereby enhancing the
quality of the representations learned.

2. Addressing Sparsity Issues: Investigating innovative techniques
to tackle the issue of sparse associations, which might involve
adopting advanced link prediction strategies or devising
specialized regularization methods that are tailored for
sparse graphs. These approaches could ensure more efficient
utilization of available relational information.

3. Adaptation of Graph Contrastive Learning: Exploring the
potential benefits of incorporating graph contrastive
learning (GCL) paradigms to improve the robustness and
generalizability of the learned embeddings. GCL has shown
promise in other domains by extracting meaningful node or
graph representations from limited or unlabeled data,
hence it could be a viable avenue to mitigate the
impact of small datasets on OGNNMDA’s performance
(Cai et al., 2023).

4. Refinement of Message-Passing Mechanisms: Examining
alternative graph neural network architectures like Graph
Attention Networks (GATs) and Graph Convolutional
Networks (GCNs), and refining their message-passing
processes to better suit the unique characteristics of the
microbial-drug association problem.

By systematically addressing these limitations and venturing
into new methodological frontiers, future iterations of OGNNMDA
and similar models are poised to achieve heightened accuracy and
resilience in predicting microbe-drug associations, thus contributing
significantly to this burgeoning research domain.
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