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Genotype-to-phenotypemapping is an essential problem in the current genomic
era. While qualitative case-control predictions have received significant attention,
less emphasis has been placed on predicting quantitative phenotypes. This
emerging field holds great promise in revealing intricate connections between
microbial communities and host health. However, the presence of heterogeneity
in microbiome datasets poses a substantial challenge to the accuracy of
predictions and undermines the reproducibility of models. To tackle this
challenge, we investigated 22 normalization methods that aimed at removing
heterogeneity across multiple datasets, conducted a comprehensive review of
them, and evaluated their effectiveness in predicting quantitative phenotypes in
three simulation scenarios and 31 real datasets. The results indicate that none of
these methods demonstrate significant superiority in predicting quantitative
phenotypes or attain a noteworthy reduction in Root Mean Squared Error
(RMSE) of the predictions. Given the frequent occurrence of batch effects and
the satisfactory performance of batch correction methods in predicting datasets
affected by these effects, we strongly recommend utilizing batch correction
methods as the initial step in predicting quantitative phenotypes. In summary, the
performance of normalization methods in predicting metagenomic data remains
a dynamic and ongoing research area. Our study contributes to this field by
undertaking a comprehensive evaluation of diverse methods and offering
valuable insights into their effectiveness in predicting quantitative phenotypes.
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1 Introduction

Microorganisms, which exist in and around us, play a significant role in shaping our
overall health and living environment (Wang et al., 2015; Al Khodor et al., 2017; Foo et al.,
2017; Horve et al., 2020). The development of high-throughput next-generation sequencing
(NGS) technologies has recently advanced the efficiency and cost-effectiveness of studying
microbial communities. Understanding and characterizing these communities continue to
be ongoing goals for numerous research organizations (Bouchie, 2016; Hadrich, 2020).
Despite the transformative impact of NGS on microbiome research, analyzing microbiome
data poses challenges such as compositionally, sparsity, and high variability, for which
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standard statistical methods may not always provide comprehensive
solutions (Swift et al., 2023).

There has been a growing interest in statistical methods that
address the challenges associated with microbiome data analysis
over the past decade. The two primary steps in statistical analysis of
microbiome data involve normalization, which aims to mitigate
systematic variations and biases, and differential abundance
analysis, which identifies microbes with significantly different
abundances under distinct observational or experimental
conditions. While normalization methods are primarily designed
for other data types, such as batch mean centering (BMC) (Sims
et al., 2008) and Combat (Johnson et al., 2007) for DNA microarray
data, or trimmedmean of M-values (TMM) (Robinson and Oshlack,
2010) and relative log expression (RLE) (Anders and Huber, 2010)
for RNA-Seq data, they can also be applied to microbiome data.
Several studies have investigated the performance of various
normalization methods in the differential analysis of microbiome
data. However, the conclusions may differ according to the purpose
of analysis. McKnight et al. (McKnight et al., 2019) found that total
sum scaling (TSS) and Rarefaction enable more accurate
comparisons between communities and are the only methods
that effectively normalize for sequencing depth across samples.
Conversely, McMurdie and Holmes (2014) and Weiss et al.
(2017) demonstrated that rarefaction alone is insufficient for data
normalization and may result in a loss of valuable information
within the dataset.

The utilization of microbiome data to predict phenotypes has
become increasingly important in the era of high-throughput
sequencing and metagenomics. To enhance the reproducibility of
predictive models in multi-omics, many studies have been dedicated
to mitigating heterogeneity in predictions. These studies often
involve merging data from distinct datasets into one and treating
them as if they originate from the same dataset to improve
prediction accuracy (Thomas et al., 2019; Wirbel et al., 2019).
Alternatively, researchers integrate the trained predictors from
different datasets using diverse strategies to generate enhanced
predictions (Patil and Parmigiani, 2018; Zhang et al., 2021). The
potential contributions of normalization methods in prediction are
primarily focused on DNA microarray or RNA-Seq data (Zwiener
et al., 2014; Franks et al., 2018). It is noteworthy that, unlike
differential analysis, the primary aim of normalization methods
in prediction is to reduce heterogeneity between the training and
unknown testing data. Therefore, group-wise normalization
methods like percentile normalization (PN) (Gibbons et al., 2018)
and Wrench (Kumar et al., 2018) cannot be applied to prediction.
Therefore, there is a need to systematically evaluate the prediction
performance of normalization methods in prediction using
microbiome data.

In our previous study (Wang et al., 2024), we evaluated twenty-
two existing normalization methods and assessed their efficacy in
predicting binary phenotypes using microbiome data. However,
there has been comparatively less emphasis on predicting
quantitative phenotypes, which include numerical and continuous
traits such as Body Mass Index (BMI) or blood glucose levels. The
prediction framework for quantitative phenotypes is currently
receiving increasing attention due to its significance. For instance,
Yun et al. (Yun et al., 2017) identified distinct differences in gut
microbiome composition among individuals with varying BMIs,

providing valuable insights into the influence of microbial
communities on body weight. In another study, Krisko et al.
(Krisko et al., 2020) suggested that the gut microbiome plays a
role in regulating blood glucose levels, presenting opportunities for
personalized interventions and treatments. Therefore, exploring the
associations between the microbiome and quantitative health-
related phenotypes is essential for unraveling the intricate
interplay between the microbiome and human health, an area
that has not been well addressed.

In this study, we examine the effects of heterogeneity on
predicting quantitative phenotypes and aim to assess the
performance of various normalization methods in predicting
quantitative phenotypes across studies. To conduct this
investigation, we utilized a diverse and extensive dataset
comprising 31 shotgun sequencing datasets obtained from
healthy stool samples. Each dataset was paired with a separate
dataset for training and testing purposes separately, allowing for
a thorough evaluation of prediction performance. We used the Root
Mean Squared Error (RMSE) as the primary performance metric,
given its significance in quantifying prediction accuracy.
Additionally, we supplemented our analysis with simulation
studies that address three types of heterogeneity: background
distributions of taxa in populations, batch effects across studies
from the same population, and phenotype-associated models in
different studies. These simulations enabled us to evaluate the
performance of normalization methods in controlled settings,
yielding valuable insights into how they perform under
different scenarios.

This study aims to inform researchers of the necessary
knowledge to make informed decisions when analyzing
metagenomic data. Ultimately, this research aims to improve the
reliability and accuracy of predictions obtained from metagenomic
datasets, advancing our understanding of the complex relationships
between microbial communities and host phenotypes.

2 Materials and methods

2.1 Workflow for quantitative phenotype
prediction using simulated or real
metagenomic datasets

To investigate the performance of different normalization
methods in cross-study quantitative phenotype predictions, we
developed a comprehensive workflow based on the methodology
for case-control phenotype prediction from our previous study
(Wang et al., 2024). The workflow consists of four main stages:
real data, simulation, normalization, and prediction.

In the real data stage (Figure 1A), we selected samples from
curatedMetagenomicData based on the inclusion criteria described
in Section 2.2. The heterogeneity among different studies was
examined using the statistical analysis methods outlined in
Section 2.3. The cross-study predictions were performed by
designating one dataset as the training set and choosing another
from the remaining datasets as the testing set.

In the simulation stage (Figure 1B), we conducted three different
scenarios. Firstly, we investigated the impact of different background
distributions of taxa on quantitative phenotype predictions. To
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FIGURE 1
Workflow for quantitative phenotype prediction based on abundance profiles normalized by different methods. (A) Inclusion criteria for filtering data from
curatedMetagenomicData. (B) Simulation stage of three different heterogeneity scenarios. Scenario 1: Different background distributions of taxa in populations.
Scenario 2: Different batch effects of studieswith the samebackgrounddistribution of taxa in populations. Scenario 3: Different phenotypemodels of studieswith
the samebackgrounddistributionof taxa in populations. Theoutputs from this step consistedof simulated count tables and simulatedphenotypesof training
and testing datasets. (C) Normalization stage. Twenty-two normalization methods were applied to both the real data and simulated data. The outputs from this
step included normalized abundance tables of training and testing datasets. (D) Prediction stage. The outputs from the previous stagewere used to trainmachine
learning models, and the RMSE values of prediction models based on different normalization methods were further compared.
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evaluate the performance of different normalization methods, we
simulated two populations with distinct background distributions of
taxa and then designated one population as the training set and the
other as the testing set. Further details on the simulation of this
scenario can be found in Section 2.4.1. Secondly, we simulated batch
effects between training and testing datasets with varying severity
levels. It is essential to address batch effects before conducting
downstream analysis as they could compromise the
reproducibility of genetic findings (Kupfer et al., 2012). We
examined the influence of batch effects on quantitative
phenotype predictions and provided a detailed description of the
method in Section 2.4.2. Lastly, we investigated the impact of
different underlying phenotype-associated feature models between
the training and testing datasets on phenotype predictions. We
assumed that the phenotype-associated features in the training and
testing datasets would not be exactly the same and adjusted the
number of overlapping features between them. Further details on
this scenario can be found in Section 2.4.3.

In the normalization stage (Figure 1C), we employed various
normalization methods to reduce heterogeneity within and across
the real or simulated training and testing datasets. A total of
22 normalization methods were implemented, and detailed
information about these methods was provided in Section 2.5.
For scaling methods that involved the selection of references,
such as TMM and RLE, as well as transformation methods that
ensured prediction covariates (taxa) were drawn from the same
distribution, including STD, Rank, Blom, NPN, and VST, we first
normalized the training data. Subsequently, we combined the testing
data with the training data and performed normalization on the
combined dataset. The normalized testing data was obtained from
the normalized combined data. This approach ensures the
independence of the normalization process between the training
and testing data while minimizing the heterogeneity between them
(Warnat-Herresthal et al., 2020).

In the prediction stage (Figure 1D), we employed the random
forest model to train the normalized training data and validate it
using the normalized testing data. The performance of various
normalization methods was evaluated using the RMSE.
Additional details regarding this stage can be found in Section 2.6.

2.2 curatedMetagenomicData 3.8.0

The curatedMetagenomicData 3.8.0 package presented a
curated meta-dataset of the human microbiome, derived from a
collection of 93 cohorts involving shotgun sequencing of six
distinct body sites. The raw sequencing data underwent a
rigorous and standardized processing pipeline. Each sample in
this dataset includes six primary data categories: gene family,
marker abundance, marker presence, pathway abundance,
pathway coverage, and relative taxonomic abundance values.
Taxonomic abundance values were determined using
MetaPhlAn3 (Beghini et al., 2021), while the assessment of
metabolic functional potential was performed through
HUMAnN3 (Franzosa et al., 2018). The package also provides
curated clinical and phenotypic metadata. For more
comprehensive insights, please refer to the official

documentation of the curatedMetagenomicData package (Pasolli
et al., 2017).

In order to compare the predictive performance of different
methods for normalizing microbiome profiles in predicting BMI
values, our analysis focuses specifically on healthy subjects
obtained from the curatedMetagenomicData dataset. We
selected subjects from all cohorts based on the following
inclusion criteria: 1) stool samples; 2) healthy status; 3) no
missing BMI values; 4) read counts exceeding 1,250.
Additionally, if multiple samples were available for a subject,
we randomly selected one for our analysis. We only included
datasets with a sample size greater than 30. Supplementary Figure
S1A shows the above inclusion criteria for filtering data from
curatedMetagenomicData. In total, our analysis involved
5,963 samples from 31 datasets. Table 1 presents the
characteristics of the curatedMetagenomicData datasets used in
our analysis. We obtained the species count tables from these
datasets and included them in the subsequent analysis.

2.3 Statistical analysis

We performed microbial relative abundance calculations for
each sample and computed the Shannon indices using the diversity()
function from the R package vegan (Oksanen et al., 2007). The
differences in Shannon indices between each dataset and the overall
Shannon indices were determined using the Wilcoxon rank sum
test. The dissimilarities between sample pairs were quantified using
the Bray-Curtis distance (Bray and Curtis, 1957), implemented by
the vegdist() function from the R package vegan (Oksanen et al.,
2007). Principal coordinate analysis (PCoA) was employed to
effectively visualize the sample clustering, using the pcoa()
function from the R package ape (Paradis and Schliep, 2019). To
assess the variance attributable to population factors, we conducted
permutational multivariate analysis of variance (PERMANOVA)
(Anderson, 2001) using the adonis() function in the R package vegan
(Oksanen et al., 2007). To avoid issues with variable ordering, the
total variance explained by each variable was evaluated
independently of other variables, and thus should be regarded as
the total variance explainable by that variable (Lloyd-Price
et al., 2019).

2.4 Simulation study

In line with our previous investigation on case-control studies
(Wang et al., 2024), we devised three unique scenarios to account
for the heterogeneity within the training and testing data. For each
combination of the parameters, we iterated the procedure
100 times. Subsequently, the datasets underwent normalization
using various methods. Employing the random forest algorithm,
we constructed prediction models based on one simulated
population and evaluated their performance on the other
population in each of the three scenarios. To assess the
accuracy of the predictions, we computed the RMSE values for
the 100 simulation runs conducted across the different scenarios.
The workflows of the simulation stage are presented in Figure 1B).
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2.4.1 Scenario 1: different background distributions
of taxa in populations

In the first scenario, we considered that the variations between
populations were attributable to differences in the underlying
distributions of taxa, such as ethnicity or diet. McMurdie and
Holmes (McMurdie and Holmes, 2014) proposed a method to
simulate samples from distinct populations (Simulation A) and

samples with case-control designs (Simulation B) independently
within this particular scenario. In our simulations, we combined
these strategies and implemented specific modifications.

Our methodology commenced by establishing the baseline levels
of taxon abundance for the training and testing populations. To
replicate this scenario, we collected two publicly available and
geographically diverse datasets, GuptaA_2019 and FengQ_2015.

TABLE 1 Characteristics of curatedMetagenomicData datasets involved in our analysis, including country, sample size, number of species in each dataset
(No. Of species), DNA extraction kits (DNA-Exk), and sequencing platforms (Seq-Plat).

Dataset Country Sample
size

No. Of
species

DNA-Exk Seq-plat

AsnicarF_2021 (Asnicar et al., 2021) United States,
United Kingdom

1,097 638 PowerSoilPro IlluminaNovaSeq

CosteaPI_2017 (Costea et al., 2017) Kazakhstan 84 437 Gnome IlluminaHiSeq

DeFilippisF_2019 (De Filippis et al., 2019) Italy 97 459 PowerSoil IlluminaNextSeq

DhakanDB_2019 (Dhakan et al., 2019) India 107 297 Qiagen IlluminaNextSeq

HansenLBS_2018 (Hansen et al., 2018) Denmark 58 354 NA IlluminaHiSeq

HMP_2012 (The Human Microbiome Project
Consortium, 2012)

United States 95 419 Qiagen IlluminaHiSeq

JieZ_2017 (Jie et al., 2017) China 164 538 Qiagen IlluminaHiSeq

KarlssonFH_2013 (Karlsson et al., 2013) Sweden, Germany, France,
Iceland

43 335 NA IlluminaHiSeq

KaurK_2020 (Kaur et al., 2020) India 31 262 ZR_Fecal_DNA_MiniPrep IlluminaHiSeq

KeohaneDM_2020 (Keohane et al., 2020) Ireland 116 378 NA IlluminaHiSeq

LeChatelierE_2013 (Le Chatelier et al., 2013) Denmark 115 445 NA IlluminaHiSeq

LifeLinesDeep_2016 (Zhernakova et al., 2016) Netherlands 1,135 647 Qiagen IlluminaHiSeq

LokmerA_2019 (Lokmer et al., 2019) Cameroon 56 381 Illuminakit IlluminaHiSeq

NagySzakalD_2017 (Nagy-Szakal et al., 2017) United States 50 366 KAMA_Hyper_Prep IlluminaHiSeq

NielsenHB_2014 (Nielsen et al., 2014) Spain 59 404 NA IlluminaHiSeq

Obregon-TitoAJ_2015 (Obregon-Tito et al., 2015) Peru/United States 51 387 MoBio IlluminaHiSeq

PasolliE_2019 (Pasolli et al., 2019) Madagascar 112 446 Qiagen IlluminaHiSeq

QinJ_2012 (Qin et al., 2012) China 174 534 NA IlluminaHiSeq

QinN_2014 (Qin et al., 2014) China 114 443 NA IlluminaHiSeq

RubelMA_2020 (Rubel et al., 2020) Cameroon 86 334 PSP_Spin_Stool IlluminaHiSeq

SchirmerM_2016 (Schirmer et al., 2016) Netherlands 456 490 Illuminakit IlluminaHiSeq

ThomasAM_2018 (Thomas et al., 2019) Italy 39 393 Qiagen/Gnome IlluminaHiSeq

VogtmannE_2016 (Vogtmann et al., 2016) United States 52 423 Gnome IlluminaHiSeq

WirbelJ_2018 (Wirbel et al., 2019) Germany 65 385 Gnome IlluminaHiSeq

XieH_2016 (Xie et al., 2016) United Kingdom 169 537 Qiagen IlluminaHiSeq

YachidaS_2019 (Yachida et al., 2019) JPN 245 604 NA IlluminaHiSeq

YeZ_2018 (Ye et al., 2018) China 45 305 Qiagen IlluminaHiSeq

YuJ_2015 (Yu et al., 2017) China 38 403 Qiagen IlluminaHiSeq

ZeeviD_2015 (Zeevi et al., 2015) Israel 870 673 NA IlluminaHiSeq

ZellerG_2014 (Zeller et al., 2014) France 59 515 Gnome IlluminaHiSeq

ZhuF_2020 (Zhu et al., 2020) China 81 402 NA IlluminaHiSeq
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The control samples from these two datasets were used as the
template in our simulations, which is the same as our previous
analysis (Wang et al., 2024). Specifically, we included 30 control
samples and 183 species from the GuptaA_2019 dataset (Dhakan
et al., 2019; Gupta et al., 2019) for training purposes, and 61 healthy
samples and 468 species from the FengQ_2015 dataset (Feng et al.,
2015) for testing purposes. For each dataset, a count table consisting
of rows representing taxa and columns representing samples was
povided. By summing the rows, we obtained the initial vectors
representing the underlying taxon abundance in different
populations, denoted as pk, where k = 1, 2.

To explore the influence of dissimilarities between two
populations on cross-study prediction, we constructed pseudo-
population vectors vk, where k = 1, 2:

v1 � ep · p1 + 1 − ep( ) · p2, v2 � p2, (1)
where ep denotes the population effect that quantifies the differences
between two populations. It should be emphasized that
v1′ − v2′ � ep(v1 − v2), which underscores how the differences
between the two simulated populations escalated with increasing
values of ep. By incrementally varying ep from 0 to one in intervals of
0.2, we analyzed the overall trends of different
normalization methods.

To generate pseudo read counts for 100 samples within each
population, we assumed that the taxonomic probabilities xkj of
sample j belonging to population k followed a Dirichlet
distribution Dir (αk), with αk = c · vk for k = 1, 2. To ensure
minimal variation, we assigned a large value to c, resulting in a
variance of xkj that approximates 0 and aligns with vk. To introduce
some level of variability, we selected c = 1 × 106 (preventing the
generation of zero probabilities). The read counts for each sample
were simulated using a multinomial distribution MN(library size,
xkj), k = 1, 2, where the library size was set to 1,000,000 and the
probabilities were derived from the Dirichlet distribution.

Among the 154 taxa shared by the two populations, we
randomly chose 10 taxa and proposed that these taxa were
linked to a specific quantitative phenotype of interest. It was
assumed that the first five taxa exhibited enrichment while the
remaining five were diminished. A vector of pseudo coefficients
was generated from a uniform distribution with lower and upper
bounds of three and five for positive associations, and −5 and −3
for negative associations. The chosen taxa and their
corresponding pseudo coefficients remained consistent
throughout the simulations. The quantitative phenotypes were
simulated based on the relationship between the phenotype and
the corresponding microbial abundances as follows.

• Linear: y = c1βTx + ϵ
• Quadratic: y = c2β

Tx2 + ϵ
• Inverse: y � c3

βTx
+ ϵ

• Logistic: y � c4
1+exp(βTx) + ϵ

Where x is the vector of the selected phenotype associated with
microbial relative abundance, β indicates the pseudo coefficients, c1,
c2, c3, c4 represents constants used to control the range of absolute
values of the simulated phenotypes y (ranging in dozens or
hundreds), and ϵ ~ N (0, 1) represents random noise.

2.4.2 Scenario 2: different batch effects of studies
with the same background distribution of taxa in
populations

In this scenario, we employed the controls in FengQ_
2015 dataset (Feng et al., 2015) as the template for our
simulations, ensuring that the background distribution remained
consistent between the training and testing datasets. By doing so, we
effectively eliminated the population effects observed in Scenario 1.
The generation of read counts and phenotypes followed the same
procedure as in Scenario 1, utilizing multinomial distributions with
a sample size of one million reads. Specifically, we specified 10 taxa
associated with the phenotype, and considered linear, quadratic,
inverse, and logistic relationships between the phenotype and the
corresponding microbial abundances.

To simulate batch effects, we followed a similar procedure as
described in Zhang et al. (Zhang et al., 2021). We assumed that the
mean (γik) and variance (δik) of taxon i were influenced by the
batch k. Drawing from the batch effect generating model proposed
by Johnson et al. (Johnson et al., 2007), we assumed an additive
effect on the mean and a multiplicative effect on the variance for
each taxon. The values of γik and δik were randomly sampled from
normal and inverse gamma distributions, respectively, as
expressed by:

γik ~ N μk, σ
2
k( ), δik ~ InvGamma αk, βk( ). (2)

To specify the hyperparameters (μk, σk, αk, βk), we defined two
values to indicate the severity of batch effects. Specifically, we
considered three levels for the batch effect on the mean (sevmean ∈
{0, 500, 1,000}) and three levels for the batch effect on the
variance (sevvar ∈ {1, 2, 4}). For a given severity level, the
variance of γik and δik was fixed at 0.01, while the batch effect
parameters were either added or multiplied to the mean and
variance of the original study’s expression. Importantly, the batch
effects were solely applied to the training data, while the test
dataset remained unaltered.

2.4.3 Scenario 3: different phenotype models of
studies with the same background distribution of
taxa in populations

In this scenario, we hypothesized that the model for phenotype-
associated taxa may differ between populations. To mitigate the
population effects mentioned in Scenario 1, we employed the
FengQ_2015 dataset (Feng et al., 2015) as the template for
simulations. In order to eliminate the batch effects described in
Scenario 2, this simulation scenario did not incorporate any
batch effects.

To select phenotype-associated taxa, we predetermined 10 taxa
for the training data. From the initial 10 taxa, we selected a subset
and added additional taxa to maintain a total of 10 signature taxa in
the testing data. The level of resemblance between the training and
testing data was determined by the number of taxa that overlapped,
ranging from 2 to 10 with increments of 2. Subsequently, the two
populations were simulated following the same procedure as in the
previous two scenarios. The simulation parameters consisted of
100 samples per population, one million reads per sample, and four
distinct relationships between quantitative phenotype and
phenotype-associated taxa.
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2.5 Normalization methods

Microbiome data analysis commonly employs a range of
normalization methods. In predicting the quantitative traits of
unknown samples, it is crucial to transform or normalize the
data to ensure that both the training and testing datasets came
from the same underlying distribution. This investigation
encompassed a comprehensive comparative analysis, examining
seven scaling methods, one approach based on compositional
data analysis (CoDA), eight transformation methods, and six
batch correction methods. To the best of our knowledge, this
study represents the most thorough comparison conducted to
date, focused on prediction.

Suppose we have a dataset with n samples and m features.
Denote the count for taxon i in sample j as cij. With this notation, the
procedures and equations for normalization methods can be
outlined as follows.

2.5.1 Scaling methods
Scaling is a commonly used method to reduce biases introduced

by sequencing technology. It is often sample-specific and is achieved
by dividing the counts in a sample by a scaling factor.
Mathematically, this can be represented by the following equation:

xij � cij
sj
, (3)

where xij is the normalized abundance for taxon i in sample j, and sj
is the scaling factor for sample j.

The Total Sum Scaling (TSS) method is the simplest scaling
method used to correct for differences in sequencing depth (Dillies
et al., 2013). It scales each sample by the total number of reads in that
sample. Upper Quartile (UQ) (Bullard et al., 2010; Dillies et al.,
2013) and Median (MED) (Dillies et al., 2013) are similar to TSS,
except that they scale each sample by the upper quartile or the
median of sample counts different from zero, rather than the total
number of reads. Cumulative Sum Scaling (CSS) (Paulson et al.,
2013) is a modification of TSS specifically designed for microbiome
data. It computes the scaling factor as the cumulative sum of counts,
up to a percentile l̂ determined by the data. Trimmed Mean of
M-values (TMM) (Robinson and Oshlack, 2010) and Relative Log
Expression (RLE) (Anders and Huber, 2010) are commonly used
normalization methods for RNA-Seq data with the assumption that
most genes are not differentially expressed. TMM first selects a
reference sample, and all other samples are compared to this
reference. The TMM size factor is then calculated as the
weighted trimmed mean of the log ratios. RLE, on the other
hand, calculates the geometric mean of all genes as a reference,
and each sample is compared to this reference to generate ratios
(fold changes) for all genes. The RLE size factor is obtained by taking
the median of these ratios. The Geometric Mean of Pairwise Ratios
(GMPR) (Chen L. et al., 2018) extends the concept of RLE
normalization by reversing the order of computing the geometric
mean and the median. This extension overcomes the zero-inflation
issue frequently observed in microbiome data.

All the scaling methods were directly applied to the microbial
count data and the workflows of scaling methods were shown in
Figure 1C). The formulas for the scaling factors used in our analysis
are presented in Table 2.

2.5.2 Compositional data analysis (CoDA) methods
High-throughput sequencing microbiome datasets are

compositional due to the arbitrary total imposed by the
sequencing instrument (Gloor et al., 2017). The collection of
methods used to analyze compositional data is compositional
data analysis (CoDA) introduced by Aitchison et al. (Aitchison,
1982). They mitigate the impact of sampling fractions by converting
the abundances into log ratios within each sample. The most known
log-ratio transformation is centered log-ratio transformation (CLR)
(Aitchison, 1982). It calculates the log-ratio of counts and their
geometric means within each sample based on relative abundances.
Two other transformations that are sometimes used in CoDA are
additive log-ratio (ALR) (Aitchison, 1982) and isometric log-ratio
(ILR) (Aitchison, 1982). Both of them use a single component as a
reference. However, the choice of reference proposes computational
challenges arising from the large number of taxa. As a result, our
analysis solely focused on CLR. Another limitation of log-ratio
transformations is that they do not account for zeros. We add a
pseudo count of 0.65 times theminimum non-zero abundance to the
zero values (Martín-Fernández et al., 2003).

The TSS normalized data are still compositional since the total
sum of abundances for a sample is fixed to 1. To address the sample-
specific differences, we applied the frequently used TSS
normalization prior to performing the CLR transformation. The
workflow for the CLR can be found in Figure 1C). The formula for
the CLR transformation is provided in Table 3.

2.5.3 Transformation methods
Microbiome data exhibit several problematic properties,

including skewed distributions, unequal variances for individual
taxa, and extreme values. To address these issues when fitting the
prediction model, we proposed to apply transformations to the
microbiome data. These transformations can address one, two, or all
of these problems. We investigated the influence of eight popular
transformation methods in prediction, including LOG, arcsine
square-root (AST), standardization (STD), rank, blom, non-
paranormal (NPN), log counts per million (logCPM), and
variance stabilizing transformation (VST).

The log transformation is commonly used to address skewed
distributions of taxa abundances, resulting in transformed
abundances that are closer to a normal distribution (Zwiener
et al., 2014). To prevent infinite values, a pseudo count of
0.65 times the minimum non-zero abundance is added to the
zero values (Martín-Fernández et al., 2003). Another method,
AST, is employed to reduce the occurrence of extreme values in
the data and achieve a more approximately normal distribution.
STD is the default implementation in many regression analyses for
reducing variations in input features. Rank transformation (Zwiener
et al., 2014), widely used in non-parametric statistics, ensures that
the transformed features are uniformly distributed between zero and
the sample size m. In order to handle ties in zero counts, a small
noise term ϵij ~ N (0, 10–10) is added before the data transformation.
Blom transformation (Beasley et al., 2009; Zwiener et al., 2014)
further takes the uniformly distributed ranks and converts them into
a standard normal distribution. The non-paranormal (NPN)
transformation (Liu et al., 2009) initially converts variables into
univariate smooth functions to estimate a Gaussian copula but can
also be used independently for analysis purposes. Log counts per
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million (logCPM) is a descriptive measure used to assess gene
expression levels in RNA-Seq data. In our analysis, we applied
this transformation to the microbiome data by adding a pseudo
count equal to 0.65 times the minimum non-zero abundance to the
zero values before performing the logarithmic transformation
(Martín-Fernández et al., 2003). The Variance Stabilizing
Transformation (VST) (Anders and Huber, 2010) models the
relationship between mean and variance for each taxon. As a
result, the variance-stabilized counts exhibit a less skewed
distribution but may contain many extreme values. A pseudo

count one was added to zero values as integer inputs are needed
when realizing VST. The formulas for the eight transformation
methods examined in our analysis can be found in Table 3.

The transformation methods mentioned above are mostly
feature-specific. In order to address the sample-specific
differences, these methods are typically combined with scaling
methods, with the exception of logCPM and VST. Based on the
comparable performances of scaling methods in quantitative
phenotype prediction, as demonstrated in Figures 2–4, we opted
to apply transformations solely to the simplest and widely adopted

TABLE 2 Summary of scaling methods.

Method Scaling factor Scaling factor/method description Data
designed for

Availability
(bioconductor/R)

TSS sj = ∑icij Total number of sample reads None stats

UQ sj = q3(Pj) Upper quartile of sample counts different from 0 RNA-Seq stats

MED sj � Median(Pj) Median of sample counts different from 0 RNA-Seq stats

CSS
sj �

∑i|i∈Mj
cij

NCSS

Cumulative sum of counts (up to a percentile l̂
determined by the data)

microbiome metagenomeSeq (Paulson et al., 2013)

TMM
log2(sj) �

∑i∈mTMM
jk

(wi
jk
Mi

jk )∑i∈mTMM
jk

(wi
jk
)

Trimmed mean of log-ratios RNA-Seq edgeR (Robinson et al., 2010)

RLE sj � Mediani
cij

G(ci){ } Median fold-change relative to a References RNA-Seq DESeq2 (Love et al., 2014)

GMPR sj � (∏jMediani|cij ·cik ≠ 0
cij
cik
{ }) 1m Geometric mean of ratios between pairs of samples microbiome GUniFrac (Chen et al., 2018a)

q3 (·) is the function of estimating upper quartile; Median (·) is the function of estimating median; Pj = {cij|cij > 0, i = 1, . . . , n} represents a set of counts different from 0 in sample j;

Mj � {cij |cij ≤ ql̂(cj)} denotes the taxa included in the cumulative summation for sample j;NCSS is an appropriately chosen normalization constant; M-valuesMi
jk � log2

cij /∑i
cij

cik /∑i
cik
is the log2 of the

ratio of two observed relative abundance for a taxon i; A-values Ai
jk � 1

2log2( cij∑i
cij

cik∑i
cik
) is the log2 of the geometric mean of the observed relative abundance;mTMM

jk is the remaining taxa after

the trimming M-values by 30% and the A-values by 5%; wi
jk � ∑i

cij−cij
cij∑i

cij
+ ∑i

cik−cik
cik∑i

cik
represents the weight; G(ci) � (∏m

j�1cij)
1
m is the geometric mean of gene i.

TABLE 3 Summary of transformation methods.

Methods Transformation Preprocess Adjustment Data
designed for

Availability (bioconductor/R)

CLR log xij
G(xj) TSS compositional data compositions (Van den Boogaart and

Tolosana-Delgado, 2008)

LOG log xij TSS Skewness — stats

AST arcsin
���
xij

√
TSS Skewness, Extreme values — stats

STD xij−μi
σ i

TSS Unequal variances — stats

Rank rij TSS Skewness, Extreme values,
Unequal variances

RNA-Seq stats

Blom Φ−1(rij−cm+1) TSS Skewness, Extreme values,
Unequal variances

RNA-Seq stats

NPN Φ−1(δ), if r̂ij ≤ δ

Φ−1(r̂ij), if δ < r̂ij ≤ 1 − δ

Φ−1(1 − δ), if r̂ij ≥ 1 − δ

TSS Skewness, Extreme values,
Unequal variances

— huge (Jiang et al., 2021)

logCPM log2
cij
106

None Skewness RNA-Seq edgeR (Robinson et al., 2010)

VST ∫cij

0
1

v(μi ) dμi
None Skewness RNA-Seq DESeq2 (Love et al., 2014)

Cij and xij represent the count and relative abundance of taxon i in sample j;G(xj) � (∏n
i�1xij)

1
n is the geometric mean of sample j; μi and σi is the mean and standard deviation of taxon i; rij is the

corresponding rank for relative abundance xij; c � 3
8 is a constant;Φ−1 (·) denotes the quantile function of normal distribution; r̂ij � rij

m+1; δ � 1
4m1/4

�����
π logm

√ ; v(μi) � σ2i � μi + aiμ2i , with ai � a0 + a1
μi

being a dispersion parameter and a0 and a1 are estimated in a generalized linear model.
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method, the TSS normalized abundance. The workflows of the
transformation methods are depicted in Figure 1C).

2.5.4 Batch correction methods
Batch effects frequently occur in genomic technologies and can

result from various specimen processing steps. Normalization
methods alone may not adequately address these batch effects
(Zhang et al., 2020). The differences in the overall expression
distribution of each sample across batches may be corrected by
scaling methods such as TMM or RLE. However, the batch effects in

composition cannot be fully corrected with normalization. Many
approaches have been proposed to effectively remove batch effects
for microarray or RNA-Seq data. We applied them to microbiome
data and examined their influence on quantitative phenotype
prediction. In this study, we examined six commonly used
methods: Quantile normalization (QN), Feature specific quantile
normalization (FSQN), Batch mean centering (BMC), Linear
models for microarray data (Limma), ComBat, and Conditional
quantile regression (ConQuR). Table 4 summarizes the involved
batch correction methods.

FIGURE 2
The reproducibility of cross-datasets prediction is limited by various confounding variables. (A) PCoA plot based on Bray-Curtis of TSS normalized
abundances, with colors for different datasets and sizes for different sample sizes. (B) Bar plot of variance explained by different variables (R2) from
PERMANOVA based on Bray-Curtis distance. p values calculated by 1,000 permutations were annotated on the top of the bar, with *** for p <0.001. (C)
Median RMSE of cross-datasets prediction based on TSS normalized abundances using random forests model over 10 repetitions.
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The QNmethod (Bolstad et al., 2003) was originally designed for
DNA microarrays but has been adapted for various types of data.
This approach replaces each value in a target distribution with
the corresponding value from a reference distribution based on
their rank order. In our analysis, we applied quantile
normalization to the training data and used the resulting
normalized distribution as the reference for the test data
(Thompson et al., 2016). Another variation of QN is FSQN
method (Franks et al., 2018), which normalizes features
instead of samples for RNA-Seq data. In FSQN, the reference
distribution consists of the genes in the training set, while the
target distribution consists of the genes in the testing set. Another

method commonly employed for batch effects removal is BMC
(Sims et al., 2008). This method centers the data on a batch-by-
batch basis by subtracting the mean abundance per gene for each
dataset from the individual gene abundance. Limma (Ritchie
et al., 2015) is a popular statistical method extensively used in
genomics. It utilizes linear models to eliminate batch effects.
ComBat (Johnson et al., 2007), on the other hand, incorporates
an empirical Bayes framework to estimate and remove batch
effects while preserving the relevant biological variation. Finally,
ConQuR (Ling et al., 2022) offers a batch effects removal
approach that uses conditional quantile regression to deal with
count tables.

FIGURE 3
Heatmaps depicting median RMSE values obtained from abundance profiles normalized by different methods for predicting simulated quantitative
phenotype in Scenario 1. The panels correspond to relationships between phenotype and phenotype-associated taxa, including (A) linear, (B) quadratic,
(C) inverse, and (D) logistic. The columns represent different values of population effects, while the rows represent different normalization methods.
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The above-mentioned batch correction methods did not
address the differences among samples. To account for this,
we applied TSS method to normalize the training and testing
data. Subsequently, we log-transformed the TSS-normalized
abundance before applying the batch correction methods. To
handle zero values, we replaced them with a pseudo relative
abundance equivalent to 0.65 times the minimum non-zero
abundance across the entire abundance table (Martín-
Fernández et al., 2003). It is important to note that ConQuR,
unlike the other methods, operates directly on microbial counts.
The workflow of the batch correction methods is presented in

Figure 1C) and a summary of the batch correction methods can
be found in Table 4.

2.6 The random forest classifiers

The random forest algorithm is a supervised learning
approach that is capable of handling both regression and
classification problems (Liaw and Wiener, 2002). In our
previous case-control study (Wang et al., 2024), we employed
random forest classification to determine disease status, while in

FIGURE 4
Heatmaps depicting median RMSE values obtained from abundance profiles normalized by different methods for predicting simulated quantitative
phenotype in Scenario 2. The panels correspond to relationships between phenotype and phenotype-associated taxa, including (A) linear, (B) quadratic,
(C) inverse, and (D) logistic. The columns represent different combinations of batch mean and batch variation, with “m” for batch mean adjusting the
mean and “v” for batch variance adjusting the variance. The rows represent different normalization methods.
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this study, we used random forest regression to predict a
quantitative phenotype. The random forest algorithm is well
known for reducing the overfitting problem with large
numbers of predictors and handling complex, high-
dimensional data characterized by non-linear relationships.
Compared with SVM and LASSO, it has been shown to
outperform them when applied to microbiome data (Pasolli
et al., 2016). The implementation of random forest was
carried out using the train() function from the R package
caret (Kuhn, 2008). We constructed a random forest with
1,000 decision trees, and the number of variables at each
decision tree was optimized through grid search using 10-fold
cross-validation.

We evaluated the performance of our predictions using the
RMSE, which quantifies the square root of the average squared
differences between predicted and actual values. The RMSE is
defined as follows:

RMSE �
�������������������
1
n
∑n
j�1

ypred,j − yactual,j( )2√√
, (4)

where n is the number of observations, ypred,j is the predicted value
for sample j, and yactual,j is the actual value for sample j.

To further quantify the relative performance of different
normalization methods, we ranked all normalization methods
based on the median RMSE values when the model was trained
and validated on the same pair of training and testing datasets.
The median RMSE values were arranged in ascending order with
ranks ranging from one to 22. For a given method, a lower
median RMSE corresponded to a lower ranking value, which
indicated better relative performance among the
22 normalization methods being compared.

3 Results

3.1 The reproducibility of cross-study
prediction is limited by various
confounding variables

Using the inclusion criteria outlined in Section 2.2, we
incorporated a total of 5,963 healthy stool samples into our
analysis. These samples were obtained from 31 different datasets

and exhibited various biological and technical differences,
encompassing variations in geographic origin, DNA extraction
techniques, and sequencing platforms (Table 1).

Initially, we examined the BMI values and Shannon indices
within each dataset to identify the overall patterns in sample
characteristics. Supplementary Figure S1 demonstrates
noticeable differences in BMI among samples from different
datasets, with each dataset having its own distinct range. The
average BMI values for each dataset varied significantly, ranging
from 21.2 (DhakanDB_2019) to 30.7 (KeohaneDM_2020), while
the overall average BMI for all samples was 24.9. To assess the
significance of these variations, we performed Wilcoxon tests
comparing the BMI of each dataset with the overall sample
mean. Among the 31 datasets, 10 displayed significantly higher
BMIs than the overall sample mean, while 11 exhibited
significantly lower BMIs. The Shannon indices, as presented
in Supplementary Figure S2, generally mirrored the trends
observed in BMI values, although differences persisted.
Notably, KeohaneDM_2020, despite having the highest
average BMI, demonstrated significantly lower Shannon
indices compared to the overall dataset. Conversely,
LeChatelierE_2013 displayed a significantly higher average
BMI than the overall average but exhibited no significant
differences in Shannon indices.

The similarities among different datasets were evaluated by
PCoA plot based on the Bray-Curtis distance, as depicted in
Figure 2A. Owing to the large sample sizes, the mean point of
each dataset was used to represent the positions of the samples from
that dataset on the PCoA plot. Additionally, the size of the points
indicated the sample size of each dataset. This plot revealed distinct
separations between the datasets, indicating variations in microbial
composition. To further assess the contribution of biological or
technical factors to microbiome variation, PERMANOVA was
performed on the Bray-Curtis distance. Figure 2B illustrates that
all seven factors considered in the analysis accounted for a
significant proportion of the variations. The three most
influential factors affecting the community structures of the
microbiome data were datasets, country, and DNA extraction kit,
followed by sequencing platform, age, gender, and BMI.

Subsequently, the impact of heterogeneities on the
reproducibility of BMI prediction was examined based on
abundance profiles normalized by the simplest the most
commonly used method, TSS. The classifier was trained on each

TABLE 4 Summary of batch correction methods.

Methods Preprocess Methods description Data designed for Availability
(bioconductor/R)

QN TSS, LOG Equal the quantiles of the distributions across different samples DNA microarray preprocessCore (Bolstad, 2021)

FSQN TSS, LOG Equal the quantiles of the distributions across different features RNA-Seq FSQN (Franks et al., 2018)

BMC TSS, LOG Subtract the mean abundance of batch per feature DNA microarray pamr (Hastie et al., 2019)

Limma TSS, LOG Use linear model to remove batch effects DNA microarray limma (Ritchie et al., 2015)

Combat TSS, LOG Use empirical Bayes framework to remove batch effects DNA microarray sva (Leek et al., 2012)

ConQuR None Use conditional quantile regression to remove batch effects microbiome ConQuR (Ling et al., 2022)

Frontiers in Genetics frontiersin.org12

Wang and Luan 10.3389/fgene.2024.1369628

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1369628


individual training set (dataset 1), and the model was applied to each
testing set (dataset 2). The cross-prediction matrix of RMSE values,
obtained using random forest models on TSS normalized
abundances, is illustrated in Figure 2C. The median RMSE values
exhibited variation across datasets and were influenced by multiple
factors. Importantly, a significant disparity in RMSE values was
observed when different datasets were used as the training dataset to
predict KeohaneDM_2020. Specifically, 18 out of 30 datasets
exhibited RMSE values exceeding 7, indicating an inaccurate
prediction of the BMI in KeohaneDM_2020. This finding aligned
with the substantial differences in microbiome composition
compared to the other datasets. LeChatelierE_2013 was another
dataset demonstrating relatively poor prediction repeatability,
despite not differing significantly from other datasets in terms of
its Shannon indices. In contrast, the dataset LifeLinesDeep_
2016 displays significant differences in the PCoA plot compared
to other datasets, yet it performs well in predicting and can also be
effectively predicted by other datasets. This phenomenon can
possibly be attributed to its relatively larger sample size. In
conclusion, these results indicate that the reproducibility of
response predictions were influenced by various factors.

The presence of confounding factors, such as country and DNA
extraction kit, led to notable variations in the background
distributions of taxa. We conducted an evaluation to ascertain
whether models trained on one dataset could accurately predict a
quantitative phenotype for samples in another dataset. Additionally,
we examined whether the implementation of normalization
methods could enhance prediction performance in the
following sections.

3.2 Batch correction methods are necessary
for quantitative phenotype prediction

In our simulation studies, we evaluate the influence of
heterogeneity on prediction performance across three distinct
scenarios and using four different types of quantitative
phenotypes. Additionally, we analyze and compare the prediction
performance of various normalization methods.

In Scenario 1, we evaluated the impact of various normalization
methods on the prediction of quantitative phenotypes across diverse
background distributions of taxa. The experiments were repeated
100 times, and the median RMSE values were calculated based on
abundance profiles normalized by different methods. The results are
presented in Figure 3. We find that prediction accuracy decreases as
population effects increase, as evident from the corresponding
increase in RMSE values. However, different normalization
methods exhibit minimal variation in predicting quantitative
phenotypes. For instance, considering the linear relationship of
phenotypes (Figure 3A), at a population effect of 0.2, the
maximum and minimum RMSE values for different methods
differ by 0.08. This difference slightly increases with an increase
in population effect, peaking at a population effect of 1, where it
reaches 0.23—still a very small difference. Similar trends are
observed for quadratic (Figure 3B), inverse (Figure 3C), and
logistic (Figure 3D) relationships of phenotypes. These findings
suggest that, among the 22 normalization methods we compared,
none of them outperforms the others in predicting quantitative

phenotypes when the population effect is fixed. We further rank the
median RMSE of different normalization methods derived from the
identical set of simulation parameters, such as a linear relationship
and ep = 0. The distribution of rankings can be found in
Supplementary Figure S3A. Despite observing variations in the
relative performance of different methods, the minor disparities
in median RMSE render little reference values for rankings
in Scenario 1.

In Scenario 2, we investigated the impact of batch effects on
model prediction performance when utilizing abundance profiles
normalized by different methods. Figure 4 demonstrates the median
RMSE obtained from random forest models using abundance
profiles normalized by different methods across 100 runs. As
expected, we observe an increasing trend in RMSE values for all
methods as batch effects increase. Interestingly, we find that batch
effects of the mean taxa abundance appeared to have a greater
impact than the variance of taxa abundance, especially in terms of
model prediction performance. Furthermore, when compared to
scaling methods and transformation methods, batch correction
methods exhibit lower RMSE values, particularly when large
batch mean differences are present. This trends are also validated
by the lower ranks of batch correction methods (Supplementary
Figure S3B). Among the six batch correction methods, in the case of
a logistic relationship of phenotypes (Figure 4D), when the batch
variance is set to one and the batch mean to 500 or 1,000, BMC and
Limma demonstrate similar performance, with the lowest predictive
accuracy among all normalization methods. However, their
respective RMSE values differ by no more than 0.05 from the
minimum RMSE value. This minimal difference can be
considered negligible in practical predictions. Additionally, the
performance of ComBat is noteworthy. It exhibits lower
predictive accuracy than other batch correction methods in linear
(Figure 4A), quadratic (Figure 4B), and inverse (Figure 4C)
relationships of phenotypes. However, in the case of a logistic
relationship of phenotypes, it outperforms all other methods.
This inconsistency highlights the need for caution when using
ComBat for batch correction.

Figure 5 illustrates the findings from simulation scenario 3,
which investigated the influence of different phenotype-associated
feature models. Ideally, as the number of overlapping phenotype-
associated taxa increases, the RMSE values should decrease.
However, the choice of these taxa can significantly impact the
prediction of quantitative phenotypes due to the shared
background distributions of taxa. If randomly selected
phenotype-associated taxa predominantly have zero values, it
leads to similarity in the phenotype model during training and
testing. This phenomenon is particularly noticeable when the
overlapping number is two in both linear (Figure 5A) and
quadratic (Figure 5B) relationships of phenotypes. In these cases,
the median RMSE value at overlap = 2 is lower than the median
RMSE value at overlap = 4. Across the four different types of
quantitative phenotypes, the RMSE reaches its minimum at
overlap = 10, suggesting that at this point, phenotypes can be
accurately predicted. However, similar to scenario 1, the
performance of different normalization methods remains
relatively consistent, with no single method significantly
outperforming the others in predicting quantitative phenotypes.
Moreover, the rankings of different normalization methods in
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Supplementary Figure S3C do not possess any meaningful reference
value due to the negligible differences among them in the same
parameter combinations.

In our simulations for predicting quantitative phenotypes, we
consistently found that no normalization method exhibited consistent
advantages over the others. However, given the frequent occurrence of
batch effects and the satisfactory performance of batch correction
methods in predicting datasets with such effects in both the training
and testing sets, we highly recommend utilizing batch correction
methods as an initial step prior to predicting quantitative phenotypes.

3.3 Use QN and ComBat normalization
carefully in quantitative phenotype
prediction

In the following analysis, we assessed the performance of
different normalization methods using a set of 31 shotgun
sequencing datasets obtained from healthy stool samples
(Table 1). Each dataset was paired, with one assigned for model
training and the other for validation purposes. For each method, we
calculated the RMSE values based on the normalized abundance

FIGURE 5
Heatmaps depicting median RMSE values obtained from abundance profiles normalized by different methods for predicting simulated quantitative
phenotype in Scenario 3. The panels correspond to relationships between phenotype and phenotype-associated taxa, including (A) linear, (B) quadratic,
(C) inverse, and (D) logistic. The columns represent different numbers of overlapping disease-associated taxa in the training and testing datasets. The
rows represent different normalization methods.
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using a random forest model. To account for the randomness
inherent in the prediction model, we repeated the predictions
10 times and report the median RMSE value for each study.

Supplementary Figure S4 shows boxplots of the median RMSE
obtained from predictions made using various models on specific test
datasets. Within these specific test datasets, we performed Wilcoxon
tests to evaluate the differences in means between different methods
and the average mean. Our observations indicate that all methods
encounter limitations due to biological and technical factors when
predicting quantitative phenotypes, despite their best efforts. None of
the methods exhibited significant reductions in the prediction’s RMSE,
and no significant differences were observed among them. This aligns
with the conclusions derived from our simulations. For instance, as
shown in Supplementary Figure S4C2, when KeohaneDM_2020 was
used as the test dataset while others served as training sets, the RMSE
values varied from 5.5 to 11.9 depending on the selected training data.
The median RMSE values were approximately 8.2, without any
significant differences observed among them.

To quantify the performance of normalization methods, we ranked
all normalizationmethods based on the median RMSE values when the
model was trained and validated on the same pair of training and testing
datasets. Figure 6 shows the distributions of the ranks for each method
across the 31 studies. A higher ranking (lower values in the box plot)
indicates a better prediction performance. While all normalization
methods had similar performance, batch correction methods
exhibited slightly better results. It is worth mentioning that QN and
ComBat, among the batch correction methods, displayed fluctuations
that made them susceptible to extreme rankings compared to the other
twenty-two normalization methods. Methods like CLR, LOG, and
logCPM showed similar patterns. Therefore, caution should be
exercised when employing these methods. Based on these findings,
we suggest employing batch correction methods like FSQN, BMC, and
Limma when making predictions for quantitative phenotypes.

4 Discussion

Normalization is an essential step in metagenomic data analysis.
Various normalization methods have been proposed to mitigate the
challenges of heterogeneity. While the comparison of these methods
focused on their impact on differential analysis (McMurdie and
Holmes, 2014; Weiss et al., 2017), the effects of heterigeneity on
quantitative phennotype predictions have not been well addressed.
Therefore, in this study, we investigated the influence of different
normalization methods in cross-datasets prediction of quantitative
phenotypes using simulations and real heterogeneous datasets.

In our simulations, we examined three sources of heterogeneity:
population effects, batch effects, and phenotype-associated feature
models. Population effects account for variations resulting from
differences in population characteristics, including environmental
factors, geographical locations, and others. Batch effects arise from
technical variations introduced during data collection or processing,
such as sequencing technologies, sample preparation, or
experimental procedures. Phenotype-associated feature models
represent the underlying patterns and features associated with the
targeted phenotype. Discrepancies in this aspect can lead to reduced
predictive performance, as a model trained on one dataset may
struggle to effectively generalize to another dataset.

Furthermore, we examined four types of relationships between
microbial features and quantitative phenotypes in the simulations,
including linear, quadratic, inverse, and logistic. A linear relationship
represents the simplest connection between microbial features and
quantitative phenotypes. In this type of relationship, changes in
microbial features result in proportional changes in quantitative
phenotypes. For instance, Turnbaugh et al. demonstrated a linear-
like relationship between the abundance of Bifidobacteria and the
concentration of fecal short-chain fatty acids (SCFA) (Turnbaugh et al.,
2006). However, the human microbiome is a complex ecosystem,
leading to non-linear interactions between microbial features and
phenotypes. We considered three non-linear relationships:
quadratic, inverse, and logistic. A quadratic relationship suggests
that changes in phenotypes initially occur proportionally but
deviate beyond a certain threshold, resulting in a curved or
parabolic shape. For example, Akkermansia muciniphila has been
associated with improvements in metabolic parameters such as insulin
sensitivity and lipid profile. However, both low and excessively high
levels of Akkermansiamuciniphila are linked tometabolic dysfunction,
indicating a non-linear relationship with metabolic phenotype (Dao
et al., 2016). An inverse relationship indicates competitive or inhibitory
interactions between microbial taxa or functional groups where an
increase in one taxon leads to a decrease in another, resulting in
reciprocal changes in phenotype levels. For example, Streptococcus
mutans negatively correlates with dental caries susceptibility, where
higher levels of Streptococcus mutans increase the risk of caries
development (Takahashi and Nyvad, 2011). A logistic relationship
describes a sigmoidal curve where changes in one variable initially have
minimal effects on the phenotype, followed by a rapid increase or
decrease until reaching a plateau or asymptote. This relationship can be
observed in E. coli and urinary tract infection (UTI) severity (Kaper
et al., 2004). In low abundance, Escherichia colimay act as a commensal
or beneficial organism in the gut microbiota. However, beyond a
certain threshold, colonization of uropathogenic E. coli in the urinary
tract can lead to UTIs, with increasing abundance correlating with
higher UTI severity, illustrating a logistic relationship between E. coli
abundance and UTI risk. Together with the real heterogeneous
datasets, our investigation provides comprehensive insights into the
performance and suitability of different normalization approaches for
predicting quantitative phenotypes.

In our previous study of binary phenotype prediction (Wang et al.,
2024), scaling methods, such as TMM, demonstrated relatively good
performance, while transformationmethods, includingNPN and Blom,
exhibited promising results in certain datasets. Furthermore, batch
correction methods, such as BMC and Limma, consistently
performed well across multiple datasets. The challenges encountered
in predicting quantitative phenotypes were evident across all
normalization methods, as none of them achieved a significant
reduction in the RMSE of the predictions irrespective of the
approach employed. These findings align with our simulations and
underscore the complex nature of metagenomic data, which is prone to
both biological and technical variations. Hence, it is reasonable to infer
that the limitations are inherent to the data itself rather than being
contingent on the choice of normalization method.

The absence of significant differences among the normalization
methods is an important observation. Despite considering a wide
range of relationships between phenotypes and taxa abundance
profiles (linear, quadratic, inverse, and logistic), the variation in
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RMSE values remains consistently low across the methods. This
performance of normalization methods across various scenarios is a
valuable finding as it enables researchers to choose methods based
on other criteria without compromising predictive performance.

However, our analysis unveiled a modest advantage of batch
correction methods over other normalization techniques.
Specifically, we observed slightly improved results when
employing these methods. Among the recommended methods for
predicting quantitative phenotypes are FSQN, BMC, and Limma.
Although they may not yield drastic performance enhancements,
their slightly superior performance signifies potential robustness in
tackling the inherent challenges of metagenomic data, particularly in
the prediction of quantitative phenotypes.

It is crucial to acknowledge that certain normalization methods,
namely, QN and ComBat, exhibited fluctuations that heightened their
susceptibility to extreme rankings. These fluctuations underscore the
importance of exercising caution when selecting specific normalization
techniques. Hence, researchers must carefully evaluate the suitability of
a chosen method for their particular dataset and research question,
taking into account the unique characteristics and potential fluctuations
inherent in their data. Unfortunately, the heterogeneity between
datasets is the result of multiple factors, and our current data does
not support the selection of unstable methods like QN or ComBat.
Further research is needed to quantify the magnitude of heterogeneity
and its impact on predictions. As a result, we did not recommend
methods with extreme rankings, such as QN and ComBat.

In conclusion, the performance of normalization methods in
analyzing metagenomic data remains an active and ongoing area of
research. Our study contributes to this field by conducting a
comprehensive evaluation of various methods and providing
valuable insights into their effectiveness in predicting quantitative
phenotypes. From our findings, it appears that batch correction
methods may be preferable. However, it is still crucial for
researchers to continue exploring and developing novel techniques
to further enhance the accuracy of predictions in the intricate realm of
metagenomic data. Ultimately, the selection of a normalization method
should be made judiciously, considering the specific characteristics of
the dataset and the research objectives, as there is currently no

universally applicable solution in this challenging domain. If there is
limited knowledge about the datasets, we recommend incorporating
batch correctionmethods, such as BMCor Limma, into the quantitative
phenotype prediction of metagenomic data across different datasets.
This involves using scaling methods to reduce biases introduced by
sequencing technology, and then applying a LOG transformation to
approximate a more normally distributed data, aligning with the
assumptions of batch correction methods. By subsequently
employing batch correction methods, we enhance the robustness of
the analysis. We posit that this pipeline has the potential to improve the
accuracy and reliability of cross-dataset predictions of quantitative
phenotypes based on metagenomic data.
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