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Ferroptosis has been observed to play an important role during erythrocyte
differentiation (ED). However, the biological gene markers and ferroptosis
mechanisms in ED remain unknown. We downloaded the datasets of ED in
human umbilical cord blood-derived CD34+ cells from the Gene Expression
Omnibus database. Using median differentiation time, the sample was
categorized into long and short groups. The differentially expressed
ferroptosis-related genes (DE-FRGs) were screened using differential
expression analysis. The enrichment analyses and a protein–protein
interaction (PPI) network were conducted. To predict the ED stage, a logistic
regression model was constructed using the least absolute shrinkage and
selection operator (LASSO). Overall, 22 DE-FRGs were identified. Ferroptosis-
related pathways were enriched using Gene Ontology and the Kyoto
Encyclopedia of Genes and Genomes. Gene Set Enrichment Analysis and
Gene Set Variation Analysis revealed the primary involvement of DE-FRGs in
JAK-STAT, MAPK, PI3K-AKT-mTORC1, WNT, and NOTCH signaling pathways.
Ten-hub DE-FRGs were obtained using PPI analysis. Furthermore, we
constructed mRNA-microRNA (miRNA) and mRNA-transcription factor
networks. Immune cell infiltration levels differed significantly during ED.
LASSO regression analysis established a signature using six DE-FRGs (ATF3,
CDH2, CHAC1, DDR2, DPP4, and GDF15) related to the ED stage.
Bioinformatic analyses identified ferroptosis-associated genes during ED,
which were further validated. Overall, we identified ferroptosis-related genes
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to predict their correlations in ED. Exploring the underlying mechanisms of
ferroptosis may help us better understand pathophysiological changes in ED
and provide new evidence for clinical transformation.
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ferroptosis, erythrocyte differentiation, human umbilical cord blood-derived CD34+ cell,
immunocyte infiltration, bioinformatic analysis

1 Introduction

Erythropoiesis is a complex, tightly regulated process. Altered
erythroid production leads to various types of anemia and
hemoglobin disorders including thalassemia syndrome, inherited
bone marrow failure, chronic anemia, polycythemia vera, and sickle
cell anemia (Zhang Y. et al., 2022). Billions of people are affected by
various erythrocyte-related diseases worldwide, posing a significant
public health challenge (Srivastava et al., 2022). Erythrocyte
transfusion is indispensable and irreplaceable not only for
patients with anemia and hemoglobin disorders, but also for
modern medical practices, such as cancer treatment and surgery
(Lee et al., 2023). However, the whole process, from blood collection
to clinical use, consumes a significant amount of resources, and there
are many problems to solve, such as the spread of pathogenic
microorganisms, the cost of the whole process, and
approximately 118.5 million units of blood collected globally each
year, which are insufficient to meet the annual global demand of
over 300 million units for blood transfusions (Christaki et al., 2019).
An aging population and emerging risks of viruses and pathogens
exacerbate the problem of supply shortages. The development of
alternative blood transfusion products helps mitigate erythrocyte
shortages and transfusion limitations. Each unit of transfused blood
contains a trillion erythrocytes. However, obtaining such large
quantities of erythrocytes in vitro involve overcoming several
challenges. The bottleneck of low adult β-hemoglobin expression
and nucleation efficiency remains to be resolved. The regulatory
mechanism during erythroid differentiation will help to further
study and ultimately identify the molecular pathways involved in
the pathological process of erythroid diseases and provide great
promise for transfusion medicine and novel cell-based therapies.

Developing erythroid precursors absorb exceptionally large
amounts of iron to accommodate increased synthesis of heme
(Ryu et al., 2017; Philpott, 2020). Iron could be released from
ferritin, where most of the cellular iron is stored through a process
known as “ferritinophagy” (Dowdle et al., 2014; Mancias et al.,
2014). Ferritinophagy is an important step for iron release before
mitochondrial iron import and heme biosynthesis (Nilsson et al.,
2009; Mancias et al., 2015). Ferritinophagy initiates ferroptosis by
promoting iron accumulation. Ferroptosis is an active mode of cell
death, defined as catalytic Fe(II)-dependent regulated necrosis
accompanied by lipid peroxidation (Toyokuni et al., 2023).
Ferroptosis involves embryonic hematopoiesis, particularly
erythropoiesis in rats (Zheng et al., 2021). Ferroptosis is
observed in the extraembryonic endodermal component of the
visceral yolk sac, which induces blood precursors, and in
embryonally nucleated erythrocytes that, disappear in
enucleated erythrocytes (Zheng et al., 2021). Ferroptosis
inhibitors significantly delay erythrocyte enucleation.

Additionally, ferroptosis may mediate B-cells differentiation
(Chen et al., 2022). Abnormal ferroptosis damages the
development erythrocytes, leading to erythropoiesis suppression
and anemia (Chen et al., 2022). Ferroptosis has new therapeutic
potential for blood cell-related diseases. In many patients with
heart failure, inflammation, and oxidative stress lead to an iron-
deficient state, which can limit erythropoiesis in erythroid
precursors (Packer, 2022). Increasing the levels of cytosolic Fe
(2+) available to the mitochondria enables the synthesis of heme
from erythroid precursors (Packer, 2022). However, the genes
significantly related to ferroptosis in erythropoiesis are
unknown, and whether ferroptosis genes can be used as
biomarkers to discriminate between early and late
differentiation is yet to been reported.

CD34+ cells isolated from umbilical cord blood (UCB) serve as a
valuable model system to study gene regulation of erythropoiesis.
This study obtained data on the erythrocyte differentiation (ED) of
human umbilical cord blood-derived CD34+ cells from the Gene
Expression Omnibus (GEO) database for bioinformatic analysis to
screeng differentially expressed genes (DEGs) between early and late
differentiation. Subsequently, the differentially expressed
ferroptosis-related genes (DE-FRGs) were acquired. Their ability
to diagnose the differentiation stage, biological functions, and
regulatory networks was analyzed. We also identified hub genes
and predicted their association with immune cell infiltration. Our
findings explain the potential role of ferroptosis in erythropoiesis
and may provide new directions for treating of erythrocyte-
related diseases.

2 Methods

2.1 Data collection

Expression profile data associated with ED were obtained from
the GEO database (Barrett et al., 2013). ED-related datasets were
retrieved using the following keywords: “umbilical cord blood
CD34+ cells” and “Homo sapiens.” Our study comprised data
from 46 data from UCB-CD34+ cell-derived erythroid
progenitors at different time points of differentiation. We
downloaded the (ED)-related datasets GSE49438 (a total of
12 samples harvested on day 21, 42, 49, and 56) (Li B. et al.,
2014), GSE118537 (a total of 28 samples harvested on day 0, 2,
4, 6, 7.5, 8, 8.5, 10, 10.5, 11, 11.5, 12, 14, and 16) (Gillespie et al.,
2020) and GSE156306 (a total of 6 samples harvested on day 8, 10,
and 12) (Guo et al., 2020) using the R package GEOquery (Davis and
Meltzer, 2007). The details of the database are presented in Table 1.

Additionally, 753 ferroptosis-related genes (FRGs) were
obtained by combining and deduplicating genes from the
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GeneCards (Stelzer et al., 2016), Molecular Signatures Database
(MSigDB) (Liberzon et al., 2015) and FerrDb online databases
(Zhou and Bao, 2020).

2.2 Identification of DE-FRGs

We used R package sva (Leek et al., 2012) to de-batch the three
datasets and obtained the integrated GEO dataset as an ED-dataset
(Supplementary Figure S1). ED can be categorized into the early
proliferation and late differentiation stages. Based on the median
cultivation time (11 days) of the ED dataset, we divided the group
into long cultivation time (long) and short cultivation time (short)
groups for difference analysis. According to the three literatures, most
cells in the short and long groups were in the proliferation and
differentiation stages, respectively. The linear model for microarray
data (limma) package was used to identify DEGs between samples from
long group and those from those from short group. The p-value
correction method used was BH procedure. The screening
thresholds for DEGs are |log2FoldChange (logFC)| >1.5 and
adjusted p < 0.05 and presented as a volcano map drawn using the
R package ggplot2. The upregulated DEGswith log2FC > 1.5 and
adjusted p < 0.05 and the downregulated DEGs as genes with
log2FC < −1.5 and adjusted p < 0.05 were intersected with FRGs
and presented as Venn diagram, respectively. The DEG results were
obtained using volcano plots and heat maps drawn with the R package
ggplot2 and pheatmap, respectively. DE-FRGs were identified by
intersecting the DEGs and FRGs. We used the R package RCircos
(version 1.2.2) (Zhang et al., 2013) to draw a chromosome localization
map and observe the distribution positions of the screenedDE-FRGs on
human chromosomes. The DE-FRG expression in the ED dataset was
displayed as a heatmap drawn using the R package pheatmap.

2.3 Gene ontology (GO) and Kyoto
encyclopedia of genes and genomes (KEGG)
enrichment analysis

GO and KEGG enrichment analyses were conducted using the R
package clusterProfiler (Version 4.10.0) and R package GOplot
(Version: 1.0.2), respectively (Yu et al., 2012). The threshold was
set as p < 0.05, the false discovery rate (FDR) value (q.Value)
was <0.25. Combined with the log2FC values, enrichment
analyses were performed by calculating Z-scores using the R
package GOplot.20.

2.4 GSEA

We retrieved the gene set “c2.cp.v7.2. symbols” in theMSigDB.
We conducted enrichment analysis on all genes within the long and
short groups of the ED-dataset using the R package cluster Profiler.
The parameters were as follows: the seed was 2020, the number of
calculations was 10,000, and each gene set contained at least five
genes, and at most 500 genes, and the screening criteria for
significant enrichment were p < 0.05 and FDR
value (q.Value) < 0.25.

2.5 Gene set variation analysis (GSVA)

We obtained the gene set “H.A.v7.4. Symbols.gmt” from the
MSigDB database for GSVA and investigated the variation in
biological processes between the long and short groups of the
ED dataset. Statistical significance for enrichment was set
at p < 0.05.

2.6 PPI network, mRNA-miRNA, and
mRNA--transcription factor (TF)
prediction networks

The STRING database was used to construct a PPI network
associated with DE-FRGs (with a minimum required interaction
score of 0.400). The PPI network model was visualized using the
Cytoscape software (version 3.9.1). The GeneMANIA website was
used to predict the functional similarity of the selected DE-FRGs and
construct an interaction network. ENCORI and CHIPBase
databases (Li J. H. et al., 2014) (version 3.0) (https://rna.sysu.edu.
cn/chipbase/database) predicted that the miRNAs supported more
than three databases and TF supported more than 6 document
interaction with DE-FRGs, respectively. Subsequently, the
Cytoscape software was used to visualize the interaction between
mRNA-miRNAs and mRNA-TF.

2.7 Construction of subtypes of erythrocyte
differentiation though consistent clustering

Cluster analysis based on DE-FRGs was performed using
Consensus Cluster Plus (Wilkerson and Hayes, 2010) with the
standard (the number of clusters was set between two and eight,

TABLE 1 List of dataset information.

Items GSE49438 GSE118537 GSE156306

Platform GPL10558 GPL11154 GPL20301

Species Homo sapiens Homo sapiens Homo sapiens

Disease erythrocyte differentiation erythrocyte differentiation erythrocyte differentiation

Tissue umbilical cord blood umbilical cord blood umbilical cord blood

Samples in Case group 12 28 6

References Li et al. (2014a) Gillespie et al. (2020) Guo et al. (2020)
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and 80% of the total samples were extracted by repeating
1,000 times = “km,” distance = “euclidean”).

2.8 Immune infiltration analysis of single
sample gene set enrichment analysis
(ssGSEA) ssGSEA algorithm and
CIBERSORT algorithm

Based on the expression of FRGs in the dataset, the FRGs score
of each sample was obtained using the ssGSEA algorithm to
represent the FRGs expression level of the sample. The group
was then divided into high and low FRGs scores bounded by the
median FRGs score.

Based on the median FRGs of the samples, the gene set was
divided into high and low FRG score groups for the gene correlation
analysis. The difference in infiltration abundance of immune cells
between groups with high and low FRG scores in the ED dataset of
28 immune cell types is demonstrated using a boxplot plot, and the
correlation between immune cells and FRGs is shown through
correlation heat map and correlation scatter plot.

CIBERSORTx is a deconvolution of the transcriptome
expression matrix that is used to estimate the composition and
abundance of immune cells among mixed cells. The gene expression
matrix data were grouped and uploaded to the CIBERSORTx
website. Combined with the LM22 characteristic gene matrix,
immune cell infiltration matrix data were obtained and displayed
in stacked bar charts. Subsequently, we combined the gene
expression matrix to calculate the correlation between immune
cells and DE-FRGs and drew a correlation heat map using the R
package pheatmap. The correlation between immune cells and FRGs
was determined using Spearman’s rank correlation coefficient and
visualized using the R package ggplot2.

2.9 The least absolute shrinkage and
selection operator (LASSO) model, and
logistic model identification of optimal
diagnostic genes

To obtain an ED diagnostic model for FRGs, we used 10x cross-
validation on the ED-dataset with a seed number of 123, performed
LASSO regression, and ran 1,000 cycles to prevent overfitting
(Zhang et al., 2023). Subsequently, we analyzed the DE-FRGs in
the LASSO diagnostic model using a univariate logistic model. DE-
FRGs meeting the threshold (p < 0.10) were identified using a
multivariate logistic model. A nomogram was drawn using RMS to
show the relationship between DE-FRGs in the diagnostic model
based on the results of the multi-factor logistic model. Finally, we
drew a calibration curve using calibration analysis to evaluate the
accuracy and resolution of the logistic model based on the DE-FRGs.

2.10 RNA isolation and quantitative reverse-
transcription PCR (RT-qPCR)

One million CD34+ cells from 100 mL of human umbilical cord
blood were purified using anti-CD34 antibodies linked to magnetic

microbeads. Subsequently, primary human CD34+ hematopoietic
progenitor cells were differentiated ex vivo in IMDM (Thermo
Fisher Scientific, Waltham, Massachusetts) containing 20%
knockout serum replacement and 2 mM GlutaMAX (Thermo
Fisher Scientific), 25 μg/mL insulin, 150 μg/mL transferrin,
40 μg/mL inositol, 10 μg/mL folic acid, 90 ng/mL ferric nitrate,
900 ng/mL ferrous sulfate, and 160 μM monothioglycerol (all from
Sigma-Aldrich, St. Louis, Missouri). From induction day 0 to day 8,
the cells were cultured in medium supplemented with 1 nM
dexamethasone (Sigma-Aldrich), 10 ng/mL IL-3,100 ng/mL stem
cell factor (both from Peprotech, Rocky Hill, New Jersey), and 3 U/
mL erythropoietin (Epo, R&D Systems, Minneapolis, Minnesota).
From induction day 8–14, expanded erythroblasts were cultured in
the presence of 3 U/mL Epo and 100 ng/mL stem cell factor. From
day 14, the erythroblasts were cultured in the presence of
3 U/mL Epo.

From days 8–12, the major population of the cells was in the
proliferation stage, while from day 16, the major population of
the cells was in the differentiation stage. Cells were separately
harvested after 8, 12, and 16 days of differentiation for RNA
isolation and qRT-PCR analysis. RNA extraction, cDNA
synthesis, and qPCR were performed as previously described
(Liu et al., 2020). The comparing relative fold expression
differences of each gene were normalized to the expression of
day 8 by the method of 2−ΔΔCt. The primer sequences are listed in
Supplementary Table S1.

2.11 Statistical analysis

All data processing and statistical analyses were performed
using the R software Version 4.1.2 (The R Foundation for
Statistical Computing, Vienna, Austria). Continuous variables
were compared using Wilcoxon rank-sum test. One-way analysis
of variance followed by Dunnett’s multiple comparison test was
used to compare means among the different groups. A ROC curve
was generated to assess the model performance. Correlations
were calculated using Spearman correlation analysis. A two-sided
p < 0.05 was considered statistically significant.

3 Results

3.1 Identification of DEGs and ferroptosis-
related DEGs

The workflow chart of this study is shown in Figure 1. A
differential study of long and short samples revealed 782 DEGs,
of which 481 and 301 were upregulated and down-regulated in long
samples, respectively (Figure 2A). The intersections of DEGs and
FRGs yielded 25 DE-FRGs, of which 18 and 7 were up-regulated
(Figure 2B) and downregulated in long samples (Figure 2C),
respectively. The grouping comparison diagram (Figure 2D)
shows that 22 of the 25 DE-FRGs were statistically significant
(p < 0.05). The positions of these 22 DE-FRGs on the human
chromosomes were used to draw a chromosomal localization map
(Figure 2E). These 22 FRGs were mainly distributed on
chromosomes 1 and 2. ATF3, DDR2 and MAP1LC3C are located
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on chromosome 1, DPP4, EFEMP1, GALNT14, IL1B and MYCN
are located on chromosome 2, and there are only 0–2 FRGs
distributed on other chromosomes.

A heat map (Figure 2F) shows the expression of the 22 DE-
FRGs in ED-dataset. To determine the diagnostic value of

discriminating the early stage from the late stage of ED, ROC
curves of the 22 FRGs were plotted (Supplementary Figure S2).
Except for CDH2 (area under the curve [AUC] = 0.674), all other
21 FRGs (AUC 0.7–0.9) demonstrated moderate
predictive accuracy.

FIGURE 1
The flow chart of data preparation, processing, and analysis. ED, erythrocyte differentiation. FRGs, ferroptosis-related genes. GO, Gene Ontology.
KEGG, Kyoto Encyclopedia of Genes and Genomes. GSVA, Gene Set Variation Analysis. GSEA, Gene Set Enrichment Analysis. PPI, Protein-protein
interaction. TF, transcription factor. ssGSEA, single-sample gene set enrichment analysis. LASSO, least absolute shrinkage and selection operator.
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3.2 Enrichment analysis reveals crucial
processes and pathways during ED

To elucidate the biological functions and pathways that were
associated with the 22 DE-FRGs, we then performed GO and
KEGG analysis analyses, which are demonstrated by using the
bar map (Figure 3A) and circular network diagram (Figure 3B),
respectively. The GO analysis suggested that these DE-FRGs
were mainly enriched in the regulation of extrinsic apoptotic
signaling pathway, RNA polymerase II transcription regulator
complex, and receptor receptor-ligand activity. Moreover, the

results of KEGG revealed that these DE-FRGs were mainly
enriched in the ferroptosis, and NOD-like receptor signaling
pathways. Subsequently, a chord diagram (Figure 3C) and donut
plot (Figure 3D) were constructed to show that these 22 DE-
FRGs underwent GO and KEGG enrichment analysis of the
combined log2FC. The results showed that ossification (GO:
0001503) was significantly up-regulated. We selected a
representative KEGG pathway to construct a ferroptosis
pathway diagram (Figure 3E).

GSEA was performed to analyze the relationship between all
gene expression and participating biological processes, affected cell

FIGURE 2
Expression differences of FRGs in ED datasets. (A) Volcano map of DEGs between long and short group. The DE-FRGs were obtained after
intersecting the up-regulated (B) and down-regulated (C) DEGs with FRGs. (D) Grouping comparison diagram of DE-FRGs in ED-dataset. (E)
Chromosome mapping of DE-FRGs. (F) Heat map of 22 DE-FRGs in ED-dataset. The comparison between two grous is performed using the Wilcoxon
rank sum test. The comparison is performed using theWilcoxon rank sum test. *P adj < 0.05, and **P adj< 0.01, ***P adj < 0.001, DEGs, differentially
expressed genes. FRGs, ferroptosis-related genes. DE-FRGs, differentially expressed ferroptosis related to genes. ED, erythrocyte differentiation.
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FIGURE 3
GO and KEGG analysis. (A) Bar graph showing the results of GO and KEGG analysis. (B) GO enrichment analysis results of DE-FRGs are shown in a
circular network diagram. DE-FRGs combined log2FC are shown in the chord diagram (C) and donut plot (D). The red and blue dots represent up-
regulated (log2FC > 0) and t down-regulated (log2FC < 0) genes, respectively. (E) KEGG pathway diagram of ferroptosis (hsa04216). DE-FRGs,
differentially expressed ferroptosis-related genes. GO, Gene Ontology. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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components, and molecular functions of ED-datasets. GSEA
indicated that the 22 DE-FRGs in the ED dataset were
significantly enriched in the ferroptosis, NOTCH pathway, WNT
signaling pathway and pluripotency, hippo signaling pathway, fceri-
mediated MAPK activation, and HEDGEHOG-, and JAK-STAT
-signaling pathways (Supplementary Figures S3A–H). GSVA was
conducted to explore the differences in the hallmark gene sets during
differentiation. The results showed that 21 hallmark gene sets
differed between the long and short groups, such as oxidative
phosphorylation, hypoxia, cholesterol homeostasis, WNT/beta-
catenin signaling, JAK-STAT3 signaling, PI3K-AKT-MTOR
signaling, MTORC1 signaling pathways (p < 0.05) (Figure 4A). A
grouping comparison map was drawn for these 21 hallmark gene
sets (Figure 4B) to further illustrate the expression differences.
Differences in the 20 hallmark gene sets were statistically
significant between the long and short groups (p < 0.05), except
for the hallmark early estrogen response gene sets (p < 0.05).

3.3 Protein-protein interaction network (PPI)
construction of ferroptosis related genes

PPI analysis was conducted to determine the interactive
relationship among DE-FRGs (Figure 5A). The cytoHubba plugin
analysis identified 10 hub genes (ATF3, CDH2, CHAC1, DDR2,
DPP4, GDF15, HMOX1, IFNA21, IL1B, and YAP1). IL1B had the
greatest interaction with other FRGs when the least required
interaction score was 0.400. Subsequently, we used the maximal
clique centrality (MCC) algorithm to calculate the scores of DE-
FRGs connected to other PPI network nodes (Figure 5B). Specific
FRG scores are listed in Supplementary Table S2. IL1B ranked first
in the MCC algorithm score. Additionally, we predicted and
constructed an interaction network of functionally similar genes
of these 10 DE-FRGs using the GeneMANIA website (Figure 5C) to
observe co-expression, physical interaction relationships,
prediction, and co-localization. Moreover, the Spearman

FIGURE 4
GSVA. (A) A heat map showed the scores of gene set functions in GSVA. (B) GSVA of enrichment pathways with statistical differences between the
long and short groups. The comparison is performed using theWilcoxon rank sum test. *p < 0.05, **p < 0.01, ***p < 0.001, ED, erythrocyte differentiation.
GSVA, Gene Set Variation Analysis.
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algorithm was used to analyze the correlation between the 10 FRG
expression levels, and the correlation heat map (Supplementary
Figure S4A) and chord maps (Supplementary Figure S4B) were used
to display the results of the analysis. The results showed that, except
for gene DPP4 in the ED dataset, the correlation between the

expression levels of IL1B and other FRGs was mainly negative,
conversely, the correlation between the expression levels of other
FRGs was mainly positive. A correlation scatter diagram shows the
results of the correlation analysis for the most representative four
pairs of genes (Supplementary Figures S3C–F).

FIGURE 5
PPI interaction network. (A) PPI network of FRGs. (B) PPI network of FRGs in MCC algorithm. The rectangle color from yellow to red in the Figure
represents the gradual increase of the score. (C) FRGs’ GeneMANIA site predicts interaction networks of functionally similar genes. FRGs, ferroptosis-
related genes. PPI, protein-protein interaction. MCC, maximal clique centrality.
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We also used the ENCORI and ChIPBase3.0 database to predict
the microRNAs (miRNAs) and TF interacting with the 10 FRGs
(Figure 6) to accurately investigate the molecular mechanism
underlying the 10 hub DE-FDEGs, and then mapped the
interaction network using Cytoscape software. The mRNA-

miRNA interaction network consisted of nine mRNAs and
48 miRNAs (Supplementary Table S3). The mRNA-TF
interaction network contained eight mRNAs (CDH2, CHAC1,
DPP4, GDF15, HMOX1, IFNA21, IL1B, and YAP1) and 26 TF
(Supplementary Table S4).

FIGURE 6
Prediction networks of mRNA-miRNA and mRNA-TF. (A) Interactions of DE-FRGs and miRNA. (B) Interactions of DE-FRGs and transcription factor.
TF, Transcription factor. DE-FRGs, differentially expressed ferroptosis-related genes.
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FIGURE 7
The immune infiltration analysis of ssGSEA and CIBERSORTx. Correlation analysis of immune cell infiltration abundance in dataset ED-dataset with
low (A) and high (B) FRG score. Correlation analysis of immune cells and DE-FRGs in groups with low (C) and high (D) FRGs score. (E) Bars plot showed 22
types of immune cells in different samples of the ED-dataset. (F) Box plot showed difference of infiltrating immune cells between the long and short
groups based on CIBERSORT. (G) Heatmap of correlations of hub genes with differentially infiltrated inED. ED, erythrocyte differentiation. FRGs,
ferroptosis-related genes. ssGSEA, single sample gene set enrichment analysis. DE-FRGs, differentially expressed ferroptosis-related genes.
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3.4 The subtypes of ED were constructed
through consistent clustering

Unsupervised consensus clustering was performed based on
DE-FRGs. By increasing the clustering variable k from 2 to 8, we
found that optimal categorization occurred when k = 3
(Supplementary Figure S5A–C). Additionally, the principal
component analysis (Supplementary Figure S5D) and heat
maps (Supplementary Figure S5E) revealed significant
differences among the three clusters.

3.5 FRGs scores determined using the by
ssGSEA algorithm

Based on the expression of the 10 hub DE-FRGs, the ssGSEA
algorithm was used to obtain the FRG scores of each sample to
represent the FRG expression level. Subsequently, the dataset was
then classified into high and low FRG scores, based on the median
FRG score. Next, a grouping comparison diagram showed that the
FRG scores of the 10 DE-FRGs were significantly different between
the high and low groups (Supplementary Figure S6A). The ROC
curves for the 10 FRGs (Supplementary Figures S6B–K) showed that
the expression of GDF15 (AUC = 0.938) and HMOX1 (AUC =
0.981) was highly accurate in predicting FRG scores.

3.6 Immune cell infiltration estimated DE-
FRGs regulate the immune cell infiltration
pattern during ED

To explore the differences in immune infiltration between the
groups with high and low FRG scores, we used the ssGSEA
algorithm to calculate the infiltration abundance of 28 immune
cell types (Supplementary Figure S7A). The results showed that the
infiltration abundances of the 12 immune cell types were
significantly different between the high and low FRGs score
groups (p < 0.05). Subsequently, we then calculated the
correlation between the infiltration abundance of these
12 immune cell types in the low (Figure 7A) and high
(Figure 7B) FRG score groups. The infiltration abundance of the
12 immune cell types showed a positive correlation (r > 0).
Simultaneously, we calculated the abundance of the 12 immune
cell types of infiltration and 10 DE-FRGs in the low (Figure 7C) and
high (Figure 7D) FRG score groups. The results showed that IL1B
was significantly positively correlated with these 12 immune cell
types (r > 0, p < 0.05), whereas GDF15 and CHAC1 were negatively
correlated with the 12 immune cell types (r < 0, p < 0.05).

Comparing the immune infiltration of the long- and short
groups with CIBERSORTx, significant differences were found in
the immune infiltration components between the two groups
(Figures 7E, F). In the long group, the proportions of
CD4 memory resting T cells, follicular helper T cells, activated
NK cells, and monocytes were significantly higher, and resting mast
cells were lower than those in the short group (p < 0.05) (Figure 7F).
The heat map (Figure 7G) shows the correlation between the
abundance of the five immune cell infiltrates and the 10 DE-
FRGs. Four representative pairs of FRGs and immune cells were

collected to construct correlated scatter graphs (Supplementary
Figures S7B–E).

3.7 LASSO diagnostic and logistic models
revealed that DE-FRGs predict
differentiation

LASSO regression analysis was used to construct a diagnostic
model (Figure 8A), which revealed eight FRGs for predicting
differentiation. We also obtained a trajectory diagram for the
LASSO variables (Figure 8B). Subsequently, a logistic model was
constructed for the ED dataset with these eight FRGs, and a forest
map (Figure 8C) was used to show the situation of the single-factor
logistic model. Six FRGs (ATF3, CDH2, CHAC1, DDR2, DPP4, and
GDF15) were included in the multi-factor multiple logistic model.
We constructed a diagnostic nomogram (Figure 8D) and a
diagnostic calibration curve (Figure 8E). The red line
representing the calibration curve is close to the gray line
representing the ideal curve, indicating that the model is well-fitted.

3.8 Validation of hub genes using RT-qPCR

We previous previously established a serum- and feeder-free
culture system to induce and monitor the erythroid differentiation
of umbilical cord blood -derived CD34+ cells. The mRNA expression
levels of the six genes in the multifactor multiple logistic model were
further evaluated during in vitro erythropoiesis (Figure 9). RT-qPCR
results showed that the mRNA expression levels of DDR2, GDF15,
CDH2, CHAC1and ATF3 were upregulated on day 16 compared
with that on day 8 (p < 0.05), whereas the expression level of
DDP4 was downregulated on day 16 (p < 0.05) during erythroid
differentiation of human umbilical cord blood-derived CD34+ cells,
consistent with the trend of bioinformatic analysis.

4 Discussion

Anemia is a worldwide health issue and a common complication
of many diseases, such as heart failure and tumors. Transfusion is a
crucial treatment. However, blood supply shortages and transfusion-
related risks have become global issues of major concern due to
donor-related issues. Despite the substantial efforts made in vitro
generation of erythrocytes using various stem cells, most protocols
have low efficiency in generating sufficient functional red blood cells
(RBCs), including stable β-globin expression and enucleation.
Therefore, understanding the erythropoiesis mechanism during
development is necessary. Erythrocytes, organelle-free cells
packaged with iron-containing hemoglobin, are the end-product
of a complex hierarchy of hematopoietic progenitors that become
progressively restricted to the erythroid lineage. This stepwise
differentiation process requires large amounts of iron for
hemoglobin synthesis. Ferroptosis is involved in various
physiological and pathological processes, including erythropoiesis.

In this study, we explored 753 genes involved in ferroptosis and
identified 25 DE-FRGs between the early and late ED stages.
Enrichment analysis indicated that DE-FRGs were primarily

Frontiers in Genetics frontiersin.org12

Liu et al. 10.3389/fgene.2024.1365232

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1365232


involved in the JAK-STAT, MAPK, PI3K-AKT-mTORC1, WNT,
and NOTCH signaling pathways. Ten hub DE-FRGs were obtained
based on the PPI analysis. Furthermore, we created mRNA-miRNA
and mRNA-TF constructs. The infiltration levels of immune cells
differed significantly during ED. Finally, we established a signature
using six DE-FRGs related to ED stages through LASSO regression
analysis. The RT-qPCR validation results suggested that the six DE-
FRGs are potential signature genes for erythropoiesis. This study

revealed that ferroptosis may provide a promising strategy for
optimizing in vitro erythrocyte hematopoiesis and treating
erythrocyte diseases.

This study identified the molecular signatures of ferroptosis in
ED of human umbilical cord blood-derived CD34+ cells. We
obtained 10 hub DE-FRGs with significant interactions (IL1B,
HMOX1, DPP4, ATF3, YAP1, CDH2, CHAC1, DDR2, GDF15,
and IFNA21). Similar to the results of our study, IL1B, HMOX1,

FIGURE 8
A diagnostic model of the training set was constructed using the LASSO diagnostic model and logistic model. LASSO regression analysis (A) and
LASSO coefficient (B) revealed eight genes associated with diagnosis. (C) Forest map of single factor logistic model. (D) Nomogram to predict the
diagnostic value of the multi-factor Logistic model. (E) Diagnostic calibration curve of multi-factor logistic model. LASSO, least absolute shrinkage and
selection operator.
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GDF15, YAP1, and DPP4 have been reported to play roles in
ferroptosis and erythroid differentiation. IL1B interacted with five
FRGs. IL-1β might promote hypoferremia or decreased iron
availability by stimulating the expression of hepcidin, which
could impair erythropoiesis (Nemeth et al., 2004). IL-1 receptor
antagonists reduced the incidence of anemia (Dinarello, 2005;
Vallurupalli et al., 2020). Therefore, IL-1β may be decreased to
increase iron availability and promote erythroid differentiation.
Autophagy inhibits excess iron-induced ferroptosis and
subsequently increases IL-1B (Su et al., 2021). HMOX1, the
inducible enzyme that catabolizes the degradation of heme into
iron, plays a major role in the clearance of senescent and damaged
RBCs, systemic iron homeostasis, and erythropoiesis (Starzyński
et al., 2013; Kim et al., 2018). The discrepancy in sensitivity to
ferroptosis can be determined and regulated by HO-1 (Li et al.,
2023). The oxidative stress also promoted HO-1 translocation to
mitochondria, leading to mitochondrial iron overload (Chen Y.
et al., 2023). GDF-15, a bone marrow-derived cytokine, suppresses
the iron regulator hepcidin in vitro and is significantly increased in
patients with ineffective erythropoiesis (Liu et al., 2021). GDF-15 is
the mitochondrial metabolism related markers. Those with iron
overload had higher GDF15 levels compared with non-iron overload
patients (Huang et al., 2019). YAP1, an erythroid regulator,
coordinates metabolic status with the proliferation of erythroid
progenitors to promote stress erythropoiesis (Hao et al., 2019).
YAP/TAZ play an important role in erythroid maturation and
enucleation (Damkham et al., 2022). Hippo/YAP1/c-Jun axis
regulated iron metabolism (Zhou et al., 2023). YAP1 deficiency
boosted mitochondrial dysfunction and the ferrous iron
accumulation (Zhang J. et al., 2022). DPP-4 decreases
erythropoietin (Epo) activity by cleavage, negatively regulates

colony-stimulating factor activity and stress hematopoiesis
(Broxmeyer et al., 2012; Ou et al., 2013), and improves the
responsiveness to erythropoiesis-stimulating agent (Hasegawa
et al., 2021). In our study, we predicted the differential
expression of these genes in the early and late stages of
differentiation and analyzed the pathways and immune
infiltration associated with these genes in subsequent analyses.
The transcription factors ATF3 and YAP1 play multiple roles in
shaping ferroptosis sensitivity through either transcription-
dependent or transcription-independent mechanisms (Dai et al.,
2020). As there is still a lack of evidence on whether FRGs contribute
to the stage of ED, a logistic regression model was constructed to
distinguish between five key genes (DPP4, CDH2, CHAC1, and
DDR2). The validation of the six key genes met the trend of
bioinformatic analysis. However, a few studies have investigated
the mechanisms of action of other genes involved in ED.

Furthermore, functional enrichment analysis indicated that the
DEGs were primarily involved in the JAK-STAT, MAPK, PI3K-
AKT-mTORC1, WNT, and NOTCH signaling pathways. Hypoxia
promotes erythropoiesis by increasing Epo production. Although
Epo is the principal regulator of erythroid progenitors, signaling
from the Epo-receptor activates several pathways, including the
JAK/STAT, ras/raf/MAP kinase, and PI3K/Akt cascades, to promote
cell survival, proliferation, and differentiation (Ingley et al., 2004).
JAK/STAT, MAPK, and PI3K are considered the main signaling
pathways that play significant roles in fetal hemoglobin induction
(Rahim et al., 2013). The JAK-STAT signaling pathway regulates
certain TFs (GATA1, GATA2, SPI1, and RUNX1) involved in ED
regulation, development, and maturation (Liu et al., 2017).
Erythrocyte proliferation and survival are also associated with the
activation of the JAK-STAT pathway (Cokic et al., 2012). The level

FIGURE 9
Relative gene expression verification of hub genes during erythrocyte differentiation. The expression levels of hub genes in human umbilical cord
blood-derived CD34+ on differentiation days 8, 12 and 16 was measured by RT-qPCR. One-way analysis of variance followed by Dunnett’s multiple
comparison test was used to compare means among groups. *p < 0.05, **p < 0.01, ***p < 0.001. Data are expressed as the mean ± SD of technical
triplicates from one of several independent experiments. RT-qPCR, quantitative reverse-transcription PCR.
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of IL-1β was decreased via inactivating of JAK/STAT signaling
pathway (Ni et al., 2023). The PI3K-AKT signaling pathway
regulates the Epo-induced survival, proliferation, and maturation
of early erythroid progenitors (Lopez et al., 2011). The reduction of
Pi4ka inhibits myeloid and erythroid cell differentiation in vitro and
promotes anemia in vivo through a mechanism involving the
deregulation of AKT, MAPK, and JAK-STAT signaling pathways
(Ziyad et al., 2018). Ferroptosis can be reducd through the MAPK
signaling pathway (Chen W. et al., 2023). We previously reported
the mTOR signaling pathway played roles during human umbilical
cord blood-derived CD34+ cell erythropoiesis in vitro (Liu et al.,
2020). The inhibition of mTORC1 sensitizes cells to ferroptosis
(Zhang et al., 2021). The components of the JAK-STAT-NF-κB
signaling pathway are DNA hypomethylated and upregulation,
targeting key genes for erythropoiesis. The activation of the Wnt/
beta-catenin signaling attenuates cellular lipid ROS production and
subsequently inhibits ferroptosis. The beta-catenin/
TCF4 transcription complex directly binds to the promoter
region of GPX4, a peroxidase that suppresses ROS-triggered
ferroptosis resulting in suppressing ferroptosis (Wang et al.,
2022). Although Wnt/β-catenin is dispensable for steady-state
erythropoiesis, its activity is essential for stress erythropoiesis in
response to bone marrow injury and anemia (Krimpenfort and
Nethe, 2021). The canonical WNT signaling pathway also inhibits
the expansion and/or survival of primitive erythrocytes (Paluru
et al., 2014). GATA2 contributes to the inhibition of the
canonical WNT signaling pathway, thereby permitting
progenitors to exit the cell cycle and commit to a hematopoietic
fate. Subsequently, the activation of the non-canonical WNT
signaling pathway plays a role in enabling progenitors to
differentiate into mature RBCs (Mimoto et al., 2015). The
activation of the NOTCH signaling pathway leads to the
inhibition of differentiation of immature precursors, suggesting
important roles for the NOTCH signaling pathway in
hematopoiesis (Sugimoto et al., 2006). Our results expand our
understanding of the mechanisms underlying erythropoiesis.
However, broader validation is needed to improve our
understanding of the mechanisms of ferroptosis in the ED of
human umbilical cord blood-derived CD34+ cells.

Erythropoiesis is a complex and sophisticated multistage process
regulated by TFs and miRNAs. This study also established TF- and
miRNA-target gene networks. The importance of several TFs in
erythropoiesis has been unequivocally demonstrated by cell-based
ex vivo assays, as well as in knockout mouse models and rare patients
with anemias (Kerenyi and Orkin, 2010). Members of the GATA TF
family, GATA1 and GATA2, play crucial roles in regulating lineage-
restricted genes during erythroid differentiation (Moriguchi and
Yamamoto, 2014). GATA-2 is essential for the maintenance and
proliferation of immature hematopoietic progenitors, whereas
GATA-1 is essential for the survival of erythroid progenitors and
terminal differentiation of erythroid cells (Ohneda and Yamamoto,
2002). Similarly, in our differentiation system, GATA1 expression
gradually increased and then decreased, whereas GATA2 expression
gradually decreased following cell maturation (Liu et al., 2020).
Several TFs, such as GATA-1 (Vakoc et al., 2005) or BCL11A
(Sankaran et al., 2008), have been described as being required for
the transcriptional switch from γ-globin to β-globin expression.
BCL11A plays a novel regulatory role in erythroid differentiation,

maturation, and globin production (Luanpitpong et al., 2022).
MiRNAs play key roles in erythropoiesis and control the
expression of several TF genes involved in erythroid
differentiation and hemoglobin gene expression (Jafari et al.,
2019). MiRNA-146a is significantly more abundant in
reticulocytes obtained from adults than those from umbilical
cord blood and inhibits γ globin expression (Azzouzi et al.,
2011). MiR-24 promotes terminal differentiation (Drak Alsibai
and Meseure, 2018). Our findings provide a resource for future
studies aimed at elucidating the roles of TFs and miRNAs in
erythropoiesis.

The blood and immune systems develop during early
embryogenesis. Immune-erythroid cells are coupled with dual
erythroid and immune regulatory networks and play
immunomodulatory roles throughout human ontogenesis by
actively interacting with various immune cells (Xu et al., 2022).
Two transcriptional regulation programs are co-activated in
immune erythroid cells: one is centered on the GATA1, MYC,
and MYB regulons to ensure normal erythroid differentiation, and
the other is dependent on the GATA2, FOS, and JUN regulons to
instruct immunomodulatory activity. The mRNA-TF interaction
network in our study included GDF15, GATA1, MYC, MYB,
GATA2, FOS, and JUN. A negative correlation was found
between GDF15 and the abundance of the 12 immune cell types
of infiltration in samples with high and low FRG scores. GDF15 was
associated with the abundance of five immune cell types between the
early and late differentiation stages. Therefore, we speculated that
GDF15 is an important gene associated with ED, ferroptosis, and
immune invasion. Our results showed that some immune cells
differed significantly during erythropoiesis. Erythroid progenitor
cells play an important role in the regulation of immune responses
and tumor progression. CD71+-nucleated erythroid cells play
immunosuppressive roles in orchestrating immune response
(Grzywa et al., 2021). RBCs affect immune cell functions. For
example, they inhibit T-cell proliferation via direct cell-cell
contact and affect dendritic cell functions (Bernard et al., 2010;
Yi et al., 2015). Moreover, RBCs serve as critical immune sensors
through the surface expression of nucleic acid–sensing toll-like
receptor 9 (Lam et al., 2021). Endothelial progenitor cell (EPC)
differentiation is a promising strategy to reduce cancer-induced
immunosuppression and tumor-promoting effects of EPCs (Zhang
H. et al., 2022).

Ferroptosis is associated with the immune response. ssGSEA
showed that the infiltration abundance of 12 immune cell types was
significantly different between high and low FRG scores. Ferroptosis
affects immune cells in two ways. Immune cells require sufficient
amounts of iron for their proliferation and for mediating their
effector function. Ferroptosis affects the number and functions of
immune cells. In contrast, ferroptotic cells are recognized by
immune cells and trigger various inflammatory or specific
responses (Chen et al., 2021). Ferroptosis regulates the activity
and function of cytotoxic (CD8+) and helper T (CD4+) cells.
Ferroptosis mediates neutrophil recruitment and neutrophil
extracellular trap formation (NETosis). In T cells, ferroptosis
induces a novel synergy between immunotherapy and
radiotherapy. Additionally, ferroptosis may mediate B cell
differentiation, antibody responses, and lymphoma. Ferroptosis
regulates T- and B-cell immunity, which are involved in
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infectious diseases. Chronic immune activation in the setting of
malignancy alters systemic iron homeostasis and directs iron fluxes
into myeloid cells, which may result in iron-restricted erythropoiesis
and anemia (Pfeifhofer-Obermair et al., 2018). Tumor-induced
erythroid progenitor cells eventually differentiate into myeloid
cells that exert robust immunosuppressive functions (Long et al.,
2022). Consistent with our results, an interaction was found between
the immune status, ferroptosis, and erythropoiesis. However, the
exact mechanisms underlying these interactions require
further study.

Considering the individual differences and technical limitations,
we integrated three gene expression profile datasets to obtain a larger
sample size and improve the accuracy of our conclusions. However,
the number of patients included in this study was relatively small.
Another apparent limitation was that we did not perform in vitro or
in vivo experiments to validate the underlying mechanisms and their
correlation between immune cells and hub genes, although we
verified that six DE-FRGs changed markedly during ED stages.
Therefore, we will continue to improve this aspect in the future.

5 Conclusion

In our study, 25 hub DE-FRGs were identified for erythropoiesis,
which could be potential targets for subsequent research. Functional
annotations were performed to elucidate the processes and pathways
involving these genes. Ten hub DE-FRGs were obtained according
to the PPI analysis. This study also predicted certain target miRNAs
and TF that may be related to the pathophysiological process of
erythropoiesis via ferroptosis. In addition, our analysis confirmed
differences in immune infiltration during erythropoiesis. Finally, we
established a signature using six DE-FRGs related to erythrocyte
differentiation stages by LASSO regression analysis. The six DE-
FRG were validated to be potential signature genes for
erythropoiesis. Our findings may lay the groundwork for future
clinical applications of ex vivo production of functional human
reticulocytes for transfusion of human umbilical cord blood-derived
CD34+ cells. This study could be important for understanding
erythropoiesis and hematologic disorders whose etiology is
related to impaired erythroid differentiation and
hemoglobinopathies.
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SUPPLEMENTARY FIGURE S1
Data preprocessing. (A) Box plot of the sample distribution of ED-dataset
before normalization. (B) Box plot of the sample distribution of ED-dataset
after normalization. ED, erythrocyte differentiation.

SUPPLEMENTARY FIGURE S2
A diagnostic assessment of 22 DE-FRGs in the ED-dataset was displayed. A
ROC curve was generated to assess the model performance. The AUC is
used to determine the prediction accuracy. The AUC is usually between
0.5 and 1.0. The ROC curve has low/moderate/high accuracy when the AUC
is 0.5–0.7/0.7–0.9/>0.9, respectively. FRGs, ferroptosis-related genes.
ROC, receiver operating characteristic curve. AUC, area under the curve.
TPR, true positive rate. FPR, false positive rate. CI, confidence interval. ED,
erythrocyte differentiation.

SUPPLEMENTARY FIGURE S3
Correlation analysis of DE-FRGs in ED-dataset. (A) The heat map showed the
correlation of DE-FRGs. (B) The chord map shows the correlation of DE-
FRGs. (C–F) The scatter plot shows the correlation between ATF3 and
HMOX1, DDR2 and GDF15, GDF15 and IL1B, andDDR2 and IL1B. Correlations
were calculated using Spearman correlation analysis. The correlation
coefficient (r) in the correlation scatter plot is strongly correlated when the
absolute value is above 0.8. The absolute value of 0.5–0.8 is moderately
correlated. The absolute value between 0.3 and 0.5 shows a weak
correlation. Absolute values below 0.3 are considered weak or irrelevant.
FRGs, ferroptosis-related genes. ED, erythrocyte differentiation.

SUPPLEMENTARY FIGURE S4
GSEA. (A) Sevenmain biological characteristics of GSEA of ED-dataset. Genes
of ED-dataset were significantly enriched in wp ferroptosis (B), NOTCH
pathway (C), WNT signaling pathway and pluripotency (D), HIPPO signaling

(E), e fceri mediated MAPK activation (F), hedgehog signaling pathway (G),
JAK-STAT signaling pathway (H).

SUPPLEMENTARY FIGURE S5
Consensus clustering analysis based on DE-FRGs (A) Consensus heatmap of
K = 3. (B) Cumulative distribution function (CDF) curves for k = 2–8. (C)
Elbow plot showing the relative change in area under the CDF curve. (D)
PCA for the unsupervised clustering results (K = 3). (E) The heatmap shows
the expression of the 10 hub DE-FRGs among clusters of the dataset. based
on the ED-dataset. PCA, principal component analysis. ED, erythrocyte
differentiation.

SUPPLEMENTARY FIGURE S6
Construction of FRGs scores (A) Grouping comparison graphs of high and
low FRGs scores in the ED-dataset are shown. (B–K) FRG ROC curve results
are displayed in the ED-dataset based on the FRG score group. A ROC
curvewas generated to assess themodel performance. * P <0.05, ** P < 0.01,
*** P < 0.001, ED, erythrocyte differentiation. FRGs, ferroptosis-related
genes. ROC, receiver operating characteristic curve. AUC, area under the
curve. TPR, true positive rate. FPR: false positive rate. CI, confidence interval.

SUPPLEMENTARY FIGURE S7
The immune infiltration analysis of ssGSEA and CIBERSORTx. (A) Grouping
comparison of ssGSEA immune infiltration analysis between groups with
high and low FRG scores. Correlation analysis of immune cells and DE-
FRGs in groups with low FRGs score. Correlation scatter plot of ATF3-
Monocytes (B), YAP1 - CD4 memory resting T cells (C), ATF3–Mast cells
resting (D), and HMOX1-Mast cells resting (E). Correlations were calculated
using Spearman correlation analysis. ED, erythrocyte differentiation. FRGs,
ferroptosis related genes. ssGSEA, single sample gene set
enrichment analysis.
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