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Cardiovascular disease (CVD) remains the leading cause of mortality worldwide,
caused by a complex interplay of genetic and environmental factors. This study
aimed to evaluate the combined efficacy of multi-polygenic risk scores and
pooled cohort equations (PCE) for predicting future CVD risks in the Korean
population. In this longitudinal study, 7,612 individuals from the Ansan and
Ansung cohorts were analyzed over a 17-year follow-up period. The
participants were genotyped using the Korea Biobank Array, and quality-
controlled genetic data were subjected to imputation analysis. The weighted
sum of the PRSs (wPRSsum) was calculated using PRS-CS with summary statistics
from myocardial infarction, ischemic stroke, coronary artery disease, and
hypertension genome-wide association studies. The recalibrated PCE was
used to assess clinical risk, and the participants were stratified into risk groups
based on the wPRSsum and PCE. Associations between these risk scores and
incident CVD were evaluated using Cox proportional hazards models and
Kaplan–Meier analysis. The wPRSsum approach showed a significant
association with incident CVD (HR = 1.15, p = 7.49 × 10−5), and the top 20%
high-risk genetic group had an HR of 1.50 (p = 5.04 × 10−4). The recalibrated PCE
effectively differentiated between the low and high 10-year CVD risk groups, with
amarked difference in survival rates. The predictivemodels constructed using the
wPRSsum and PCE demonstrated a slight improvement in prediction accuracy,
particularly among males aged <55 years (C-index = 0.640). We demonstrated
that while the integration of wPRSsum with PCE did not significantly outperform
the PCE-only model (C-index: 0.703 for combined and 0.704 for PCE-only), it
provided enhanced stratification of CVD risk. The highest risk group, identified
through the combination of high wPRSsum and PCE scores, exhibited an HR of
4.99 for incident CVD (p = 1.45 × 10−15). These findings highlight the potential of
integrating genetic risk assessments with traditional clinical tools for effective
CVD risk stratification. Although the addition of wPRSsum to the PCE provided a
marginal predictive improvement, it proved valuable in identifying high-risk
individuals and supporting personalized treatment strategies. This study
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reinforces the utility of multi-PRS in conjunction with clinical risk assessment tools,
paving the way for more tailored approaches for CVD prevention andmanagement
in diverse populations.

KEYWORDS

cardiovascular disease, multi-polygenic risk scores, pooled cohort equations, multi-
PRS, PCE

1 Introduction

Cardiovascular disease (CVD) is the primary cause of mortality
and a significant contributor to global disease burden
(Vaduganathan et al., 2022). The key to effectively managing
CVD is early identification and prevention of the disease in high-
risk individuals (Zhou et al., 2019; Lee et al., 2021; Vaduganathan
et al., 2022). The complexity of CVD, influenced by the interplay
between genetic and environmental factors, has led to numerous
efforts to develop robust predictive models. These models integrate
clinical variables, genetic predispositions, and lifestyle factors, such
as diet and physical activity, to identify individuals at elevated risk
(Wilson et al., 1998; Goff et al., 2014; Jung et al., 2015; Hippisley-Cox
et al., 2017; Bae et al., 2020; Elliott et al., 2020; Lu et al., 2021; Patel
et al., 2023; Yun et al., 2023).

Various risk assessment tools are integral to the diagnosis and
prevention of CVD. These tools consider clinical variables and risk
factors, including age, sex, blood lipid levels, blood pressure,
smoking status, and diabetes mellitus (Wilson et al., 1998; Goff
et al., 2014; Jung et al., 2015; Hippisley-Cox et al., 2017; Bae et al.,
2020). For instance, the Framingham risk score was designed to
predict the 10-year risk of ischemic heart disease (IHD) in the
United States (Wilson et al., 1998). Similarly, the pooled cohort
equations (PCE) provide risk assessments for IHD and stroke in the
U.S., including 10-year lifetime and optimal risk evaluations (Goff
et al., 2014). The United Kingdom employs QRISK for 10-year risk
prediction of IHD and stroke (Hippisley-Cox et al., 2017).
Moreover, Korea has developed its models for similar
assessments (Jung et al., 2015; Bae et al., 2020). Based on the
risks estimated by these models, healthcare providers can offer
appropriate therapeutic interventions to individuals at significant
10-year disease risk.

The hereditary aspect of CVD, which is estimated to contribute
to approximately 40%–60% of the risk of the disease (Zdravkovic
et al., 2002; Zdravkovic et al., 2007; Tada et al., 2022), has been the
focal point of recent genetic research. Over the past decade, genome-
wide association studies (GWASs) have identified numerous loci
associated with CVD and its risk factors (Tada et al., 2022). This led
to the development of the polygenic risk score (PRS), an approach
that aggregates the risks of various genetic variants, each weighted by
its effect size on the disease in question (Khera et al., 2018). High-
ranking individuals in the PRS distributions have been observed to
have a markedly increased disease prevalence (Khera et al., 2018).
The evolution of PRS into strategies that incorporate multiple PRSs
(multi-PRS) simultaneously, considering the heterogeneous nature
of diseases, marks a significant advancement, offering improved
predictive accuracy (Lu et al., 2021; Patel et al., 2023).

Despite these advancements, the clinical application of the PRS
is still in the early stages (Hao et al., 2022). The GenomicMedicine at

Veterans Affairs Study has incorporated the PRS into clinical
practice and developed comprehensive guidelines for its use (Hao
et al., 2022). However, the majority of GWASs and subsequent PRS
developments have been based on populations of European descent,
potentially limiting the accuracy of these scores in non-European
populations (Martin et al., 2019). Established clinical risk assessment
tools also face challenges in terms of universal applicability, often
requiring recalibration to suit different environmental and lifestyle
factors prevalent in various populations (Jung et al., 2015; Bae et al.,
2020). This underscores the need for continuous and comprehensive
studies regarding PRS and clinical risk assessment tools that
consider the diversity and specific characteristics of different
populations, along with the rapidly evolving landscape of risk
assessment methods, such as the multi-PRS approach (Elliott
et al., 2020; Lu et al., 2021; Ramírez et al., 2022; Patel et al.,
2023; Yun et al., 2023).

Our study aimed to evaluate the utility of combining multi-PRS
with established risk assessment tools, such as the PCE, for
predicting future CVD risk in the Korean population. We
examined the incidence of CVD among 6,730 individuals who
were initially free of CVD during a 17-year follow-up period.
This study highlights the importance of integrating an advanced
genetic risk assessment (multi-PRS) with traditional clinical tools
(PCE) for more effective stratification of individual CVD risk.

2 Materials and methods

2.1 Study participants

This study was approved by the Institutional Review Board of
the Korea Disease Control and Prevention Agency, Republic of
Korea. In the Korean Genome and Epidemiology Study (KoGES),
10,030 participants were recruited from the Ansan and Ansung
provinces (Kim and Han, 2017). Detailed descriptions of the KoGES
have been provided in previous studies (Kim and Han, 2017; Moon
et al., 2019). The participants (aged 40–69 years) provided written
informed consent and were examined using epidemiological
surveys, physical examinations, and laboratory tests. Of the
10,030 participants, 7,612 underwent genotyping and had at least
one follow-up between 2001 and 2002 (baseline) and 2017–2018
(last follow-up). Individuals with a history of CVD or missing
clinical risk factor data were excluded from further analyses of
CVD incidence. Prevalent CVD cases were identified based on self-
reports of IHD, stroke, heart failure, and myocardial infarction or
taking medications related with CVD at the time of recruitment.
Participants with past history of CVD were not used as prevalent
cases to reduce possible recall bias in the subsequent analysis.
Incident CVD cases were defined as individuals with CVD events
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during the follow-up period among the 6,730 participants initially
free from CVD.

2.2 Genotyping and quality control

From the Ansan and Ansung cohorts (10,030 participants),
7,612 samples were genotyped using the Korea Biobank Array, a
fully customized single-nucleotide polymorphism (SNP) microarray
optimized for Korean genome research (Moon et al., 2019). The
genotyping process and quality control measures have been
described previously (Kim et al., 2022). Quality control included
the exclusion of samples based on gender discrepancies, low call
rates (<97%), excessive heterozygosity, second-degree related
samples, and outliers in the results of the principal component
analysis. Variants were excluded because of low call rates (<95%),
Hardy–Weinberg equilibrium failure (p < 10–6), and lowminor allele
frequencies (MAFs) (<1%). After these exclusions, approximately
550 K SNPs remained for phasing and imputation.

2.3 Genotype imputation

Quality-controlled data were subjected to pre-phasing-based
imputation. Eagle v2.3 (Loh et al., 2016) was used for phasing,
followed by imputation using Impute v4 (Bycroft et al., 2018) with a
merged reference panel of 2,504 samples from the 1,000 Genomes
Phase 3 (Auton et al., 2015) and 397 samples from the Korean
Reference Genome (Moon et al., 2019). The GEN-formatted file, an
output from Impute v4, was converted to the VCF format with the
imputed dosages using GEN2VCF (Shin et al., 2020). For further
analysis, 8.3 M high-quality imputed common variants were retained,
excluding those with imputation quality <0.8 and MAF <1%.

2.4 Calculation of the PRSs

PRSs for CVD were calculated using PRS-CS (Ge et al., 2019)
with summary statistics from GWASs regarding myocardial
infarction, ischemic stroke, and coronary artery disease
conducted by Biobank, Japan (Sakaue et al., 2021). Due to the
lack of publicly available, comprehensive summary statistics for
hypertension PRS, we employed a ten-fold leave-one-group-out
meta-analysis combined with PRS-CS analysis (Kim et al., 2022).
The process involved the following detailed steps: 1) Randomly
categorizing 125,850 Korean individuals into ten groups, 2)
Conducting a GWAS for hypertension in each group, 3)
Obtaining effect sizes and p-values from the meta-analyzed
association results of nine groups, 4) Using PRS-CS to derive
adjusted weights based on the meta-analysis results, 5)
Calculating the PRS for the remaining one group using the
weights obtained from the nine groups, and 6) Iterating these
steps until PRS for all groups were obtained. Approximately
970 K HapMap phase 3 variants were used for the PRS
calculations. The calculated PRSs were normalized to a normal
distribution. Each PRS was weighted based on a multiple logistic
regressionmodel, with prevalent CVD cases (n = 59) as the outcome.
The weighted sum of the PRSs (wPRSsum) was calculated for each

individual. The participants were categorized into three genetic risk
groups based on the wPRSsum: low (bottom 20%), intermediate
(20%–80%), and high (80%–100%).

2.5 Calculation of the PCE score

The PCE was recalibrated for the Ansan and Ansung cohorts
(Bae et al., 2020). This recalibration involved adjusting the equation
to reflect the updated mean sum and baseline survival rate,
accounting for the different sample sizes and extended follow-up
periods in our study. The specific formulas used are as follows:

PCEmen � 4.950 × Ln AGE( )
+ 0.943 × Ln TC( ) – 0.693 × Ln HDL( )
+ 1.101 × Ln TRSBP( ) + 1.002 × Ln(UNSBP)
+ 5.485 × CUSMOK – 1.287 × Ln AGE( ) × CUSMOK

+ 0.558 × DM

(1)

PCEwomen � 36.699 × Ln(AGE)
+ 0.625 × Ln(TC)–0.449 × Ln(HDL)
+ 29.947 × Ln(TRSBP)–7.010 × Ln(AGE)× Ln(TRSBP)
+ 29.255 × Ln(UNSBP)–6.847 × Ln(AGE) × Ln(UNSBP)
+ 0.497 × CUSMOK + 0.962 × DM

(2)

Abbreviations, as detailed in Supplementary Table S3 of Bae
et al. (2020), are defined as follows: AGE: age, TC: total cholesterol,
HDL: high-density lipoprotein, TRSBP: treated systolic blood
pressure, UNSBP: untreated systolic blood pressure, CUSMOK:
current smoking status, DM: status of diabetes mellitus.

The participants were then categorized into two risk groups
based on their PCE scores: low (<7.5%) and high (≥7.5%).

2.6 Statistical analysis

A logistic regression model was used to assess the association
between the PRSs or multi-PRS and prevalent CVD cases. The
association between wPRSsum and/or PCE and incident CVD
events was tested using a Cox proportional hazards model using
the R package “survival,” adjusting for age and sex (Terry and
Therneau, 2000). Kaplan–Meier curves were constructed and
analyzed for incident CVD according to the risk groups based on
PRS, PCE, and their combinations using the R package “survival.”
The concordance index (C-index) was used to measure the accuracy
of the predictive models based on the wPRSsum and/or PCE
(Harrell et al., 1996).

3 Results

Among the 10,030 participants in the Ansan and Ansung
cohorts, 7,612 were selected based on quality-controlled genotype
data, non-missing clinical risk factors for PCE, and at least one
biannual follow-up between 2001 and 2018. The characteristics of
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the participants are summarized in Table 1. The average andmedian
follow-up durations were 13.31 and 16 years, respectively, and
females constituted 51.6% of the study population. There were
59 prevalent and 759 incident cases of CVD.

We employed the wPRSsum method, which combined the PRSs
of myocardial infarction, ischemic stroke, coronary artery disease,
and hypertension. The relationships between various PRSs and the

59 most prevalent CVD cases are presented in Table 2. Although, the
hypertension PRS exhibited the strongest association with CVD,
none of the single PRSs met the statistical significance threshold (p <
0.05). However, the wPRSsum, which incorporated all PRSs,
demonstrated superior performance (OR = 1.39, p = 9.04 × 10−3)
compared to the other combinations (OR < 1.33) and single PRSs
(OR < 1.25), aligning with the findings of Lu et al. (Lu et al., 2021).

TABLE 1 Demographic characteristics of the study participants.

All Men Women

Number of participants, n (%) 7,612 3,675 (48.28) 3,937 (51.72)

Age (years) 52.06 ± 8.85 51.59 ± 8.72 52.49 ± 8.95

Female, n (%) 3,937 (51.72) - -

Follow-up, mean years (median) 13.31 (16.0) 13.09 (16.0) 13.51 (16.0)

Current smoker, n (%) 1,926 (25.30) 1,792 (48.76) 134 (3.40)

CVD prevalence, n (%)a 59 (0.78) 36 (0.98) 23 (0.58)

CVD incidence, n (%)a 759 (9.97) 370 (10.07) 389 (9.88)

SBP (mmHg) 117.41 ± 18.16 117.37 ± 16.73 117.44 ± 19.40

BP treatment, n (%)b 916 (12.03) 371 (10.10) 545 (13.84)

Diabetes mellitus, n (%)c 677 (8.89) 379 (10.31) 298 (7.57)

TC (mg/dL) 192.09 ± 35.93 192.72 ± 36.29 191.50 ± 35.58

HDL-C (mg/dL) 44.75 ± 10.08 43.68 ± 9.99 45.74 ± 10.05

aIndividuals with CVD, events during the follow-up period.
bOn hypertension-related medication.
cFasting plasma glucose ≥126 mg/dL or on type 2 diabetes mellitus treatment.

CVD, cardiovascular disease; SBP, systolic blood pressure; BP, blood pressure; TC, total cholesterol; HDL-C, high density lipoprotein cholesterol.

TABLE 2 Association between the PRSs and prevalent CVD.

PRS Odds ratio p-value

HTN 1.25 7.92 × 10−2

MI 1.18 1.52 × 10−1

IS 1.22 1.29 × 10−1

CAD 1.14 2.84 × 10−1

HTN + MI 1.27 4.31 × 10−2

HTN + IS 1.33 3.00 × 10−2

HTN + CAD 1.25 6.39 × 10−2

MI + IS 1.29 3.98 × 10−2

MI + CAD 1.23 9.75 × 10−2

IS + CAD 1.26 6.88 × 10−2

HTN + MI + IS 1.34 1.66 × 10−2

HTN + MI + CAD 1.32 2.40 × 10−2

HTN + IS + CAD 1.33 2.46 × 10−2

MI + IS + CAD 1.33 2.49 × 10−2

HTN + MI + IS + CAD 1.39 9.04 × 10−3

PRS, polygenic risk score; CVD, cardiovascular disease; HTN, hypertension; MI, myocardial infarction; IS, ischemic stroke; CAD, coronary artery disease. The odds ratios were obtained using a

logistic regression model for CVD-prevalent cases after adjusting for age and sex. The bold text in table indicates that the corresponding PRS model was used in this study.
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Lu et al. developed a meta-PRS (multi-PRS) that included PRSs for
various conditions such as lipids, blood pressures, type 2 diabetes,
cardio arterial disease, and stroke, aimed at predicting the risk of
future stroke. This multi-PRS approach demonstrated a significant
increase in hazard ratio for stroke prediction, with CAD-PRS
showing an HR < 1.2, compared to the multi-PRS’s HR of
approximately 1.3, highlighting the incremental benefit of
combining multiple PRSs. Mirroring this, our study found that
the multi-PRS (wPRSsum in our case) presented an increased odds
ratio (OR = 1.39) compared to single PRSs (OR < 1.25).

In assessing the 759 incident cases over 17 years, the wPRSsum
showed a significant association with an HR of 1.15 (p = 7.49 × 10−5)
(Table 3). The top 20% of the genetically high-risk group had an
increased HR of 1.50 (p = 5.04 × 10−4) compared to the bottom 20%.
The intermediate group (20%–80%) showed an HR of 1.28 (p =
1.26 × 10−2). Moreover, the Kaplan–Meier analysis indicated a
distinct survival curve trend in the top 20% of the high-risk
group (Figure 1A).

While the original PCE provides risk assessments for ischemic
heart disease and stroke primarily for non-Hispanic African-

American and non-Hispanic white populations aged
40–79 years, it does not directly cater to the specific risk of
other racial groups (Goff et al., 2014). To address this
limitation and incorporate racial considerations for the Korean
population, we utilized the recalibrated PCE for the Korean
population as reported by Bae et al., based on the Ansan and
Ansung cohorts. This recalibration ensures that our cardiovascular
risk assessments are appropriately tailored to our study
population, reflecting the unique risk profiles of Koreans. When
participants were divided into low (<7.5%) and high (≥7.5%) risk
groups based on their calculated 10-year CVD risk, the high-risk
group exhibited a significantly higher HR of 3.58 (p = 2.19 × 10–63)
compared to the baseline low-risk group (Table 4). Moreover, the
Kaplan–Meier analysis showed a marked decline in the survival
curve of the high-risk group (Figure 1B).

Participants were stratified into groups based on both PRS and
PCE risk levels. Compared with the baseline (low PRS and low
PCE), there was an increase in the incident CVD risk with a
higher PRS or PCE risk (Figure 2A; Table 5). A high PRS risk
consistently showed an increased CVD risk, independent of the

TABLE 3 Predictability of the wPRSsum for future CVD.

Group N Number of cases Hazard ratio SE p-value

All samples 6,730 759 1.15 0.035 7.49 × 10−5

Low genetic risk (0%–20%) (baseline) 1,349 129 - - -

Intermediate genetic risk (20%–80%) 4,055 459 1.283 0.100 1.26 × 10−2

High genetic risk (80%–100%) 1,326 171 1.501 0.117 5.04 × 10−4

The association between PRS, and incident CVD, events was tested using a Cox proportional hazards model adjusted for age and sex.

PRS, polygenic risk score; CVD, cardiovascular disease; wPRSsum, weighted sum of the PRS; SE, standard error.

FIGURE 1
Survival rate regarding incident CVD according to the wPRSsum and PCE risk groups. Survival rate regarding incident CVD, stratified by (A)wPRSsum
(bottom, 20% colored in red; intermediate, 20%–80% colored in green; top, 20% colored in blue) and (B) PCE (low, <7.5% colored in red; high, ≥7.5%
colored in green). PRS (wPRSsum), polygenic risk score; CVD, cardiovascular disease; PCE, pooled cohort equations.
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TABLE 4 Predictability of the PCE for future CVD.

Group N Number of cases Hazard ratio SE p-value

< 7.5% (baseline) 4,228 271

≥ 7.5% 2,502 488 3.58 0.076 2.19 × 10−63

The association between the PCE, and incident CVD, events was tested using a Cox proportional hazards model adjusted for age and sex.

CVD, cardiovascular disease; PCE, pooled cohort equations.

FIGURE 2
Predictability of the strata using wPRSsum and PCE. (A) Risk of future CVD according to the PCE andwPRSsum groups. Association of wPRSsum and
PCE with incident CVD. (B) Survival rate of incident CVD, stratified by combinations of the wPRSsum (bottom, 20%; intermediate, 20%–80%; and top,
20%) and PCE (low, <7.5%; high, ≥7.5%). PRS (wPRSsum), polygenic risk score; CVD, cardiovascular disease; PCE, pooled cohort equations; HR, hazard
ratio; CI, confidence interval.
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PCE group. PRS and PCE showed an increasing tendency toward
CVD risk in a roughly additive manner. Moreover, the
combination of high PRS and PCE risk yielded the highest
incident CVD risk (HR = 4.99, p = 1.46 × 10−15). The
Kaplan–Meier analysis showed a sharp decline in the survival
curve of the high-risk group for both PRS and PCE (Figure 2B).

Various models were constructed using age, sex, PRS, and
PCE to predict the future CVD risk (Table 6). The five
constructed models were as follows: model 1, age + sex;
model 2, PRS; model 3, PRS + age + sex; model 4, PCE; and
model 5, PRS + PCE. Model five did not include age or sex as
variables because they were incorporated into the PCE equation.
The models’ C-index scores were as follows: model 1 = 0.659,
model 2 = 0.541, model 3 = 0.666, model 4 = 0.704, and
model 5 = 0.703.

When stratifying by gender and age (<55 and ≥55), model 5
(C-index = 0.692) slightly outperformed model 4 (C-index =
0.691) in males, while the opposite was true for females
(0.717 and 0.715 for models 4 and 5, respectively) (Table 6).
The incidence rates in the younger and older age groups were 7.4%
and 17.7%, respectively (Table 6). However, in younger
individuals, all models demonstrated higher C-index scores
than in the older groups. Moreover, the addition of PRS to the
PCE-only model was particularly beneficial in males
aged <55 years (0.640 and 0.636 for models five and 4,
respectively). Our investigation aligns with previous studies
that have underscored the value of adding PRS information to
clinical risk assessment tools for enhancing cardiovascular disease
prediction. Notably, Elliott et al. reported a similar structure in
their findings (Table 6). Specifically, our results reveal that adding
PRS to the PCE model marginally improved the C-statistics for
males (C-index = 0.691 for PCE alone and 0.692 for PCE +
wPRSsum), with the most notable improvement observed in
males under 55 years of age. This nuanced improvement,
although modest, underscores the potential of PRS in
enhancing risk stratification beyond the capabilities of PCE
alone. It is important to note that our study observed
improvements in specific subsets, particularly in younger
males, rather than a uniform enhancement across all
demographics, contrasting with Elliott et al., who reported
more generalized improvements. This discrepancy highlights
the complexity of cardiovascular risk prediction and the

variable impact of genetic information across different
population segments.

4 Discussion

This study evaluated the utility of multi-PRS (wPRSsum) and
the PCE over a 17-year longitudinal study involving 7,612 Korean
individuals. Our findings demonstrated that, although the linear
model combining PRS and PCE did not significantly outperform the
PCE-only model, the risk stratification approach indicated that the
highest-risk group had an HR of 4.99. The PRS and PCE appeared to
contribute additively to the CVD risk assessment.

Although PRS did not markedly improve the predictive
performance of the CVD risk when combined with PCE, it did
offer a marginal increase in prediction accuracy, particularly in
males. This observation aligns with those of previous studies
(Elliott et al., 2020; Ramírez et al., 2022; Patel et al., 2023; Yun
et al., 2023). The limited improvement could be attributed to the
robustness of existing clinical risk assessment tools (Elliott et al.,
2020; Ramírez et al., 2022; Patel et al., 2023; Yun et al., 2023) and
the partial inclusion of genetic components in the clinical factors
used in the PCE construction. Nevertheless, previous studies have
indicated improved discrimination and reclassification when the
PRS is combined with clinical risk scores (Elliott et al., 2020;
Ramírez et al., 2022; Patel et al., 2023; Yun et al., 2023). This study
further supports this finding by revealing that stratification by PRS
and PCE can identify individuals with a nearly five-fold increased
risk of future CVD compared with the baseline risk
group. Kaplan–Meier curves, coupled with 17-year incident
data, revealed a significantly reduced survival rate in high-risk
individuals according to both PRS and PCE. The complementary
nature of the PRS and PCE suggests the potential for more
personalized treatment strategies.

Our study validates previous findings and underscores the
efficacy of using a stratification approach with PRS and clinical
tools, such as PCE. One of the strengths of our study is its long
follow-up period, which exceeded the average duration (13.31 years)
used in previous studies (4.6–12.0 years) (Elliott et al., 2020; Lu et al.,
2021; Ramírez et al., 2022; Patel et al., 2023; Yun et al., 2023).
Additionally, this is the first application of the wPRSsum method in
the Korean population, which demonstrated superior predictive

TABLE 5 Predictability of the strata by PCE and wPRSsum.

PCE (%) wPRSsum N Number of cases Hazard ratio SE p-value

< 7.5 Low (baseline) 868 42

Intermediate 2,544 169 1.399 0.173 5.14 × 10−2

Top 816 60 1.546 0.201 3.04 × 10−2

≥ 7.5 Low 481 87 3.737 0.212 5.26 × 10−10

Intermediate 1,511 290 4.211 0.188 2.30 × 10−14

Top 510 111 4.986 0.201 1.46 × 10−15

The association between the combinations of PCE, and wPRSsum, and incident CVD, events was tested using a Cox proportional hazards model with a low risk in both PCE, and wPRSsum, as

the baseline.

PRS, polygenic risk score; CVD, cardiovascular disease; PCE, pooled cohort equations; wPRSsum, weighted sum of the PRS.
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performance compared with single PRS analyses, consistent with
recent findings (Elliott et al., 2020; Lu et al., 2021; Ramírez et al.,
2022; Patel et al., 2023; Yun et al., 2023). However, this study had
some limitations. The recalibrated PCE tailored to the Ansan and
Ansung cohorts might have led to overfitting, potentially
overestimating the PCE’s performance in this study. The sample
size, although substantial, was smaller than that of earlier studies (up
to 380 K samples) (Elliott et al., 2020; Ramírez et al., 2022; Patel
et al., 2023; Yun et al., 2023). Moreover, the CVD definition based on
self-reported survey data may have introduced recall bias. Further
research with larger cohorts and physician-diagnosed CVD or ICD-
coded data is required for more accurate validation. Finally, the
results may not be directly transferable to other ethnic groups
because of population-specific optimizations in the risk
assessment methods. Application in different populations
requires suitable clinical tools and PRS models based on closely
related ancestral GWAS data.

The prevalence of CVD and related risk factors varies significantly
between males and females, as highlighted by the smoking rates of
50% for males and 3.4% for females in our cohort (Table 1). This
pattern is somewhat mirrored in the African American cohort of the
ARIC study, which informed the PCE construction, showing smoking
rates of 37.3% for males and 24.0% for females (Goff et al., 2014). In
this study, CVD incidence rates were 10.07% for males and 9.88% for
females, respectively. Similarly, the ASCVD rates in the ARIC cohort
were 11.1% for males and 7.2% for females. In constructing the PCE,
variables were carefully selected to account for gender and racial
difference (Goff et al., 2014). However, our analysis revealed that the
predictive effectiveness of both PCE and PCE + PRS models was
higher in women (C-index >0.7) than in men (C-index <0.7), aligning
with findings reported by Elliot et al., where PCE and PCE + PRS
showed greater benefits for women (Table 6). These observations
suggest potential gender biases in the current models, indicating they
may not be optimally configured for predicting CVD in males as
compared to females. Developing more sophisticated models that
consider these gender differences is crucial. However, the challenges of
incorporating diverse populations for long-term risk assessment
(beyond 10 years) remains a significant barrier to creating
specialized models (Goff et al., 2014).

In conclusion, our study highlights the significant role of PRS
and PCE in identifying individuals at a high risk of future CVD,
working in a roughly additive manner. These insights contribute to
our understanding of CVD etiology and may inform personalized
prevention and treatment strategies for individuals with varying
CVD risk levels.
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