
Application and perspective of
CRISPR/Cas9 genome editing
technology in human diseases
modeling and gene therapy

Man-Ling Zhang1,2, Hong-Bin Li1,2* and Yong Jin1,2*
1Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical
University, Hohhot, China, 2Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic
and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China

The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)
mediated Cas9 nuclease system has been extensively used for genome
editing and gene modification in eukaryotic cells. CRISPR/Cas9 technology
holds great potential for various applications, including the correction of
genetic defects or mutations within the human genome. The application of
CRISPR/Cas9 genome editing system in human disease research is anticipated to
solve a multitude of intricate molecular biology challenges encountered in life
science research. Here, we review the fundamental principles underlying CRISPR/
Cas9 technology and its recent application in neurodegenerative diseases,
cardiovascular diseases, autoimmune related diseases, and cancer, focusing
on the disease modeling and gene therapy potential of CRISPR/Cas9 in these
diseases. Finally, we provide an overview of the limitations and future prospects
associated with employing CRISPR/Cas9 technology for diseases study
and treatment.
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1 Introduction

The technology of genome editing facilitates precise manipulation of DNA sequences
within the gene, enabling stable modification of genetic information through targeted
knockouts, insertions, and replacements. There are primarily three genome editing
technologies available: zinc finger nucleases (ZFN), transcription activator like effector
nucleases (TALEN), and clustered regularly interspersed short palindromic repeats
(CRISPR/Cas9) (Gaj et al., 2013), and the CRISPR/Cas9 genome editing technology
being the most widely employed at present.

The CRISPR/Cas9 is an acquired immune system found in most bacteria and all archaea
(Wiedenheft et al., 2012), which functions to protect against phages or foreign invading
agents from swallowing plasmids (Barrangou et al., 2007). By utilizing a humanized
Cas9 nuclease and guided RNA (gRNA) specifically designed for target gene, this
system enables precise editing of any sequence or genome of eukaryotic cells (Jinek
et al., 2012), thus becoming the third-generation genome editing technology after ZFNs
and TALENs. Under the guidance of specific gRNA, the Cas9 nuclease cut, replace or inserts
DNA sequences of organisms to precisely achieve the intended purpose of genome reediting
(Cong et al., 2013).
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The CRISPR/Cas9 system possesses several advantages,
including high editing efficiency, ease of operation, cost
effectiveness, and diversified recognition sites, etc. (Doudna and
Charpentier, 2014; Knott and Doudna, 2018). It can be used in
human genome editing (Mali et al., 2013) to treat genetic defects or
gene mutation diseases (Wang et al., 2020; Weber et al., 2020; Zhang
et al., 2020); editing plant genes to create more resilient plants (Seth
and Harish, 2016; Soyk et al., 2017); eliminating pathogens by
deleting their genes, such as the genomes of bacteria or viruses,
in order to eliminate infectious diseases, offers hope for a complete
cure for such diseases (Ebina et al., 2013; Yin et al., 2017; Ling
et al., 2020).

The CRISPR/Cas9 system has been rapidly developed in all areas
of the life science, is causing a seismic change in biomedical research,
and is sweeping biology laboratories around the world with its
remarkable efficiency and operational simplicity. Widely regarded as
the most successful genome editing tool, we review the relevant
research of CRISPR/Cas9 genome editing technology in some
human diseases (focusing on neurodegenerative diseases,
cardiovascular diseases, autoimmune diseases, and cancer) in
recent years, and analyzed current applications and future
perspective of CRISPR/Cas9 in these diseases.

2 Feature and mechanism of
CRISPR/Cas9

According to the different CRISPR/Cas sites, CRISPR systems
can be divided into six different types, and the commonly used
CRISPR/Cas9 genome editing system is the Type II CRISPR system,
with three functional regions on the CRISPR site: The trans
activating CRISPR RNA (trancrRNA) region, the different Cas
genes region, and the CRISPR array region, three functional
regions are linearly arranged on a single DNA strand (Figure 1).
The Cas gene region is used to guide the formation of nucleases that
cut DNA sequences, while the CRISPR array region contains repeat
sequences and spacer sequences, and the spacer sequences will be
inserted for transcription when foreign genes invade (Gupta
et al., 2019).

In the CRISPR/Cas9 system, matured CRISPR RNA (crRNA)
combines with trans activating crRNA (tracrRNA) to form sgRNA
(Deltcheva et al., 2011; Jiang and Doudna, 2017). The sgRNA forms
a complex with the Cas9 protein. Cas9 protein is guided with sgRNA
through base complementary pairing to bind to the specific locus of
the genome. Subsequently, the Cas9 protein recognizes the

protospacer adjacent motif (PAM) of the target gene and starts
to cut the target DNA at the third base upstream of the PAM,
producing double strand break (DSB) (Zaboikin et al., 2017; Iyer
et al., 2019). The genome that produces DSB is subsequently
repaired through either non-homologous end joining (NHEJ) or
homologous recombination (HR) (Anzalone et al., 2020) (Figure 2).
The NHEJ repair is imprecise, which can cause the insertion and
deletion of bases, resulting in the change of the open reading frame.
HR repair is precise and can achieve site specific repair of genes
when homologous templates are introduced (Maruyama et al., 2015;
Yeh et al., 2019).

At present, Cas9 from S. yogenes (SpCas9) is the most common
CRISPR/Cas9 effector protein. Natural Cas protein still has many
limitations in editing efficiency and specificity, which significantly
affect its practical application. Researchers have developed different
Cas9 variants to achieve better editing effect and reduce off-target
activity. Previous studies have shown that two catalytic domains in
Cas9, RuvC and HNH, are responsible for the cleavage of one DNA
strand, respectively. By inactivating one of the domains,
Cas9 nickase (nCas9) that catalyzes single strand breaks can be
generated (Ran et al., 2013). Compared with wild-type Cas9 protein,
the use of nCas9 can reduce off-target effects (Shen et al., 2014). Yin
et al. (Yin et al., 2022a) fused SpCas9 with the optimized human
recombinant protein TREX2 to generate a new gene editing enzyme,
Cas9TX, which can inhibit structural abnormalities such as
chromosomal translocations during gene editing and significantly
improve the safety of gene editing. Qi et al. mutagenized the catalytic
nuclease domain of the Cas9 protein. Two mutations were
introduced to obtain a catalytically inactive Cas9 protein, also
known as “dead Cas9” (Qi et al., 2013). Unlike Cas9, dCas9 does
not cause irreversible changes in the genome, but only affects
transcription at the target site, resulting in reversible gene
silencing. It has also been shown that the fusion of dCas9 to the
FokI domain reduces off-target cleavage (Guilinger et al., 2014; Tsai
et al., 2014; Aouida et al., 2015; Nakagawa et al., 2015; Havlicek et al.,
2017; Saifaldeen et al., 2020). The tool simultaneously binds two
dCas9-FokI monomers at the target site to trigger DSBs, and the
probability of two adjacent dCas9-FokI fusion molecules to bind to
the off-target site nonspecifically is significantly lower than that of
single molecule binding (Aouida et al., 2015; Nakagawa et al., 2015).
This minimizes the risk of off-target effects. Data from Aouida et al.
suggest that fdCas9 endonuclease variant is a superior platform for
genome editing applications in eukaryotic systems, including
mammalian cells (Aouida et al., 2015) and that all engineered
fdCas9 variants have demonstrated promising gene editing

FIGURE 1
Components of the CRISPR/Cas9 genome editing system. The CRISPR/Cas9 system consists of a trans-activating crRNA (trancrRNA) region, a Cas
gene region, and a CRISPR array region. The CRISPR array region consists of repeat sequences and spacer sequences. The repeat sequence is connected
to the leader sequence adjacent to the 5′end of the locus, and the 5′end of the leader sequence is connected to the Cas gene region.
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activity in human cells thus far (Havlicek et al., 2017; Saifaldeen
et al., 2020). The development of various Cas variants has
significantly enriched the CRISPR editing tools, and improved
the editing efficiency and accuracy.

The research and application of the CRISPR/Cas9 system in
human diseases encompass the establishment of in vivo disease
models, in vitro cell models research and gene therapy, etc. The
change of open reading frame caused by NHEJ repair can be used to
establish gene knockout model, while gene replacement through
homologous recombination holds potential for achieving
gene therapy.

3 CRISPR/Cas9 genome editing for
neurodegenerative diseases modeling

Neurodegenerative diseases (NDs) are a broad category of
diseases caused by the degeneration of neurons (Dugger and

Dickson, 2017). Aging is the primary risk factor for NDs, and
patients are often accompanied by cognitive decline and motor
dysfunction, which can lead to severe disability or even death (Wyss-
Coray, 2016). Common examples of NDs include Alzheimer’s
disease, Parkinson’s disease, and Huntington’s disease. The
correlations between genetic mutations and neurodegenerative
diseases, and the combination of CRISPR/Cas9 with other
technologies, have enabled the creation of various animal models
that mimic genetic defects and provide important insights into their
pathogenesis (Yang et al., 2021; Yin et al., 2022b). In fact, the
construction of animal disease models also holds significant
implications for investigating other diseases. Hence, we
summarize the various disease animal models constructed by
CRISPR/Cas9 technology (Supplementary Table S1), highlighting
the respective strengths and limitations of each model in accurately
recapitulating disease pathology. The focus of this section will be on
the research progress and recent applications status of the CRISPR/
Cas9 system in several common neurodegenerative diseases.

FIGURE 2
Schematic of the mechanism involved in CRISPR/Cas9 system. Specially designed sgRNA (guide RNA), that match the genomic DNA sequence
containing themutation, bind to the Cas9 endonuclease to form the Cas9-sgRNA complex. Under the guidance of sgRNA, Cas9 searches for target DNA
and cut it, then double strand breaks (DSB) are generated, it leads to the activation of DNA repair mechanism. The genome is repaired by non-
homologous end joining (NHEJ) or homologous recombination repair (HDR). In general, the imprecise NHEJs cause the insertion and deletion of
bases, resulting in the change of the open reading frame, while the more precise HDR systems can lead to achieve site-specific repair of genes, such as
disease-causing point mutations.
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3.1 Alzheimer’s disease (AD)

AD is the most common NDs, and the neurotoxic accumulation
of amyloid β-protein (Aβ) and hyperphosphorylation of Tau protein
to form double helix filament are the main driving factors (Lanctot
et al., 2017). Animal models play a crucial role in studying AD
pathogenesis and developing treatments. However, most of the
previous AD mouse models did not exhibit significant
neurodegeneration (De Plano et al., 2022). CRISPR/
Cas9 technology was used to create new AD models and show
more accurate disease phenotypes (Lu et al., 2021). Bart De Strooper
et al. established an animal model of AD using CRISPR/
Cas9 technology by introducing three independent point
mutations (G676R, F681Y and R684H) of APP gene. They
transformed endogenous mouse APP genes into human versions
and established a humanized animal model. This will help to reveal
novel mechanisms of disease pathogenesis (Serneels et al., 2020).
Tan et al. used CRISPR/Cas9 to introduce a deficiency in the
translational start codon of exon one of the Mapt gene encoding
Tau protein in a new animal model that was produced in the pure
C57Bl/6J background (Tan et al., 2018).

The onset and progression of the majority of AD cases are
sporadic, and in fact, only in a small number of familial AD cases
(<1%), mutations in related genes lead to the production of amyloid
precursor protein (APP), which promotes APP processing to
produce Aβ. Nevertheless, dysregulation of Aβ metabolism is
involved in both sporadic and familial AD, suggesting that
limiting Aβ production may offer a treatment independent of the
disease (Bhardwaj et al., 2022). Studies using the CRISPR/
Cas9 system have been reported to help knock out Swedish APP
mutations in patient derived fibroblasts and found a 60% reduction
in Aβ, the editing efficiencies of the two designed sgRNAs for APPSW

in cells were 34.3% and 14%, respectively (Gyorgy et al., 2018). Sun
et al. targeted the C-terminal of endogenous APP gene via CRISPR/
Cas9, the robust editing of APP was observed in human iPSC
derived neurons (81.8%) and mouse brains, with no detectable
off-target effects. Their study shifted the processing of APP from
amyloidosis related APP-β cleavage to upregulated neuroprotective
APP-α cleavage, thereby reducing the production of Aβ, and showed
that this method was effective in reducing the production of Aβ (Sun
et al., 2019).

3.2 Parkinson’s disease (PD)

PD, the second most common NDs, is caused by degeneration,
loss of dopaminergic neurons in the substantia nigra of the midbrain
or the formation of Lewy bodies (Karimian et al., 2020). Like AD,
most cases of PD are sporadic. Mutations in genes encoding
alphasynuclein, PINK1, Parkin, LRRK2, and others have been
found in 10%–15% of familial PD cases. The editing of classical
PD related genes in mice has not yielded successful results (Qu et al.,
2023), and the simultaneous knockout of three Parkinson’s disease
related genes, including Parkin/PINK1/Dj-1, did not result in any
observed neurodegenerative phenotype in mice (Kitada et al., 2009).
The researchers constructed large animal models that were more
closely resembled humans in size and physiology. Zhou et al.
transfected the CRISPR/Cas9 expression vector targeting

PARK2 and PINK1 into Porcine fetal fibroblasts (PFF) (Zhou
et al., 2015), and successfully constructed a PD model pig by
somatic cell nuclear transfer (SCNT). Zhu et al. used CRISPR/
Cas9 combined with nuclear transplantation (SNCT) technology
to breed a Bama mini pig PD model expressing SNCA gene E46K,
H50Q and G51D mutations (Zhu et al., 2018). However, the PD
model pigs did not exhibit significant neuronal loss, while the
primate models appeared to be better at reproducing typical
Parkinson’s pathological features (Yang et al., 2019; Li et al.,
2021a; Yang et al., 2022).

CRISPR/Cas9 technology has also been used for the deletion of
mutant gene expression or direct restoration of known PD causing
mutations. The A53T mutation of the SNCA gene is one of the most
studied mutations in PD, and rats carrying the A53T mutation and
overexpression of alpha synuclein exhibit a phenotype resembling
PD, which can be prevented through CRISPR/Cas9 mediated
deletion of the mutant gene (Yoon et al., 2022). Furthermore,
LRRK2 mutation represents the most common genetic cause of
both sporadic and familial PD. Qing et al. successfully reduced the
incidence of familial and sporadic PD by editing mutant
LRRK2 using CRISPR/Cas9, thereby presenting a potential
avenue for treating both forms of PD, they performed unbiased
detection of the top 8 potential off-target sites predicted by the COD
algorithm, and Sanger sequencing analysis showed no off-target
indels (Qing et al., 2017).

3.3 Huntington’s disease (HD)

HD is a fatal ND characterized by severe psychiatric symptoms
and cognitive impairment (Bates et al., 2015), which is usually
inherited in an autosomal dominant manner and is primarily
caused by abnormal triple amplification of CAG (cytosine
adenine guanine) in the Huntington (HTT) gene on chromosome
4p16.3 (Yang et al., 2020a; Tabrizi et al., 2020). This amplification is
translated into a polyglutamine (polyQ) repeat in the disease protein
Huntington (HTT) (Dianov andHubscher, 2013). The amplification
of polyQ causes HTT to misfold and accumulate in the patient’s
brain, resulting in preferential loss of spinous neurons in the
striatum. Various transgenic mouse models of HD have been
established, and it has been found that N-terminal fragments of
mutant HTT with amplified polyQ repeats can accumulate in the
brain, affecting motor and neuronal function (Crook and Housman,
2011; Farshim and Bates, 2018). However, in these mouse models,
there was no significant selective loss of mid-spinous neurons when
HD knockout (Crook and Housman, 2011). In 2018, Yan et al. used
CRISPR/Cas9 technology to introduce 150 CAG repeats into
endogenous porcine HTT gene and successfully generated the
first porcine HD model. Notably, when the full length mutant
HTT carrying 150Q was expressed endogenously in the HD
porcine model, it causes significant selective neurodegeneration
and movement disorders, which effectively generalizes the typical
pathological and clinical features of HD patients (Yan et al., 2018).

Considering its primary genetic cause, HD is considered an ideal
ND for the application of CRISPR/Cas9 technology, and studies
have suggested that reducing the production of mutant HTT alleles
could be an effective therapeutic approach (Ekman et al., 2019;
Lopes et al., 2020). Furthermore, Jing et al. inhibited the expression
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of endogenous Hsp70 binding protein in the striatum of HD140QKI
mice by CRISPR/Cas9, and the accumulation of HTT was
significantly reduced, which indicated that CRISPR/Cas9 could
play a certain role in the treatment of Huntington’s disease (Jing
et al., 2021). Therefore, the removal of the mutated HTT protein has
important therapeutic implications for HD, and identifying a
treatment for any one neurological disease will have broad
implications for the development of treatments for a large
number of patients with neurological diseases.

4 CRISPR/Cas9 for cardiovascular
diseases modeling and gene therapy

Cardiovascular disease is one of the chronic diseases that serious
threaten human life caused by the combination of genes and
environment (Morton et al., 2022), its incidence is rising year by
year, and the proportion of population deaths is quite high, and it
has become the primary disease that threatens human health
(McKenna and Judge, 2021). CRISPR/Cas9 genome editing
technology has ushered in a new era of cardiovascular disease
research and offering the possibility for genetic correction of this
ailment (Liu and Olson, 2022).

Inherited heart diseases, such as congenital heart disease (CHD),
hypertrophic cardiomyopathy (HCM), and Duchenne muscular
dystrophy (DMD), are caused by mutations in either a single
gene or multiple genes (Austin et al., 2019; Yadav et al., 2019).
There has been a lack of relatively reliable models of heart disease
(Strong and Musunuru, 2017), and now with the aid of CRISPR/
Cas9 technology, researchers have developed corresponding in vivo
and in vitromodels to study hereditary heart diseases. In the in vivo
disease models, Alankarage et al. created CRISPR/Cas9 gene edited
mouse models for functional analysis of novel missense variants
identified from patients with congenital heart disease (CHD),
revealing the effects of multiple congenital abnormalities on
CHD (Alankarage et al., 2020). Johansen et al. used CRISPR/
Cas9 and AAV9 mediated delivery of short guide RNAs targeting
3 genes (Myh6, Sav1, and Tbx20) critical for cardiac physiology to
generate cardiomyocyte specific Cas9 mice, and demonstrated that
Cas9 expression did not affect cardiac function or gene expression
(Johansen et al., 2017). Liu et al. used CRISPR/Cas9 genome editing
technology to verify the dual genes that cause hypoplastic left heart
syndrome (HLHS) in mice, indicating that HLHS can be inherited
through combination mode, thus providing a new paradigm for the
complex genetics of congenital heart disease (Liu et al., 2017a).
Other heart disease models constructed by researchers using
CRISPR/Cas9 in recent years are shown in Supplementary Table
S1. In the in vitro cell models, Li et al. used CRISPR/Cas9 technology
to knock out MLP (striated muscle associated protein) in H9 human
embryonic stem cell line to generate the corresponding defects type
(Li et al., 2019), which later developed into HCM. Jaffre et al.
successfully established the HCM model of Noonan syndrome on
patient derived cardiomyocytes by using CRISPR/Cas9 generated
isogenic control iPSC derived cardiomyocytes (Jaffre et al., 2019).

CRISPR/Cas9 technology is also commonly used to study the
role of different genes or proteins in the mechanism of inherited
heart diseases. Chang et al. constructed two FHL2 gene knockout ES
cell lines using CRISPR/Cas9 technology (Chang et al., 2018), which

could be used for mechanism research and drug screening of dilated
cardiomyopathy (DCM). Xie et al. applied CRISPR/Cas9 gene
editing technology to generate hESC related to TOF (tetralogy of
Fallot), revealing the myocardial hypertrophy derived from human
embryonic stem cells through HB-EGF signal transduction by rare
mutations of TOF (Xie et al., 2019). Li et al. used CRISPR/
Cas9 technology to create RAD (Ras associated with diabetes)
deficient human ES cell lines, demonstrating that elevated
intracellular calcium levels and abnormal calcium regulation were
the core mechanisms of RAD deficiency leading to cardiac
hypertrophy (Li et al., 2020). Roche et al. used CRISPR/Cas9 to
introduce Brugada syndrome (BrS) mutations in human induced
hiPSC-CMs, which, as a genetic background independent of
patients, revealed the mechanism of sodium channel inactivation
triggering BrS (de la Roche et al., 2019). By constructing PLNmutant
hiPSC-CM cell line, Smith et al. confirmed that the mutation could
lead to delayed response of cardiomyocytes to β-receptor agonists
(Smith et al., 2018). Ang et al. combined iPSC with CRISPR/
Cas9 technologies to establish a congenital heart disease model
related to GATA4 gene mutation in vitro, aiming at exploring the
pathogenesis caused by this gene mutation (Ang et al., 2016).

CRISPR/Cas9 shows promise as a potential treatment for
cardiovascular diseases meanwhile. In the case of DMD, somatic
genome editing therapy for the disease has demonstrated promising
outcomes in both animal models and in vitro humanmodels. Nelson
et al. respectively loaded CRISPR-SaCas9 and two sgRNAs into
AAV vectors and used the AAV-CRISPR gene editing system to
target the deletion of exon 23 in DMD gene of MDX model mice
(Nelson et al., 2019), resulting in the expression of dystrophin with
normal functionality. The newborn mice injected intravenously with
the AAV-CRISPR system still had higher gene editing efficiency and
maintained high expression of restored dystrophin protein 1 year
later. They found that the expression of SaCas9 in various types of
muscle cell, while also detected genome editing events in other
tissues at levels slightly above the detection limit (~0.1%).
Furthermore, deep sequencing analysis of the top 10 predicted
off-target sites showed no significant increase in off-target cutting
after 1 year. Amoasii et al. coupled Cas9 with sgRNA to target
regions near the DMD gene exon 51 splicing receptor sites, and used
adeno-associated viruses to deliver the CRISPR gene editing
component to four dogs, where dystrophin recovered to 3%–90%
of normal levels in the heart muscle. The dogs that received the
highest dose had levels of dystrophin that were 92% of normal. The
muscle tissue of treated dogs also improved (Amoasii et al., 2018),
the analysis of predicted off-target sites revealed no specific off-
target gene editing above background levels in treatment animals.
Moretti et al. used a Cas9 mediated exon excision method to restore
the DMD reading frame, which enabled short but functional
dystrophin expression and improved bone and myocardial failure
in DMD pigs, and this method prevented susceptibility of DMD
cardiomyocytes to arrhythmias (Moretti et al., 2020). Although no
mutations were detected at the five most likely predicted off-target
sites, and no genome editing events were observed in the liver and
kidneys, it is important to further evaluate possible off-target
mutagenesis in longer term animal studies.

For cardiovascular diseases, CRISPR/Cas9 technology has just
begun to be widely used, there is no doubt that for some
cardiovascular diseases with high mortality, the application of
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CRISPR/Cas9 technology will be faster and more convenient to
create cell and animal models, which is conducive to the research of
cardiovascular development and disease pathogenesis.

5 CRISPR/Cas9 application for
autoimmune-related diseases

The primary characteristic of autoimmune diseases is that the
disorders function of the immune system, the body is unable to
distinguish between its own antigens and foreign antigens, and
mistakes the normal components of the body for foreign
substances to attack, resulting in long term inflammation
(Marrack et al., 2001). The genetic background underlying
autoimmune diseases is intricate, involving multiple genes and
pathways in their pathogenesis. Various genetic factors can lead
to the development of autoimmune diseases such as rheumatoid
arthritis, systemic lupus erythematosus, type 1 diabetes, and
multiple sclerosis (Cooper et al., 1999; Lee et al., 2022). CRISPR/
Cas9 provides numerous novel ideas for research and treatment of
autoimmune diseases including the screening of autoimmune
disease regulatory genes, the construction of disease models, and
the attempt to be used in the treatment of autoimmune diseases.

The CRISPR/Cas9 system has been used to identify regulatory
sequences for certain important autoimmune risk loci, such as
CD69 and IL2RA, the latter of which is associated with Crohn’s
disease (Huang et al., 2017b; Simeonov et al., 2017). Studies have
demonstrated that the destabilization of Treg cells can promote the
development of autoimmunity, primarily characterized by the
downregulation of transcription factor Foxp3 and the acquisition
of proinflammatory properties. Cortez et al. have developed a
combined CRISPR based screening platform for primary mouse
Treg cell phenotype study, using this technology to perform targeted
loss of function screening analysis of approximately 500 intranuclear
factors, thereby identifying gene regulatory programs that can
promote or interfere with Foxp3 expression (Cortez et al., 2020).
Additionally, researchers used CRISPR whole genome screening
technology to perform a comprehensive search across the whole
genome in mouse model of type 1 diabetes, aiming to identify
modifying factors that influence the survival of islet β-cells (Cai
et al., 2020).

CRISPR/Cas9 has also been used in the construction of some
autoimmune disease models. Researchers used CRISPR/
Cas9 technology to generate Trex1 D18N/D18N point mutant
mice, which display a multitude of human autoimmune related
symptoms, including significantly declined survival time and
damage to various organs such as the heart and kidneys.
Additionally, augmented levels of autoantibodies were observed
(Xiao et al., 2019). The other mouse models of autoimmune
diseases are also presented in Supplementary Table S1. There are
also many studies on the application of CRISPR/Cas9 to construct
in vitro cell models of autoimmune diseases. Sevim et al. constructed
a model for familial hemophagocytic lymphohistiocytosis 2 (FHL2)
in order to assess the effectiveness of coculturing with mesenchymal
stromal cells as an alternative therapy when bone marrow
transplantation is unavailable (Sevim et al., 2018). The
autoimmune regulatory gene (AIRE) has also been investigated
using CRISPR technology, revealing that disruption of adhesion

between the thymic medullary epithelial cells and thymus cells is one
mechanism through which AIRE interference leads to
autoimmunity (Speck-Hernandez et al., 2018). Furthermore,
another study employing CRISPR/Cas9 technology on
A20 demonstrated that genetic variation in the
A20 deubiquitinase (DUB) domain increased the risk of systemic
lupus erythematosus (SLE) and rheumatoid arthritis (Odqvist
et al., 2019).

Gene therapy is a promising treatment for autoimmune diseases,
while there were limited researches on the use of CRISPR/Cas9 in
treating such conditions (Lee et al., 2022). Nevertheless, we cannot
disregard the potential application of CRISPR/Cas9 in autoimmune
diseases. Differentiated immune cells can be genetically modified
using CRISPR technology. For instance, a recessive mutation in
IL2RA led to reduced levels of IL2 receptor α chains in FOXP3 Tregs
from a patient with a family history of autoimmune diseases. After
targeted modification with CRSIPR, it found that the patient’s T cells
began to express normal levels of IL2RA (Roth et al., 2018), the
researchers also conducted targeted loci amplification (TLA)
sequencing and observed no evidence of off-target integration
above the detection limit (~1% of alleles). In relation to
rheumatoid arthritis (RA), Yang et al.’s study suggests that MYC
and FOXO1 genes are implicated (Yang et al., 2020b), making these
genes suitable candidates for targeted treatment using CRISPR/
Cas9. Additionally, CRISPR/Cas9 has also been used to modify
genes that may affect FOXP3 expression, enabling predominance of
Treg expression and promoting the effect of adoptive Treg therapy
in rheumatoid arthritis (Safari et al., 2018).

To date, numerous studies using CRISPR/Cas9 to treat
autoimmune diseases have been conducted in cells (Table 1), and
reports on clinical trials involving human subjects are very limited.
However, it is undeniable that CRISPR/Cas9 plays a beneficial role
in the regulation of autoimmune diseases, so it is necessary to
conduct further comprehensive research, particularly more
extensive in vivo investigations.

6 Application of CRISPR-Cas9 in
cancer research

In recent years, CRISPR/Cas9 has become more widely used in
cancer research and treatment, and there have been some
encouraging advances, first reflected in the establishment of
cancer animal models to study the pathogenesis of cancer. The
creation of animal models for cancer is an important approach to
studying the functional aspects associated with cancer genes. In the
previous animal model establishment process, manipulation
techniques were applied at the level of zygote stage to accomplish
gene editing operations of embryonic stem cells with homologous
recombination technology. The clinical application of CRISPR/
Cas9 has outstanding simplification advantages for cancer animal
models. Xue et al. using CRISPR/Cas9 technology successfully
constructed a mouse model for liver cancer by simultaneously
targeting tumor suppressor genes PTEN and P53 in mouse
hepatocytes (Xue et al., 2014). Mou et al. injected Kirsten rat
sarcoma viral oncogene (KRAS) gene templates along with
sgRNA targeting tumor suppressor gene TP53 into wild-type
B6 mice (Mou et al., 2019), resulted in tumors being observed in
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their livers 1 month later, thus successfully establishing a tumor
model. Tyler et al. achieved successful construction of a mouse
model for small cell lung cancer (SCLC) by simultaneously knocking
out tumor suppressor genes Trp53 and Rb1 using CRISPR/
Cas9 technology (Ng et al., 2020), their study provides an
applicable mouse model of humanized SCLC that is suitable for
studying the pathogenesis of SCLC. The construction of mouse
models of other cancer using CRISPR/Cas9 technology is illustrated
in Supplementary Table S1.

The findings from cellular and animal model studies suggest that
CRISPR/Cas9 technology holds promise as a potentially effective
approach for cancer treatment. The activation of oncogenes and the
mutation of tumor suppressor genes make cancer cells expand and
metastasize indefinitely, therefore, using CRISPR/Cas9 gene editing
in cancer cells is expected to alter the biological characteristics of
cancer cells, and provide a novel strategy for tumor treatment.
Currently, several strategies using CRISPR/Cas9 for gene editing in
cancer cells: 1) Introduction of tumor suppressor genes using
CRISPR/Cas9 to inhibit tumor growth. Moses et al. used
CRISPR/Cas9 along with trans-activator VP64p65-Rta (VPR) to
activate the expression of PTEN in cancer cells, demonstrated that
the activation of PTEN can significantly inhibit the downstream
carcinogenic pathway (Moses et al., 2019). 2) Correction of
deleterious mutations using CRISPR/Cas9 to suppress tumor
development. Koo et al. used adenovirus (AdV) to deliver
Cas9 protein and sgRNA targeting the EGFR oncogene with a
single nucleotide missense mutation (CTG > CGG) (Koo et al.,
2017). This method enabled to distinguish cancer causing mutations
from wild-type EGFR alleles and precisely eliminate cancer causing
mutant EGFR alleles. The frequency of EGFR mutant alleles in
h1975 tumors was determined to be 50% (±5.3%), 40% (±2.8%), and
35% (±4.1%) at 7, 9, and 11 days post initial injection using Ad/sg
EGFR and Ad/Cas9 vectors. Furthermore, no off-target effects were
observed among the identified 17 potential off-target sites. Cheung

et al. used the CRISPR/Cas9 system to target the point mutation
L858R of EGFR (Cheung et al., 2018), the study used PAM to
distinguish cancer mutations from normal mutations, providing
high specificity in the degree of single nucleotide substitutions, and
observed reduced expression of EGFR and inhibited cell
proliferation in cells harboring the L858R mutation, providing
novel insights into using CRISPR/Cas9 to selectively eliminate
oncogenic mutations for cancer treatment. 3) Using CRISPR/
Cas9 to target and knockout cancer related genes for tumors
treatment, Zhen et al. used CRISPR/Cas9 to knockout E6 and
E7 protein related genes that play a crucial role in the
development and maintenance of cervical cancer, and the results
showed that the knockout seriously damaged the survival ability of
cancer cells (Zhen et al., 2016). Fusion genes are specific to cancer
cells and are involved in many tumors, the researchers used
CRISPR/Cas9 technology to insert the “suicide gene” HSV1-tk
into the location of the MAN2A1-FER fusion gene break point,
and found that the “suicide gene” can inhibit tumor growth, thus the
method may be used as a viable strategy to treat tumors carrying the
fusion gene (Chen et al., 2017).

Additionally, alterations in the gene expression of immune cells
may reduce their ability to defend against and eliminate tumors. The
utilization of CRISPR/Cas9 for gene editing in immune cells can
enhance their cytotoxicity against tumors. The current strategies
mainly involve: 1) Engineered T cells to eliminate tumors by
knockout immune checkpoints. As an immune checkpoint, the
high expression of PD-1 on T cells will inhibit the ability of
T cells to initiate immune response, thereby rendering tumor
cells susceptible to evading from the immune system. In 2020, Lu
et al. injected CRISPR edited T cells targeting PD-1 into patients
with advanced non-small-cell lung cancer (NSCLC). Clinical
research results indicated a gene editing efficiency ranging from
8.7% to 31.2%, accompanied by significant reduction in PD-1
expression levels, thereby demonstrating that clinical application

TABLE 1 The cell models using CRISPR/Cas9 in autoimmune-related diseases.

Autoimmune
disease

Cell lines Target
gene

Results References

Rheumatoid Arthritis Primary human CD4+ T cells MYC, FOXO1 The MYC and FOXO1 genes may serve as the
etiological factors of RA

Yang et al. (2020b)

Multiple Sclerosis Primary human CD4+ T cells;
lymphoblastoid cell lines

DDX39B The epistatic interaction between DDX39B and
IL7R regulates the splicing of IL7R exon 6,
increasing the risk of Multiple Sclerosis

Galarza-Munoz et al.
(2017)

Inflammatory Bowel Disease subepithelial myofibroblasts (SEMF) PTPN2 PTPN2 expression was increased in the affected
ileum; deletion of PTPN2 resulted in higher

levels of STAT3 and p-Erk1/2 and proliferation

Li and Kuemmerle
(2019)

colonic epithelial cells SGK2 SGK2 protein was localized in the cytoplasm of
ulcerative colitis colonic epithelial cells

Mokhtar et al. (2019)

Systemic Lupus
Erythematosus

monocytes and B cells CXorf21 CXorf21 knockdown resulted a decreased
expression of TNF-α and IL-6

Harris et al. (2019)

human U937 monocytes TNFAIP3 The A20 C103A cells or cells carrying the
rs2230926 polymorphism exhibit an increased
frequency of neutrophil extracellular trap

formation and produce autoantibodies targeting
citrullinated epitopes

Odqvist et al. (2019)

Type 1 Diabetes Mellitus peripheral blood mononuclear cells
(PBMCs)

LCK G allele of SNP of LCK increases the risk of type
1 diabetes mellitus

Zhu et al. (2019)
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of CRISPR/Cas9 edited T cells is generally safe and feasible (Lu et al.,
2020). Dong et al. found that DHX37 also serves as a crucial immune
checkpoint (Dong et al., 2019), and knocking out DHX37 in CD8-
positive T cells can enhance the effectiveness of adoptive
immunotherapy against triple-negative breast cancer. 2) Using
CRISPR/Cas9 to modify the antigen recognition capability of
CAR-T cells. CAR-T cell immunotherapy employs genetic
engineering to modify T lymphocytes to express chimeric antigen
receptors that capable of identifying tumor cells and activating
T cells simultaneously. Traditional CAR-T therapy exhibits
certain defects, such as the limited number of T cells to be
treated and the short in vivo survival duration. Stadtmauer et al.
modified CAR-T cells with CRISPR/Cas9, demonstrated that edited
CAR-T cells could persist for 9months in patients with blood related
cancers and maintain stable cytotoxicity compared to less than
7 days survival observed in original CAR-T cells (Stadtmauer
et al., 2020).

The current research on utilizing CRISPR/Cas9 for gene editing
of cancer cells to target tumors is primarily in the stages of basic
research, and its direct application in clinical treatment remains
limited. Clinical trials involving CRISPR/Cas9 are predominantly
conducted in vitro, necessitating the isolation of cells from patients.
Subsequently, the CRISPR/Cas9 system is employed for gene
correction before being reintroduced into the patient. This
process is influenced by various factors such as delivery systems
and editing efficiency. However, with continuous advancements in
gene editing technology, it is anticipated that CRISPR/Cas9 will
possess significant potential to advance both cancer research
and treatment.

7 Limitations of CRISPR/Cas9 in disease
treatment and application

Although CRISPR/Cas9 is a well-established gene editing tool
and has been extensively utilized in the research and treatment of
various diseases, its clinical application is still in its early stages.
There are several challenges that need to be addressed, including off-
target effects, delivery methods, efficiency, and safety.

Off-target effects are a limitation of CRISPR/Cas9 technology
and are considered a significant risk in in vivo gene therapy (Du
et al., 2023). These effects occur when Cas9 proteins bind to PAM-
like sequences or when guide RNAs (gRNAs) bind to unexpected
nucleotide sequences at the target site. It has been reported that their
efficiency exceeds 50% (Zhang et al., 2015). Off-target cleavage can
result in unintended editing of normal genes, potentially disrupting
their function, causing undesirable mutations, cytotoxicity, and even
diseases. Selecting and designing the optimal sgRNA sequence is
crucial to minimize or eliminate off-target effects. Studies have
demonstrated that the structure of sgRNA influences its targeting
ability, and increasing the GC content at the end of the sgRNA
sequence’s PAM (Protospacer adjacent Motif) improves its targeting
efficiency (Ren et al., 2014). Additionally, shortening the length of
the sgRNA sequence enhances its sensitivity to residual target DNA
mismatches, significantly reducing off-target effects (Hazafa et al.,
2020). Furthermore, the development of high fidelity
SpCas9 variants is considered the most promising strategy to
address off-target effects in the context of enhanced Cas9 protein

(Kulcsar et al., 2020). It is important to note that off-target effects
remain unresolved in vivo and are closely associated with delivery
techniques. Most clinical trials have focused on gene editing in vitro
using patient derived cells, this approach reduces the risk of off-
target effects and metastatic challenges but may not be suitable for
all diseases.

To enhance the specificity of gene editing and achieve
effective and precise therapy, it is crucial for CRISPR/
Cas9 components to overcome various physical barriers and
directly enter target cells (Xu et al., 2021). Additionally, the
gene editing process necessitates the simultaneous delivery of
functional Cas9 protein and sgRNA into the nucleus (Chen et al.,
2020). Therefore, the delivery method plays a crucial role in
CRISPR/Cas9 mediated editing therapy. Previously, physical and
viral vectors have been explored for delivering CRISPR/
Cas9 components. Physical delivery methods such as
microinjection, electroporation, and hydrodynamic drug
delivery exhibit high application efficiency in vitro but do not
meet the requirements for in vivo applications (Liu et al., 2017b).
Viral vectors also face limitations in their transformation into
clinical grade therapeutic agents, including immunogenic
reactions, limited packaging capacity, off-target effects, and
high production costs (Tong et al., 2019; Xu et al., 2019).
Non-viral vectors based on nanotechnology and materials
science have been utilized in cancer therapy due to their low
immunogenicity, high biocompatibility, and optimal payload
capacity (Parra-Nieto et al., 2021). However, during the
delivery process, CRISPR/Cas9 loaded nanoparticles encounter
blood barriers, including degradation of CRISPR/
Cas9 components by various enzymes in plasma (Kim et al.,
2011), the clearance of nanocarriers by mononuclear phagocyte
system or macrophages (de Lazaro and Mooney, 2021), and the
filtration of nanocarriers by glomeruli (Han et al., 2014).
Compared to the gene editing efficiency in vitro, the in vivo
CRISPR/Cas9 editing efficiency is significantly lower, partially
due to the low delivery efficiency of nanocarriers (Xu et al., 2021).
Therefore, the lack of a safe and efficient delivery system remains
the major obstacle to the clinical application of CRISPR/Cas9.

The immune system’s reaction triggered by the Cas9 protein or
vector in the host represents a significant challenge in the
application of CRISPR/Cas9 technology (Du et al., 2023). The
Cas9 protein, originating from Streptococcus pyogenes, is
considered an external antigen that can provoke an immune
response upon introduction into the body (Charlesworth et al.,
2019). While extreme immune responses to Cas9 are not extensively
documented, the presence of Cas9 antibodies in humans indicates
the potential exacerbation of hazards associated with CRISPR/
Cas9 based gene therapy (Li et al., 2021b). Researchers are
increasingly focusing on the immunogenicity caused by vectors,
particularly viral vectors, as humans may have been previously
exposed to them (Du et al., 2023). Thus, the immune response
generated by the CRISPR/Cas9 gene editing framework constitutes a
primary detrimental factor in the context of in vivo gene therapy
using CRISPR technology.

CRISPR/Cas9 is an effective gene editing tool, but it is not yet an
ideal clinical treatment. CRISPR requires a higher level of safety.
Although CRISPR/Cas9 mediated gene editing has shown
promising results in clinical studies, more in depth studies are
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needed to ensure that CRISPR/Cas9 can be safely and effectively
applied to treat human diseases.

8 Conclusion and future perspectives

The discovery and research of the CRISPR/Cas9 system has
changed the process of genome editing in the field of life sciences. In
comparison to the ZFN and TALEN systems, it offers some
incomparable advantages. In theory, every eight bases in the
genome can find a site that can be edited with CRISPR/Cas9, so
the technique can operate on almost any gene. Moreover, CRISPR/
Cas9 system has more scalability, CRISPR/Cas9 gene editing
technology can achieve a single base editing at the level of cells
and organisms (Rees and Liu, 2018; Porto et al., 2020), is the most
promising gene editing technology. Furthermore, one of its key
strengths lies in its easy of use nature, enabling that almost any
laboratory can do the work with this system.

From the various research reports and literatures on CRISPR/
Cas9 system in recent years, it is not difficult to find that the
application and advancement of this technology will likely help
people to have a deeper understanding of the pathogenesis of
diseases and provide more directions for targeted treatment of
diseases. In this review, we only focus CRISPR/Cas9 research

applications in neurodegenerative diseases, cardiovascular
diseases, autoimmune related diseases, and cancer (summarized
in Figure 3). In fact, CRISPR/Cas9 researches in variety of other
human diseases have been reported. Today, advocates precision
medicine and personalized medicine are being promoted, the
development of the technology can also better promote the
implementation of such medical treatment, so as to solve a series
of problems in clinical treatment. Notably, compared with
traditional genome editing technology, CRISPR/Cas9 genome
editing technology also highlights great advantages in the
establishment of animal models, the application of this
technology can ensure the accurate and time saving
establishment of disease animal models, thereby greatly
facilitating the development of new drugs and the study of drug
mechanism of action.

Although CRISPR/Cas9 technology is widely used for gene
knockout or knock-in labeling, large fragment deletion, and
transcriptional regulation, and has become an important tool for
exploring the pathological mechanisms of diseases. However, certain
challenges still need to be addressed, including the highly
concerning off-target effects, delivery system optimization (van
Haasteren et al., 2020), and enhancement of gene editing
accuracy and efficiency. Consequently, the clinical application of
CRISPR/Cas9 technology in disease still faces certain challenges

FIGURE 3
Overview of the CRISPR/Cas9 systems application in various human diseases. We focus on the genes and proteins associated with disease, which
could be target for disease modeling or the candidates for gene therapy. Aβ, amyloid β-protein; APP, amyloid precursor protein; PARK2, parkin RBR
E3 ubiquitin protein ligase; PINK1, PTEN-induced putative kinase 1; SNCA, a-synuclein; Tau, microtubule associated protein tau; HTT, huntington protein;
FHL2, four and a half LIM domains 2; RAD, radish; MLP,membrane lipoprotein precursor; GATA4, GATA binding protein 4; DMD, Duchennemuscular
dystrophy gene; PLN, phospholamban; IL2RA, interleukin 2 receptor subunit alpha; CD69, CD69 molecule; Foxp3, forkhead box P3; AIRE, autoimmune
regulator; Trex1, three prime repair exonuclease 1; EGFR, epidermal growth factor receptor; p53, tumor suppressor gene; PTEN, phosphatase and tensin
homolog; Trp53, transformation related protein 53; Rb1, RB transcriptional corepressor 1; TP53, tumor protein p53.
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(Behr et al., 2021). However, CRISPR/Cas9 technology is constantly
being improved and optimized, such as by modifying the
Cas9 protein, so that it does not cut the double strand DNA, but
only cut the single strand, under the guidance of a specific double
sgRNA, the off-target efficiency will be greatly reduced. Therefore, in
the future, CRISPR/Cas9 technology will be widely used in the
mechanism research and clinical treatment of diseases, and finally
overcome the treatment problems of some diseases, and bring hope
to more patients.

In summary, CRISPR/Cas9 is an innovative genome editing tool
with significant potential for development. With the continuous
advancement of basic research and clinical applications, CRISPR/
Cas9 will bring new hope for disease treatment across various fields.
Genome editing technology is still developing, and its integration
with disease treatment is progressively close, thus expected to make
substantial contributions to human health.
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