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Introduction: As the evaluation indices, cancer grading and subtyping have
diverse clinical, pathological, and molecular characteristics with prognostic
and therapeutic implications. Although researchers have begun to study
cancer differentiation and subtype prediction, most of relevant methods are
based on traditional machine learning and rely on single omics data. It is
necessary to explore a deep learning algorithm that integrates multi-omics
data to achieve classification prediction of cancer differentiation and subtypes.

Methods: This paper proposes a multi-omics data fusion algorithm based on a
multi-view graph neural network (MVGNN) for predicting cancer differentiation
and subtype classification. The model framework consists of a graph
convolutional network (GCN) module for learning features from different
omics data and an attention module for integrating multi-omics data. Three
different types of omics data are used. For each type of omics data, feature
selection is performed using methods such as the chi-square test and minimum
redundancy maximum relevance (mRMR). Weighted patient similarity networks
are constructed based on the selected omics features, and GCN is trained using
omics features and corresponding similarity networks. Finally, an attention
module integrates different types of omics features and performs the final
cancer classification prediction.

Results: To validate the cancer classification predictive performance of the
MVGNN model, we conducted experimental comparisons with traditional
machine learning models and currently popular methods based on integrating
multi-omics data using 5-fold cross-validation. Additionally, we performed
comparative experiments on cancer differentiation and its subtypes based on
single omics data, two omics data, and three omics data.

Discussion: This paper proposed the MVGNN model and it performed well in
cancer classification prediction based on multiple omics data.
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1 Introduction

Cancer is one of the leading causes of death in the world today.
According to the global cancer statistics report in 2020, there were
nearly 19.3 million new cases of cancer and 10million cancer-related
deaths worldwide (Bray et al., 2018). Due to factors such as
globalization and economic growth, the number of new cancer
cases is expected to continue to rise. Cancer is a disease
characterized by the uncontrolled growth and spreading of
specific cells in the body to other parts of the body. These cells
can also transfer to distant body parts, forming new tumors through
metastasis (Hanahan andWeinberg, 2011). Tumors can be classified
into different grades, known as tumor grading, by examining tumor
cells under a microscope. Tumor grading compares the degree of
cellular and tissue morphological changes between cancer cells and
normal cells, indicating the tumor’s differentiation. Generally, based
on the abnormality of tumor cells observed under a microscope,
tumors are classified into grades 1, 2, or 3 (sometimes also 4), called
G1, G2, G3, and G4, respectively (Sobin and Fleming, 1997). These
represent well-differentiated, moderately differentiated, poorly
differentiated, and undifferentiated tumors. Cancer is also a
heterogeneous disease that encompasses various subtypes. The
same type of cancer can be divided into subtypes based on
different mechanisms of occurrence. Different subtypes of the
same cancer reflect distinct molecular carcinogenesis processes
and clinical outcomes. With the advent of precision medicine,
cancer classification has gradually become one of the
fundamental goals of cancer informatics. Heterogeneous cancer
populations are grouped into clinically meaningful subtypes
based on the similarity of molecular spectra.

Breast cancer is a most common cancer worldwide (Loibl et al.,
2021). The number of breast cancer patients is increasing year by
year, and the proportion of women under the age of 40 with breast
cancer has reached 6.6% (Assi et al., 2013). Breast cancer incidence
rates have risen in most of the past four decades; during the most
recent data years (2010–2019), the rate increased by 0.5% annually
(Giaquinto et al., 2022). Breast cancer, as a highly heterogeneous
disease, is composed of different biological subtypes, which possess
distinct clinical, pathological, and molecular characteristics, as well
as prognostic and therapeutic significance (Reis-Filho and Pusztai,
2011).Therefore, studying breast cancer subtypes is of great
significance for precision medicine and prognosis prediction
(Waks and Winer, 2019).In the year 2000, Perou et al. first
proposed the molecular subtyping of breast cancer. They
concluded that breast cancer can be divided into four subtypes:
Luminal A subtype, Basal-like subtype, HER2-enriched subtype, and
Normal-like subtype (Perou et al., 2000). Sorlie et al. subdivided the
luminal subtype into luminal A and B subtypes (Sorlie et al., 2003).
Waks et al. categorized breast cancer into three major subtypes
based on the presence or absence of molecular markers, including
estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2). These subtypes are
ER+/PR+/HER2- (luminal A), HER2-positive, and triple-negative
breast cancer (TNBC), where all three of these molecular markers
are negative (Yersal and Barutca, 2014). The HER2-positive subtype
can be further divided into ER+/PR+/HER2+ (luminal B) and ER-/
PR-/HER2+. Tao et al. categorized breast cancer into five subtypes
based on immunohistochemistry (IHC) markers, including ER, PR,

and HER2 (Tao et al., 2019). These subtypes include luminal A, B,
HER2-positive, TNBC, and unclassified.

With the advancement of sequencing technologies, various types
of omics data in the biosphere, including transcriptomics data [RNA
expression data (Wang et al., 2009; Ozsolak and Milos, 2011)],
metabolomics (Shulaev, 2006) data, proteomics (Altelaar et al.,
2013) data, methylation patterns (Laird, 2010) data, as well as
genomics data [DNA sequence data (Metzker, 2010)], have
experienced rapid growth and accumulation. Many researchers
have developed corresponding tools to handle this large-scale
omics data. Another issue gradually gaining attention from
researchers is whether there is interaction between complex traits
and omics data. Previous studies mainly focused on the relationship
between individual omics data and biological processes. Due to the
reliance on a single type of omics data in analyzing the causes of
complex traits, there have been few research results in this area until
now. Through many existing experimental studies, it is known that
there is a specific connection between different omics data, and they
can complement each other’s missing information. This is crucial for
researchers to discover the relationship between complex traits and
different omics data (Reif et al., 2004; Sieberts and Schadt, 2007;
Hamid et al., 2009; Hawkins et al., 2010; Holzinger and Ritchie,
2012). Integrating different types of omics data and designing
reasonable and adequate multi-omics data integration methods to
accurately predict cancer differentiation and subtype classification
have become hot topics in cancer research.

Deep learning, as an emerging and efficient method in the field
of machine learning, is more capable of capturing non-linear
complex relationships in complex models. It has been widely
used in the research of multi-omics data fusion methods (Cai
et al., 2022). Mohammed et al. proposed a LASSO based 1D-
CNN method and compared it with SVM, ANN, KNN, and
bagging tree methods, the results indicating that the classification
performance of the deep stacking method was superior to the
traditional machine learning method (Mohammed et al., 2021).
Li et al. proposed the MoGCN method by integrating multi-omics
data based on a graph Convolutional network (GCN). Autoencoders
and similarity network fusion methods are used to reduce and
construct a patient similarity network (PSN) respectively to
capture complex nonlinear relationships among multi-omics data
(Li et al., 2022). Xing et al. Proposed the MLE-GATmethod, namely
multi-layer embedded graph attention method, uses WGCNA
method to format each patient’s omics data into a co-expression
network and uses the full gradient map significance mechanism to
identify disease-related genes (Xing et al., 2021). Blanco et al. points
out the need to maintain a certain balance between biology and
computer technology, and to integrate biological knowledge into
modeling methods (Linares-Blanco et al., 2021). Leng et al. suggests
that the best foundational model for predicting the fusion of
multiple omics data is the GNN model (Leng et al., 2022).

This paper considers the relations between feature nodes in the
aggregation of GCNmodel, which are constructed based onmultiple
sets of omics data to form a similarity network. The correlation
between samples can be captured through this similarity network,
effectively preserving the biological semantic and geometric
structures of the data. While for the GAT model, the relations
between nodes are learned through network training. However,
especially when the sample size is small, the training effect may
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not be satisfactory. Therefore, this paper adopts the GCN model
instead of the GAT model in the design, and subsequent
experiments have also validated this design.

2 Materials and methods

2.1 Data collection

The breast cancer data used in this study were obtained from
The Cancer Genome Atlas (TCGA) database (Weinstein et al.,
2013), which contains various cancer types and their
corresponding omics data. A total of 606 breast cancer cases
were carefully selected, which included gene expression data,
DNA methylation data, copy number variation (CNV) data,
differentiation annotation, and subtype annotation. The specific
statistical information of the mRNA, DNA methylation, and
CNV data for the collected breast cancer cases is shown in
Table 1. Among the breast cancer cases with differentiation
annotation, there were 245 samples labeled as low differentiation
(G3), 286 samples labeled as medium differentiation (G2), and
75 samples labeled as high differentiation (G1). The detailed
information is presented in Table 2.

In this article, Tao et al. classified breast cancer into four subtypes
using immunohistochemistry (IHC) labeling: luminal A, luminal B,
HER2-positive, and triple-negative breast cancer (TNBC). The luminal
A subtype is the most common, accounting for 60% of all breast cancer
subtypes (Malhotra et al., 2010). The majority of patients with the
luminal B subtype are elderly. Approximately 25% of breast cancer
patients are HER2-positive, which is associated with a poorer prognosis.
Most patients with HER2-positive advanced breast cancer are likely to
have lymph node metastasis in the axillary region. The TNBC subtype is
characterized by the absence of estrogen receptor (ER), progesterone
receptor (PR), and HER2 (Tao et al., 2019). Compared to other subtypes
of breast cancer, TNBC tends to rapidly deteriorate and metastasize.

In the breast cancer cases with subtype annotation, there were a
total of 398 cases. Out of these, 277 cases were annotated as Luminal
A, 40 were annotated as Luminal B, 11 were annotated as HER2(+),
and 70 were annotated as TNBC. Table 3 provides detailed
information on these cases. The above three omics data and two
annotation files are provided in the Supplementary Material.

2.2 Data preprocessing

Generally, deep learning models do not require separate
feature selection, as they can achieve this through the neural
network’s weights. However, due to the “large p small n”
dimensionality catastrophe problem in omics data, training the
network weights of omics data using the deep learning model is not
adequate. In deep neural networks, fewer features often mean
better interpretability and higher training speed. In this study, the
collected breast cancer case sample data underwent preprocessing
operations using three feature selection algorithms: chi-square test,
linear normalization, and minimum redundancy maximum
relevance (mRMR) (Yiming, 1997; Peng et al., 2005; Forman,
2008). The specific data preprocessing workflow is shown
in Figure 1.

This paper uses the chi-square test to select features for each
omics type. The features are sorted based on their number in the
hypothesis test using the samples corresponding to each
classification task. Then, the top-k features are selected for each
omics data. In this study, k is set to 5000. Normalization is
performed using linear scaling, transforming the data values to fit
within the range of [0,1]. The paper also employs the minimum
Redundancy Maximum Relevance (mRMR) feature selection
algorithm. The difference between each feature’s maximum
relevance value and the minimum redundancy value is used as
the feature score. The features are then sorted in descending order
based on their scores, and the top 500 features are selected for
further filtering. These selected features are favorable for cancer
differentiation and subtype prediction.

2.3 Graph construction

A graph is a complex data structure consisting of nodes and
edges. Many scenes in real life shown in the form of graphs or
networks. For example, resources and users in recommendation
systems can be considered as nodes in a graph, and the relationships
between users and items can be considered as edges. Complex terms
like chemical molecules can also be abstracted as graphs (Zhou et al.,
2020). Most deep learning algorithms use data such as speech,
images, and text with tidy and regular data structures. However,
conventional deep learning algorithms are difficult to handle for
those irregular and complex network structures. The Graph
Convolutional Network (GCN) (Kipf and Welling, 2016) model
can process such graph structures.

In this paper, patient similarity networks are constructed by
using cosine similarity for three kinds of omics data, namely mRNA,
DNA methylation, and CNV data, respectively (Pai and Bader,
2018). The calculation formula for cosine similarity is as Eq. 1:

similarity � cos θ( ) � A · B
A‖ ‖ B‖ ‖ �

∑n
i�1 Ai × Bi��������∑n

i�1 Ai( )2
√

×
��������∑n

i�1 Bi( )2
√ (1)

where, A and B are two known attribute vectors, Ai and Bi

respectively represent the components of the vector sum.
Each patient sample is a node in the patient similarity network,

and the goal of each GCN in the model is to learn features
aggregation from the graph-structured data by leveraging the

TABLE 1 Statistics of breast cancer data.

Data type Number of samples Number of features

mRNA 606 13195

DNA methylation 606 14285

CNV 606 15186

TABLE 2 Statistical information of breast cancer data differentiation.

Breast cancer differentiation Number of samples

G1 75

G2 286

G3 245
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features of each node and the relationships between nodes.
Therefore, the input of the GCN module consists of two parts:
the feature matrix and the graph structure description. The feature
matrix is represented as X ∈ Rn×d, where n is the number of nodes
and d is the number of input features. The graph structure
description is an adjacency matrix A ∈ Rn×n, constructed by
computing the cosine similarity between node pairs. The
computation equation is as Eq. 2:

Aij � s xi, xj( ), if i ≠ j and s xi, xj( )≥ ϵ
0, otherwise

{ (2)

In the equation, Aij represents the adjacency relationship
between node i and node j, xi and xj are the feature vectors of
node i and node j, and s(xi, xj) is the cosine similarity between node
i and node j. ϵ is a threshold determined by k, where k represents the
average number of edges preserved for each node. The computation
equation for k is as Eq. 3:

k � ∑
i,j
I s xi, xj( )≥ ϵ( )/n (3)

where I(·) represents an indicator function, and n is the number of
nodes. With the similarity network, GCN can be trained using omics
features and the corresponding similarity network to learn
specific omics data.

2.4 Model design

The proposed model in this paper consists mainly of the Graph
Convolutional Neural Network (GCN) module and an attention
(Velikovi et al., 2017) module. The GCN module is designed for
learning the feature aggregation of specific omics data, while the
attention module is designed for the fusion of multi-omics features
corresponding to different omics data obtained from the output of

the GCN module. The attention module can assign different
attention weight to each neighbor of a node, thus identifying
more important neighbors for better classification of breast
cancer differentiation and its subtypes.

This paper presents a detailed architecture of the model for
predicting the differentiation degree and subtypes of breast cancer,
as shown in Figure 2.

In this paper, the GCN is constructed by stacking multiple
convolutional layers. Specifically, each layer is defined as Eq. 4:

H l+1( ) � f H l( ),A( ) � σ AH l( )W l( )( ) (4)

where l is the number of graph convolutional layers,H(l) is the input
of the l th layer, W(l) is the weight matrix of the l th layer. σ(·)
represents a non-linear activation function. H(l+1) is the output of
the l th layer. When the number of graph convolutional layers is too
large, the resulting node feature vectors will become overly smooth,
meaning that the features of each node become very similar. This is
mainly because each layer of the GCN integrates information from
the node and its neighbors. As the layers deepen, each node
incorporates information from more neighbors, including some
unrelated nodes. This ultimately leads to similar feature vectors
for different types of nodes.

This paper’s model observed that when the number of graph
convolutional layers exceeded three, there was no significant
improvement in the experimental results. Instead, it increased the
computational time and led to overfitting on some datasets.
Therefore, the GCN module in this paper’s model consists of
three graph convolutional layers.

To effectively train GCN, this paper extends the approach of
Kipf et al. (Kipf and Welling, 2016) by further modifying the
adjacency matrix A as Eq. 5:

~A � D̂
−1
2 ÂD̂

−1
2 � D̂

−1
2 A + I( )D̂−1

2 (5)

TABLE 3 Classification of cancer subtypes.

Breast cancer subtype Number of samples IHC markers

luminal A 277 ER/PR+, Her2−

luminal B 40 ER/PR+, Her2+

HER2(+) 11 ER/PR−, Her2+

TNBC 70 ER/PR−, Her2−

FIGURE 1
Data preprocessing flowchart.
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where D̂ is the diagonal degree matrix of ~A, and I is the
identity matrix.

The attention model was introduced by Velikovi et al. (2017). The
attention model incorporates a self-attention mechanism during the
propagation process in the network. Unlike GCN, which treats all
neighbors of a node equally, this attention model assigns different
attention scores to all neighbors. A higher score for a neighbor
indicates a higher importance level for that node. The attention
network is implemented by stacking multiple graph attention layers.
The input to a single graph attention layer is a set of node feature vectors
as Eq. 6:

h � �h1, �h2, . . . , �hN{ }, �hi ∈ RF (6)

where N represents the number of nodes in the node-set, and F
represents the corresponding eigenvector dimension.

The output of each layer is a new set of node feature vectors as
Eq. 7:

h′ � �h1
′, �h2

′, . . . , �h
′
N{ }, �h′i ∈ RF′ (7)

where F′ represents the new node eigenvector dimension.
In order to obtain sufficient expressive power to transform input

features into higher-level features, the graph attention layer first
performs self-attention processing according to the set of node
feature vectors of input as Eq. 8:

eij � a W �hi,W �hj( ) (8)

The shared attention mechanism a is a mapping of
RF′ × RF′ �xR, and W ∈ RF′×F is a weight matrix that is shared by
all �h

′
i . eij represents the importance of the features of node j to node i.
In this study, the attention module is used to compute the

attention coefficients for each omics feature matrix. The attention
mechanism is then applied to aggregate different types of omics
features, resulting in the final omics feature matrix. The fused feature

matrix obtained from the attention module is further processed
using SoftMax function for final label prediction.

3 Results

3.1 Performance metrics

Samples are generally divided into positive and negative classes for
binary classification tasks. Therefore, the classifier has four classification
results: TP, TN, FP, and FN. TP refers to correctly classifying positive
samples as positive. TN refers to correctly classifying negative samples as
negative. FP refers to incorrectly classifying negative samples as positive.
FN refers to incorrectly classifying positive samples as negative. To
evaluate the model’s predictive performance, we mainly used three
evaluation metrics: accuracy, F1 score, and area under the receiver
operating characteristic curve (AUC-ROC). The specific calculation
formulas are as as Eqs 9–14:

accuracy � TP + TN

TP + TN + FP + FN
(9)

sensitivity � recall � TP

TP + FN
(10)

specificity � TN

TN + FP
(11)

precision � TP

TP + FP
(12)

F1 score � 2 · precision × recall
precision + recall

(13)

AUC � 1
m+m− ∑x+∈D+ ∑x−∈D− W f x+( )>f x−( )( )(
+1
2
W f x+( ) � f x−( )( )) (14)

In the paper, “accuracy” refers to the proportion of correctly
predicted results among all samples. “F1” is the arithmetic

FIGURE 2
Prediction model of MVGNN.

Frontiers in Genetics frontiersin.org05

Ren et al. 10.3389/fgene.2024.1363896

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1363896


average of precision and recall divided by the geometric mean.
F1 has the worst effect when the value is 0 and the best effect
when the value is 1. The receiver operating characteristic curve is
known as ROC, and the area under the curve (AUC) represents
the area under the ROC curve. AUC is calculated through the
integral of the ROC curve, and a higher AUC indicates better
classification results.

We adopt two evaluation indexes for multi-classification tasks,
F1 macro and F1 weighted (Leng et al., 2022). Its calculation
formula are as Eqs 15–17:

Precision macro � 1
n
∑n

i�1 Precisioni (15)

Recall macro � 1
n
∑π

i�1 Recalli (16)

F1 macro � 2 · Precision macro × Recall macro

Precision macro + Recall macro
(17)

F1 macro takes values between 0 and 1 and is unaffected by data
imbalance. On the other hand, F1 weighted is the weighted average
of F1 score for each category, where the weight is the proportion of
each category in the accurate predictions. The difference between
F1 weighted and F1 macro is that F1 macro assigns the same
weight to each category, while F1 weighted assigns different
weights based on the proportion of each category.

The model proposed in this paper and the comparison model are
specifically executed on the workstation based on Ubuntu 18.04.5 LTS
system and Pytorch v1.7.0. The working environment of the
workstation is as follows: CPU is AMD Ryzen 7 3700X 8-Core, 16-
Thread,Memory is 64G, GPU is GeForce GTX 1080 Ti (11G).

3.2 Implementation details

In deep learning, networks with many parameters are very
powerful (Srivastava et al., 2014). However, dealing with the
overfitting problem is a key issue. This paper adopts two
approaches to address the overfitting issue. The first approach is
to add dropout layers to the model. It randomly drops elements in
the neural network during training, preventing overfitting caused by
excessive training. Each sub-network channel consists of three
sequential graph convolution layers and two dropout layers are
used in our model and then weighted each channel using the
attention mechanism. The second approach is to employ early
stopping during the training process of the network model.
Specifically, if the loss function of the validation data does not
show a significant decrease in the first 100 epochs of training, the
model’s training is paused (Prechelt et al., 2012).

This paper computed the cross-entropy between the actual
distribution and the predicted distribution of breast cancer
differentiation and its subtypes (Tabor and Spurek, 2014). The
loss is calculated by minimizing the cross-entropy. The loss
function used in this paper’s model is shown in Eq. 18:

L � −∑
l∈YL

Yl ln C · Zl( ) (18)

where L is the loss function, YL is the set of node indexes with
labels, Yl is the label of the label node, that is, the type of breast
cancer differentiation and its subtypes, C is the parameter of the

classifier, and Zl is the final node embedding of the label node.
This paper optimizes the entire model through end-to-end
backpropagation.

3.3 The performance of binary classification

3.3.1 Analysis of experimental results of binary
classification in differentiation degree

In order to comprehensively evaluate the performance of our
MVGNNmodel compared to traditional machine learning methods
and recent supervised multi-omics data integration methods, this
paper employs 5-fold cross-validation for different models. The
average accuracy, average AUC value, and average F1 value obtained
on the test dataset are used as evaluation metrics. These models
include Support Vector Machine (SVM), Random Forest (RF),
Neural Network (NN), GCN, GAT, and Multi-Omics Graph
Convolutional Networks (MOGONET). MOGONET is the latest
method for multi-omics data integration published by Wang et al.
(2021). The View Correlation Discovery Network (VCDN) are used
to explores cross-omics correlations in the feature space, enabling
effective multi-omics integration. Three pairs of breast cancer
differentiation classifications are considered: well-differentiated
vs. moderately-differentiated (G1 vs. G2), well-differentiated vs.
poorly-differentiated (G1 vs. G3), and moderately-differentiated
vs. poorly-differentiated (G2 vs. G3). The same dataset split is
used, and the average accuracy, average AUC value, and average
F1 value based on 5-fold cross-validation are used as evaluation
metrics. The experimental results of all models in predicting any two
types of breast cancer differentiation are shown in Table 4.

In the experimental process, SVM, RF, NN, GCN, and GAT
were trained using preprocessed multi-omics data directly
concatenated as input. All methods were trained using the same
preprocessed data. According to Table 4, the proposed MVGNN
model for integrating multi-omics data achieved the highest
accuracy, AUC value, and F1 value compared to traditional
machine learning methods, graph convolutional network models,
and the latest methods for integrating multi-omics data in
classifying any two types of breast cancer differentiation. The
values are: accuracy—0.778, AUC—0.745, F1—0.809. It can be

TABLE 4 The prediction results of classification in any two degrees of
differentiation across different models.

Method ACC AUC F1

SVM 0.658 0.645 0.623

RF 0.669 0.649 0.624

NN 0.701 0.674 0.672

NN_NN 0.725 0.708 0.760

NN_VCDN 0.720 0.703 0.752

GCN 0.741 0.704 0.758

GAT 0.749 0.723 0.743

MOGONET 0.744 0.731 0.772

MVGNN 0.778 0.745 0.809
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concluded that the proposed model in this study outperforms
traditional machine learning models and the latest methods for
integrating multi-omics data in classifying any two types of breast
cancer differentiation.

3.3.2 Analysis of experimental results of binary
classification on subtypes

This article adopts a five-fold cross-validation method to train
all models, and all methods use the same training set, validation set,
and test set. The evaluation metrics are average accuracy (ACC),
average area under the curve (AUC), and average F1 score. The
classification results of any two subtypes of breast cancer include (1)
luminal A vs. luminal B, (2) luminal A vs. HER2(+), (3) luminal A
vs. TNBC, (4) luminal B vs. HER2(+), (5) luminal B vs. TNBC, and
(6) HER2(+) vs. TNBC. The experimental results of predicting any
two subtypes of breast cancer by each model are shown in Table 5.

Based on the data in Table 5, this paper’s model achieved the
highest accuracy, AUC value, and F1 score compared to traditional
machine learning methods, graph convolutional network models,
and the latest integrated multi-omics data methods for any two
classification results of breast cancer subtypes. The values are as
follows: accuracy - 0.9180, AUC - 0.9530, and F1 score - 0.7155. It
can be concluded that this paper’s model outperforms traditional
machine learning methods and the latest multi-omics data
integration methods in the overall classification results of any
two subtypes of breast cancer.

3.4 The performance of multi-classification

3.4.1 Analysis of the results of multi-classification
experiments on differentiation degree

To better evaluate the performance of the MVGNN model, this
paper uses the model to predict the differentiation degree and
subtypes of breast cancer based on multi-classification.
Specifically, based on the same data set partitioning, this paper
uses the average accuracy, average F1_weighted value, and average
F1_macro value calculated through 5-fold cross-validation as
evaluation metrics. The multi-classification results of breast
cancer differentiation degree are G1 vs. G2 vs. G3. The specific

experimental results of the MVGNN model and other methods in
the multi-classification of breast cancer differentiation degree are
shown in Table 6.

According to Table 6, it can be observed that the MVGNN model
proposed in this paper achieves the highest ACC value (0.621), the
highest F1_weighted value (0.597), and the highest F1_macro value
(0.541) compared to traditional machine learning methods, graph
convolutional network models, and the latest integrated multi-omics
data methods in the multi-classification results of breast cancer
differentiation degree. It can be concluded that the model proposed
in this paper outperforms traditional machine learning methods and the
latest multi-omics data integration methods in the multi-classification
problem of breast cancer differentiation degree.

3.4.2 Analysis of experimental results of multiple
classifications on subtypes

In the same way, the experimental details in Section 3.4.1 are
utilized in this study. The multi-classification results of breast cancer
subtypes are luminal A vs. luminal B vs. HER2(+) vs. TNBC. The
specific experimental results of the MVGNN model compared with
other methods on multi-classification of breast cancer subtypes are
presented in Table 7.

TABLE 5 Prediction results of each model for any two subtypes of breast
cancer.

Method ACC AUC F1

SVM 0.7853 0.7725 0.5005

RF 0.8085 0.7917 0.5092

NN 0.8310 0.8103 0.5355

NN_NN 0.8505 0.8433 0.5927

NN_VCDN 0.8417 0.8473 0.6002

GCN 0.8627 0.8457 0.6310

GAT 0.8812 0.8702 0.6405

MOGONET 0.8915 0.9160 0.6632

MVGNN 0.9180 0.9530 0.7155

TABLE 6 Experimental results of multiple classifications of different models
in different degrees of differentiation.

Method ACC F1_weighted F1_macro

SVM 0.529 0.5 0.429

RF 0.54 0.532 0.441

NN 0.56 0.547 0.464

NN_NN 0.574 0.549 0.518

NN_VCDN 0.572 0.547 0.506

GCN 0.59 0.575 0.473

GAT 0.608 0.587 0.476

MOGONET 0.6 0.593 0.537

MVGNN 0.621 0.597 0.541

TABLE 7 Experimental results of multiple classifications of different models
in different subtypes.

Method ACC F1_weighted F1_macro

SVM 0.617 0.627 0.535

RF 0.621 0.635 0.543

NN 0.649 0.633 0.584

NN_NN 0.699 0.679 0.611

NN_VCDN 0.687 0.671 0.609

GCN 0.73 0.721 0.525

GAT 0.733 0.725 0.552

MOGONET 0.712 0.717 0.614

MVGNN 0.735 0.725 0.636
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According to Table 7, it can be observed that the MVGNN
model proposed in this paper, as compared to traditional machine
learning methods, graph convolutional network models, and the
latest integrated multi-omics data approaches, achieves the best
performance in the multi-classification of breast cancer subtypes.
The corresponding performance measures are the accuracy (ACC)
value of 0.735, the weighted F1 score (F1_weighted) value of 0.725,
and the macro F1 score (F1_macro) value of 0.636. Hence, these
results are sufficient to demonstrate the effectiveness of the proposed
model in this study.

3.5 Ablation experiments

3.5.1 The performance of different
network module

• Analysis of experimental results on differentiation
classification

To select the module most beneficial for breast cancer
differentiation and subtype classification in the model, this study
employed a five-fold cross-validation approach to assess the
performance of different modules on the same test dataset. For
all models, the same training and validation sets were utilized.

Specifically, this study performed 5-fold cross-validation on the
training dataset, with all modules utilizing the same training,
validation, and test sets. Mean accuracy, AUC value and mean
F1 value were used as measurement metrics. The detailed
experimental results of different modules on two types of breast
cancer differentiations are presented in Table 8; Figure 3.

By comparing the experimental results of GCN + VCDN and
GAT + VCDN, as well as GAT + Attention and GCN + Attention, in
predicting any two types of breast cancer differentiations, it can be
observed that there exists a specific correlation between biological
genomic data. The GAT module did not utilize this correlated
information, while the GCN module was able to fully exploit the
correlations between biological data, resulting in better differentiation
prediction outcomes. Similarly, by comparing the experimental results
of GCN+VCDN andGCN+Attention, as well as GAT+VCDN and
GAT + Attention, it was found that introducing the attention module
improved the performance of predicting breast cancer differentiation.
This is because the attention mechanism in the attention module can
identify more important neighbors, enabling better classification of
breast cancer differentiation. Therefore, this study chose the GCN +
Attention model, the MVGNN model, as the final model for
predicting breast cancer differentiation.

• Analysis of experimental results on subtype classification

Similarly, the experimental setup for predicting breast cancer
differentiation was used. The specific experimental results of
different modules on any two breast cancer subtypes are shown
in Table 9; Figure 4.

By comparing the experimental results of GCN + VCDN and
GAT + VCDN, as well as GAT + Attention and GCN + Attention in
predicting two different subtypes of breast cancer, it can be observed
that the introduction of the GCN module can improve the accuracy
of breast cancer subtype prediction to a certain extent. This is
because GCN can effectively utilize the correlation in the
biological data. Similarly, by comparing the experimental results

TABLE 8 Results of any two classifications of different modules in breast cancer differentiation.

Method GCN + VCDN GAT + VCDN GAT + Attention GCN + Attention

ACC 0.744 0.696 0.726 0.778

AUC 0.731 0.563 0.741 0.745

F1_weight 0.772 0.653 0.682 0.807

FIGURE 3
Results of any two classifications of different modules in breast cancer differentiation.
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of GCN + VCDN and GCN + Attention, as well as GAT + VCDN
and GAT + Attention, it can be concluded that the introduction of
the attention module increases the precision of predicting breast
cancer differentiation. This also indicates that introducing an
attention mechanism can improve the model’s performance.

3.5.2 The performance of multi-omics data fusion
• Analysis of experimental results on differentiation
classification

Specifically, for different types of omics data combinations, the
same data set partitioning was adopted in this study, and the average
accuracy, average AUC value, and average F1 value of 5-fold cross-
validation were used as metrics. Figure 5 shows the average accuracy,
AUC value, and F1 value of the classification results for different
degrees of breast cancer differentiation using different types of omics
data. DNA_methylation, mRNA, and CNV in the figure represent
the single omics data classification experiments using the MvGNN
model with mRNA expression, DNA methylation, and CNV data,
respectively. mRNA + DNA_methylation, mRNA + CNV, and
DNA_methylation + CNV refer to the classification experiments
using two types of omics data simultaneously. mRNA + DNA_
methylation + CNV refers to the classification experiments
simultaneously using all three types of omics data. The specific
experimental results are shown in Table 10; Figure 5.

FromTable 10; Figure 5, it can be observed that compared to using a
single type of omics data or combining two types of omics data, the
model integrating three types of omics data achieved the highest accuracy
AUC, and F1 scores in predicting any two subtypes of breast cancer

differentiation. The scores were 0.778, 0.803, and 0.809, respectively. This
indicates that the model in this study successfully extracted useful
information for classification from different omics data.

• Analysis of experimental results on subtype classification

Similarly, this paper uses the dataset partitioning described in
Section 3.5.1 and utilizes the average accuracy, average AUC, and
average F1 values from 5-fold cross-validation as performance
metrics. Experiments were conducted on the classification of any
two subtypes of breast cancer using different types of omics data. The
integrated model of three omics data achieved the highest accuracy in
classifying any two subtypes of breast cancer, with values of 0.921
(luminal A vs. luminal B), 0.968 (luminal A vs. HER2+), 0.91 (luminal
A vs. TNBC), 0.82 (luminal B vs. HER2+), 0.964 (luminal B vs.
TNBC), and 0.925 (HER2+ vs. TNBC). This indicates that the model
proposed in this paper can extract useful information for classification
from different omics data. Furthermore, regarding AUC, the
integrated model based on three omics data achieved the highest
values in classifying any two subtypes of breast cancer, except for the
luminal A vs. HER2+ and luminal A vs. TNBC classifications. The
respective AUC values were 0.881 (luminal A vs. luminal B), 0.925
(luminal B vs. HER2+), 0.997 (luminal B vs. TNBC), and 0.979
(HER2+ vs. TNBC). Although the model based on three omics
data for the luminal A vs. HER2+ classification was 0.6% lower
and for the luminal A vs. TNBC classification was 1.2% lower
compared to the models integrating mRNA expression data and
CNV data or DNA methylation data, respectively, this still
demonstrates the robustness of the proposed model in handling

TABLE 9 Results of any two classifications of different modules in breast cancer subtypes.

Method GCN + VCDN GAT + VCDN GAT + Attention GCN + Attention

ACC 0.892 0.818 0.888 0.918

AUC 0.916 0.51 0.854 0.953

F1_weight 0.663 0.283 0.438 0.716

FIGURE 4
Results of any two classifications of different modules in breast cancer subtypes.
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imbalanced samples. Similarly, the model based on three omics data
achieved the highest F1 values in classifying two breast cancer
subtypes, except for the luminal A vs. luminal B classification. The
respective F1 values were 0.36 (luminal A vs. HER2+), 0.799 (luminal
A vs. TNBC), 0.58 (luminal B vs. HER2+), 0.973 (luminal B vs.
TNBC), and 0.959 (HER2+ vs. TNBC).

4 Conclusion and discussion

4.1 Conclusion

The grading and subtyping of cancer, as a complex trait with
distinct molecular features, has significant prognostic and therapeutic
implications. Therefore, cancer grading and subtyping research is
essential for precision medicine and prognostic cancer prediction. In
recent years, numerous supervised multi-omics data integration
methods have emerged domestically and internationally. However,
these methods do not consider the interrelationships between
different types of omics data, which may lead to a bias towards a
specific type of omics data in the final prediction results. It is crucial to
explore how to improve the predictive performance of models by
utilizing the interrelationships between different types of omics data.

This study proposes a multi-omics data fusion algorithm based
on a heterogeneous graph neural network. The algorithm combines
graph convolutional networks and graph attention networks to
predict the differentiation and subtypes of cancer. The breast
cancer data from TCGA is used in this study, which includes
gene expression data, DNA methylation data, copy number
variation (CNV) data, differentiation level annotations, and
subtype annotations for each breast cancer sample.

First, preprocessing operations, including chi-square test,
normalization, and minimum Redundancy Maximum Relevance
(mRMR), are performed on the three types of omics data for breast
cancer. Then, we conduct experiments using the MVGNN model,
traditional machine learning algorithms, and popular multi-omics
data integration methods separately for binary and multi-class
classification of breast cancer differentiation and subtypes using 5-
fold cross-validation. According to the experimental results, our
model achieves the best performance in both binary classification of
breast cancer differentiation and subtypes, and multi-class classification.

Furthermore, to select the modules in the model that are more
conducive to predicting breast cancer differentiation and subtypes, we
also perform 5-fold cross-validation to test the performance of different
modules on the test set. Finally, to further test the classification
prediction performance of the model, we compare the differentiation
and subtype experiments using only one type of omics data, two types of
omics data, and all three types of omics data. Based on the experimental
results, the breast cancer classification predictions using the MVGNN
model with all three types of omics data perform better than those using
two or just one type of omics data.

4.2 Discussion

The MVGNN model proposed in this paper has achieved good
results predicting breast cancer differentiation and subtypes, but
some work will be carried out in future. For example:

The overall classification performance of the proposed
MVGNN model is satisfactory. However, from the
experimental results in Section 3.5.2, it can be observed that

FIGURE 5
The classification results of any two types of breast cancer differentiation in MVGNN model with different combination of omics data.

TABLE 10 The classification results of any two types of breast cancer
differentiation in MVGNN model with different combination of omics data.

Omics data ACC AUC F1_weight

mRNA 0.74 0.777 0.752

DNA_methylation 0.744 0.749 0.78

CNV 0.722 0.761 0.743

mRNA + DNA_methylation 0.76 0.782 0.788

mRNA + CNV 0.739 0.789 0.736

DNA_methylation + CNV 0.761 0.771 0.793

mRNA + DNA_methylation + CNV 0.778 0.803 0.809
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our model needs improvement in differentiating between
luminal A and HER2(+) subtypes, as well as between luminal
A and TNBC subtypes in breast cancer. This also indicates that
our gene expression, DNA methylation, and CNV data are
insufficient to distinguish the boundaries between luminal A
and HER2(+) subtypes and luminal A and TNBC subtypes.
Therefore, there may be differences in these subtypes of breast
cancer in other types of omics data. In future work, we aim to
integrate additional omics data, such as metabolomics data and
mutation data, to enhance our breast cancer subtype
classification model.

This paper primarily trains the MVGNN model on the breast
cancer dataset from TCGA. In order to further demonstrate the
performance of the MVGNN model in cancer classification and
diagnosis, future studies can include additional datasets of different
cancers, such as lung cancer, liver cancer, gastric cancer, and colon
cancer, which have high mortality rates.
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