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The impact of common and rare variants in COVID-19 host genetics has been
widely studied. In particular, in Fallerini et al. (Human genetics, 2022, 141,
147–173), common and rare variants were used to define an interpretable
machine learning model for predicting COVID-19 severity. First, variants were
converted into sets of Boolean features, depending on the absence or the
presence of variants in each gene. An ensemble of LASSO logistic regression
models was used to identify the most informative Boolean features with respect
to the genetic bases of severity. After that, the Boolean features, selected by these
logistic models, were combined into an Integrated PolyGenic Score (IPGS), which
offers a very simple description of the contribution of host genetics in COVID-19
severity.. IPGS leads to an accuracy of 55%–60% on different cohorts, and, after a
logistic regression with both IPGS and age as inputs, it leads to an accuracy of
75%. The goal of this paper is to improve the previous results, using not only the
most informative Boolean features with respect to the genetic bases of severity
but also the information on host organs involved in the disease. In this study, we
generalize the IPGS adding a statistical weight for each organ, through the
transformation of Boolean features into “Boolean quantum features,” inspired
by quantummechanics. The organ coefficients were set via the application of the
genetic algorithm PyGAD, and, after that, we defined two new integrated
polygenic scores (IPGS1ph and IPGS2ph). By applying a logistic regression with
both IPGS, (IPGS2ph (or indifferently IPGS1ph) and age as inputs, we reached an
accuracy of 84%–86%, thus improving the results previously shown in Fallerini
et al. (Human genetics, 2022, 141, 147–173) by a factor of 10%.
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1 Introduction

COVID-19 disease, due to its rapid spreading worldwide, has led
to the most severe pandemic since the deadly Spanish flu, which
killed up to 100 million individuals in the past century. Most
COVID-19-affected patients have mild symptoms, but
approximately 20% of cases need hospitalization, with symptoms
characteristic of severe to critical illness requiring very intensive
help. Patients with severe illness are often older and/or have
comorbidities (e.g., cardiovascular or chronic respiratory disease,
diabetes, hypertension, and cancer). Moreover, the organ
involvement turned out to be related to disease severity, even
though the correlation is still under clarification Daga et al.
(2021); Benetti et al. (2020a), while another factor that ended up
being discriminant is gender, with men tending to have a more
severe disease respect than women Wu et al. (2020). However, these
factors do not fully explain the differences in severity and the fact
that the immune responses to SARS-CoV-2 were variable,
contributing in some cases to greater morbidity and mortality,
due to the excessive inflammatory response Ballow and Haga
(2021); Madabhavi et al. (2020).

It is now well-recognized that host genetic factors play a
fundamental role in the COVID-19 clinical outcome. Recent
advances in genome-wide associations have identified potential
candidate genes in certain populations that may modify the host
immune responses, leading to dysregulated host immunity.
Different pathogenetic mechanisms can be involved as new
genetic predisposing factors emerge, such as different
immunogenicity/cytokine production capability, as well as
receptor permissiveness to virus and antiviral defenses. Genetic
defects of the type I interferon pathway are linked to a more
clinically severe phenotype of COVID-19, and dysregulation of
the adaptive immune system may play a role in the severity and
complex clinical course of patients with COVID-19 Ballow and
Haga (2021). However, with very few genetic factors identified until
now, we are still very far from understanding the real relevance of
host genetics. The better understanding of host genetic factors is
fundamental to predict patients who are at a risk of severe disease
and prevent and/or offer personalized and efficient treatments.
Moreover, novel genetic discoveries could also inform therapeutic
targets for drug repurposing, a pivotal example of which has been
the discovery of homozygous deletions in the CCR5 gene conferring
resistance to HIV-1 infection, which led to development of a drug
that successfully made it through clinical trials Hütter et al. (2013).

Traditional methods for assessing the genetic bases of complex
disorders include genome-wide association studies (GWASs) for
common variants and burden tests for rare variants. GWASs focus
mainly on common variants and are based on a comparison
frequency of about 700,000 genomic single-nucleotide
polymorphisms (SNPs) in cases/controls (mostly non-coding).
The coverage of the coding SNPs is usually performed
throughout imputed data, e.g., imputing 2 million SNPs from
700k SNPs by linkage disequilibrium. The method is based on
multiple independent tests and has a high threshold for
significance. Moreover, GWASs require sample sizes of ten-
hundred thousand subjects COVID-19 Host Genetics Initiative
(2021); Severe Covid-19 GWAS Group (2020); Kousathanas et al.
(2021); Pairo-Castineira et al. (2021). On the other hand, the burden

test is based on an aggregation of rare, protein-altering variants and
a comparison between cases and controls. The reason behind the
burden test is that grouping variants with a large effect size at a gene
level might improve power. Like GWASs, the burden test method
needs hundreds of thousands of participants for detection of
statistically significant associations Kosmicki et al. (2021). These
methods have been employed for many years but failed to fully
unravel the complexity of human traits. Complex disorders such as
COVID-19 are expected to be regulated by thousands of genes with
different weights of contribution Marouli et al. (2017); Boyle et al.
(2017). Indeed, in common genetic diseases such as cardiovascular
or neurodegenerative disorders, the identified genetic markers were
not sufficient for full use in clinical practice to predict and treat
the disease.

To overcome these limitations, an interplay between host
genetics, computational statistics, and dynamic system theory is
necessary. Even though the scientific community has made a big
effort to analyze the epidemic data made available by the Center for
Systems Science and Engineering at Johns Hopkins University Dong
et al. (2020), the applications of mean-field models able to predict
the kinetics of the epidemic spreading Martelloni and Martelloni
(2020a,b); Lai et al. (2020); Chen et al. (2020); Castorina et al. (2020);
Fenga (2021); Fanelli and Piazza (2020); Agosto and Giudici (2020);
Bialek et al., 2020; Lanteri et al. (2020) cannot help in identifying the
gene variants that determine the risk of severity in order to
understand the pathophysiological mechanisms responsible for
severe disease in heterogeneous groups of patients. At the
contrary, machine learning (ML) approaches offer an innovative
tool for managing complex problems by significantly increasing our
capacity to identify complex patterns of variations. Using data from
the whole exome sequencing (WES), a first line of the ML method,
i.e., a LASSO logistic regression, has been applied to extract some
thousands of coding genetic features contributing to COVID-19
severity Picchiotti et al. (2021); Fallerini et al. (2022). Subsequent
functional validation of extracted features demonstrated that, in
each tested case, the association with severity has a biological basis
and suggested hints for adjuvant treatment Benetti et al. (2020b);
Fallerini et al. (2021b,a); Croci et al. (2022); Baldassarri et al.
(2021b,a); Mantovani et al. (2022); Monticelli et al. (2021). Using
the extracted features, Fallerini et al. (2022) build a severity score
named the integrated polygenic score (IPGS), whose performances
reached about 75% for both sensitivity and specificity. In this
contribution, we want to improve the IPGS severity score
performances, with the aim of increasing both metrics and the
understanding of biomolecular mechanisms for personalized
treatment using innovative ML methods. More in detail, we start
from the same set of coding genetic features contributing to COVID-
19 severity, already used in Picchiotti et al. (2021); Fallerini et al.
(2022), to build two new severity scores that take into account the
phenotype of the analyzed patients, i.e., the set of their observable
characteristics or traits. In particular, we take into account, in the
definition of the severity scores, the involvement of single organs in
the development of the COVID-19 disease and the age of patients
when they contract the virus. The contribution of single-organ
involvement in developing severe COVID-19 disease and that of
the gene frequency variants are estimated through an evolutionary
algorithm usually implemented to generate high-quality
optimization solutions. The severity scores we propose aim at
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reducing the enormous amount of data to treat and its complexity
through a logistic regression, with the final goal of finding a
correlation, for each patient, between the score itself and the
severity of the disease registered according to the WHO COVID-
19 Outcome Scale. In this way, the severity scores cannot be applied
as predictive tools in clinical practice since they both require whole-
exome sequencing done, the information on organ involvement, and
a first screening through a LASSO logistic regression, which is done
to extract the coding genetic features contributing to COVID-19
severity. However, they may help in investigating the relationship
between gene variants with different frequencies and the
development of severe COVID-19 disease.

The Methods section is devoted to the description of the
implemented severity scores and the applied methods. Sec. 3
presents the performances of the new severity scores with respect
to the IPGS, while a discussion on the presented results is reported
in Section 4.

2 Methods

2.1 Data collection

Two different cohorts (from Italy and Sweden) contributed to
this study, as described in detail in Supplementary Table S1. The
Institutional Review Board approval was obtained for each study
(see Institutional review board statement below). Information on the
cohort demography is given in Table 1.

2.1.1 Study participants and recruitment
In order to ensure a collection of samples that could be, as much

as possible, comprehensive and representative of the Italian
population, hospitals from across Italy, local healthcare units, and
departments of preventive medicine have been involved in collecting
samples and associated patient-level data for the GEN-COVID
Multicenter Study1. The inclusion criteria for the study are as
follows: PCR-positive SARS-CoV-2 infection, age ≥18 years,
appropriately given informed consent that includes detailed

information about the study, and maintaining the confidentiality
of personal data. All subjects were positively diagnosed with SARS-
CoV-2 and represented a wide range of disease severity, ranging
from hospitalized patients with severe COVID-19 disease to
asymptomatic individuals. The mean age of patients in the entire
cohort is 60.9 years (range 18–99). The patients in the cohort are
predominantly men (59.9%) with a mean age of 59.95 years (range
18–99); the mean age of women is 61.8 years (range 19–98). About
30.3% of patients in the cohort have no chronic conditions. The
overall case-fatality rate is 2.5% with a mean age of 76.1 years [range
37–98]. Regarding ethnicity, the cohort is composed of 94.25%
European, 2.51% Hispanic, 1.09% African, and 2.15% Asian
patients. We included all the ethnicities in this study because the
results do not depend on population structure-related
confounding factors.

2.1.2 Data collection and storage
The socio-demographic information included sex, age, and

ethnicity. Information about family history, (pre-existing) chronic
conditions, and SARS-CoV-2-related symptoms was collected
through a detailed core clinical questionnaire where more than
160 clinical items have been listed (see Supplementary Table S2).
Items concerning organ/system involvement (heart, liver, pancreas,
kidney, and olfactory/gustatory and lymphoid systems) have been
synthesized in a binary mode, where 1 means standard medical
parameters indicating specific organ involvement (respiratory
severity, taste/smell involvement, heart involvement, liver
involvement, pancreas involvement, kidney involvement,
lymphoid involvement, blood clotting, cytokine trigger, and a
number of comorbidities like asthma, cancer, diabetes,
dyslipidemia, hypertension, hypothyroidism, or obesity) and
0 means the absence of involvement of a certain organ/system.
Peripheral blood samples were collected in
ethylenediaminetetraacetic acid-containing tubes for all subjects,
and aliquots of plasma are also available. Whenever possible,
leukocytes were isolated from whole blood by density gradient
centrifugation and stored in the dimethyl sulfoxide solution and
frozen using liquid nitrogen. For the majority of the cohort, swab
specimens are also available and stored at the reference hospitals.
For more information on data collection and storage, refer to Benetti
et al. (2020a); Daga et al. (2021).

2.1.3 Phenotype definitions
COVID-19 severity has been assessed using a modified version

of the WHO COVID-19 Outcome Scale (COVID-19 Therapeutic
Trial Synopsis 2020); specifically six classification levels have been

TABLE 1 Cohort demography information for male (upper table) and female (lower table) patient datasets.

Cohort Number Average age Severe COVID-19 case Mild COVID-19 case

Italy 1777 60.6 1,340 437

Sweden 88 59.4 88 0

Cohort Number Average age Severe COVID-19 cases Mild COVID-19 cases

Italy 1,222 60.1 715 507

Sweden 25 63.5 25 0

1 The GEN-COVID Multicenter Study includes a network of 22 Italian

hospitals, 13 from Northern Italy, 5 from Central Italy, and 4 from

Southern Italy. It also includes local healthcare units and departments

of preventative medicine (https://sites.google.com/dbm.unisi.it/

gen-covid).
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used to code for the severity: (5) death; (4) hospitalized, receiving
invasive mechanical ventilation; (3) hospitalized, receiving
continuous positive airway pressure or bilevel positive airway
pressure ventilation; (2) hospitalized, receiving low-flow
supplemental oxygen; (1) hospitalized, not receiving supplemental
oxygen; and 0 not hospitalized. The number of patients present in
each phenotype category of this six-level classification (termed
GRADING5) is reported in Table 2. Through the application of
the presented severity scores, this six-level classification will be
reduced to three different classifications: i) a binary classification
of patients into mild and severe cases (termed GRADING2), where a
patient is considered severe if hospitalized and receiving any form of
respiratory support (WHO severity grading equal to 4 or higher in
six-point classification); ii) a three-level classification (termed
GRADING3), where the patients are classified into non-
hospitalized (WHO severity grading equal to 0 or 1), hospitalized
and not receiving supplemental oxygen or receiving low-flow
oxygen (WHO severity grading equal to 2 or 3), and patients
with severe disease (WHO severity grading equal to 4 or higher);
iii) a five-level classification (termed GRADING4), where the
patients are classified into non-hospitalized (WHO severity
grading equal to 0), hospitalized and not receiving supplemental
oxygen (WHO severity grading equal to 1) or receiving low-flow
oxygen (WHO severity grading equal to 2), hospitalized, receiving
continuous positive airway pressure (WHO severity grading equal to
3), hospitalized, receiving invasive mechanical ventilation or dead
(WHO severity grading equal to 4, 5).

2.1.4 GEN-COVID cohort
Within the GEN-COVIDMulticenter Study, biospecimens from

more than 3,000 SARS-CoV-2-positive individuals were collected in
the GEN-COVID Biobank (GCB) and used for identifying multi-
organ involvement in COVID-19, defining genetic parameters for
infection susceptibility within the population and mapping
genetically COVID-19 severity and clinical complexity among
patients. In particular, within the GEN-COVID Multicenter
Study, about 3,000 patients were sequenced by whole-exome
sequencing (WES) and partly (about 2,000) already included in
the model described in Fallerini et al. (2022). WES with at least 97%
coverage at 20x was performed using the Illumina NovaSeq
6000 System (Illumina, San Diego, CA, United States). Library
preparation was performed using the Illumina Exome Panel
(Illumina) according to the manufacturer’s protocol. Library
enrichment was tested by qPCR, and the size distribution and

concentration were determined using the Agilent Bioanalyzer
2100 (Agilent Technologies, Santa Clara, CA, United States). The
NovaSeq 6000 System (Illumina) was used for DNA sequencing
through 150 bp paired-end reads. Variant calling was performed
according to the GATK4 (O’Connor and Auwera 2020) best practice
guidelines, using BWA (Li and Durbin 2010) for mapping and
ANNOVAR (Wang et al., 2010) for annotating.

2.1.5 Swedish cohort
Whole-exome sequencing was performed using the Twist

Bioscience exome capture probe and was sequenced on the
Illumina NovaSeq 6000 platform. Data were then analyzed using
the McGill Genome Center bioinformatics pipeline (https://doi.org/
10.1093/gigascience/giz037) in accordance with GATK
best practices.

2.2 Post-Mendelian paradigm for COVID-19
modelization

Fallerini et al. (2022) have developed an easily interpretable
model that could be used to predict the severity of COVID-19 from
host genetic data. Patients were considered severe when hospitalized
and receiving any form of respiratory support. The focus on this
target variable is motivated by the practical importance of rapidly
identifying patients who are more likely to require oxygen support,
in an effort to prevent further complications. The complexity of
COVID-19 immediately suggests that both common and rare
variants are expected to contribute to the likelihood of
developing a severe form of the disease. However, the weight of
contribution of common and rare variants to the severe phenotype is
not expected to be the same. A single rare variant that impairs
protein function might cause a severe phenotype by itself after viral
infection, while this is not so probable for a common polymorphism,
which is likely to have a less marked effect on protein functionality.
These observations led to the definition of a score, named integrated
polygenic risk score (IPGS), which includes data regarding the
variants at different frequencies:

IPGS � nsC − nmC( ) + FLF nsLF − nmLF( )
+FR nsR − nmR( ) + FUR nsUR − nmUR( ). (1)

In this equation, the n variables indicate the number of input
features of the predictive model that promote the severe outcome
(superscript s) or protect from a severe outcome (superscript m)
and with genetic variants having minor allele frequency
(MAF) ≥ 5% (common, subscript C), 1% ≤ MAF< 5% (low-
frequency, subscript LF), 0.1% ≤ MAF< 1% (rare, subscript R),
and MAF < 0.1% (ultra-rare, subscript UR). The features
promoting or preventing severity were identified by an ensemble
of logistic models. The weighting factors FLF, FR, and FURmodel the
different penetrant effects of low-frequency, rare, and ultra-rare
variants, compared to common variants (for which the weighting
factor has been chosen as 1). Thus, the four terms of Eq. 1 can be
interpreted as the contributions of common, low-frequency, rare,
and ultra-rare variants to a score that represents the genetic
propensity of a patient to develop a severe form of COVID-19.
In particular, note the difference in the sign between the severe and
mild variants, which, respectively, represent a predisposing factor

TABLE 2 Numbers of patients present in each phenotype category for
GRADING5.

GRADING5 level Male Female

0 201 298

1 227 184

2 589 367

3 465 220

4 252 74

5 122 78
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compared to a protection factor. The model including the IPGS
exhibited an overall accuracy of 73% and precision of 78%, with a
sensitivity and specificity of 72% and 75%, respectively, thus
showing a statistically significant increase in the performances
with respect to logistic models that adopt only age and sex as
input features. However, in order to design prevention and
treatment protocols in view of personalized medicine
development, the predictability of the post-Mendelian paradigm
for COVID-19 modelization should be further increased.

2.3 First phenotype-based IPGS (IPGS1ph)

To improve the ability of the IPGS to predict the severity of the
disease, while keeping the linearity of the formula, we first apply
vectorial formulation, where both the Boolean variables of the
individual patients and the Boolean variables of the single
variants are transformed into vectors with components 0 or 1.
To each patient and each single variant is associated a vector,
which has univocally defined non-zero components: the non-zero
components of the patient vector pi and the variants vector v

s,m
j allow

us to codify the situation of each patient who has a unique set of
variants and a specific clinical condition when he/she has contracted
the COVID-19 disease. Specifically, the clinical overview takes into
account the involvement of the organs for each subject that are
included in the matrix O, whose entriesOij are 1 (0) in case the organ
j is involved (noninvolved) in the disease development of patient i.
The organ involvements are grouped into six categories (i.e., heart,
liver, pancreas, kidney, olfactory/gustatory, and lymphoid systems),
as mentioned in Sec. 2.1. Therefore, the matrix entries Oij take into
account, for each patient i, if one of the j = 6 categories are involved
(Oij = 1) or not involved (Oij = 0). A scalar product between the
vector of the single patient and the vectors of the genetic variants
through the matrix of the organs univocally identifies the
phenotypic characteristics of the patients, weighted by the
variants. Finally, we release the condition that mild variants
always protect from a severe outcome, thus being subtracted in
Eq. 1, and we do not fix a priori the sign of the mild variants. Starting
from a vectorial formulation of the severity score, we are now able to
write down a severity score that includes not only the genetic
features of the single patients but also the involvement of the
organs in the disease development through the matrix of the
organs Oij. The score index that encompasses the phenotypical
characteristics of the patients is called IPGS1ph, and it reads as

IPGS1ph � ∑
f

Ff ∑
s

piOijv
s
j + −1( )α ∑

m

piOijv
m
j

⎛⎝ ⎞⎠, (2)

where Ff is the coefficient representing the frequency of the variants,
as shown in Eq. 1, and the subscript f identifies either common, low-
frequency, rare, and ultra-rare variants. As introduced before, pi
represents the single patient vector, while vs,mj represents the vector
of severe or mild variants, where we can distinguish between severe
and mild according to the superscript. Differently from Eq. 1, we do
not fix the sign of the variants; therefore, in the sum over the mild
variants, the sign remains a coefficient to be fitted through the
parameter α. This results in having 17 more parameters to be fixed.
Some examples of Eq. 2 are reported in Sec. 1 in the Supplementary

Material; some case examples are specifically reported for different
involved organs and different genetic features.

2.4 Second phenotype-based IPGS (IPGS2ph)

Inspired by quantummechanics, we try to generalize the severity
score presented in Eq. 2, explicitly introducing in the formula the age
of each patient and leaving the possibility, thanks to the quantum
mechanics formalism, to introduce into the new severity score
expression more general phenotype definitions. For a brief
introduction to the quantum mechanics formalism, see Sec. 2 of
the Supplementary Material. Borrowing the formalism of quantum
mechanics, we use the following elements to construct the second
severity score IPGS2ph:

• The patient is described in terms of a vector |p >, which
represents a state in quantum mechanics and describes the
condition of the single human being.

• The genetic variants are also expressed in terms of vectors
|vsi > , which represent a vector’s basis to calculate the
expectation value of the physical observables.

• The organs can be considered the physical observable O,
whose expectation value represents our quantum-like
IPGS2ph.

• The time related to the evolution operator represents the
patient’s age.

• The mild or severe variants can be represented through a spin
variable s which takes values 1/2 or −1/2.

In order to better clarify the role played by each single element in
the severity score, we explicitly write down the values we assign to
the new Boolean variables. More in detail, we can distinguish the
state of the single i − th patient via assigning a sequence of values

pi � 1
0

( ) or pi � 0
1

( ). Since we are dealing with patients who

have contracted COVID-19 but have different phenotypic
characteristics (i.e., different organs involved in the disease
course), the sequence of 2-dim vectors with 0 or 1 values is
unique for each patient, and it allows selecting the right organ
involvement when performing a scalar product. To gain a better
insight into the construction of the severity score, we refer to Sec.
1 in the Supplementary Material. Similarly, the same concept is
reported on the genetic variants: if the patient shows the j − th

variant, the vector vsj takes the values vsj � 1
0

( ); otherwise, we
assign vsj � 0

1
( ). We thus have constructed the quantum-like

Boolean variables (or features), and we are ready to define the
mathematical structure of IPGS2ph:

IPGS2ph � ∑
vsi

<p|e−ıH t( )
Z Oeı

H t( )
Z |vsi > ,

where H(t) is the Hamiltonian operator and e−ı
H(t)
Z represents the

time-evolution operator. To make the previous formula manageable,
we perform some approximations, by inserting a completeness of
the vectors of our base |vsj > < vsj|, which represents the genetic
heritage of the human being:
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IPGS2ph � ∑
vsi

∑
vsj

<p‖vsj > < vsj|e−ı
H t( )
Z Oeı

H t( )
Z |vsi > .

We can perform subsequent approximations along two different
lines: either i) we suppose that the vectors of the variants are
eigenvalues of the Hamiltonian H(t), or ii) we perform the
infinite time limit of the system. In the first case, if we assume
that Ei represents the eigenvalue of the Hamiltonian H(t) related to
the precise state |vsi > , we can approximate e−ı

Eit
Z ≃ 1 − Eit

Z . E,
corresponding in general to the total energy of the system, can
be put in correlation with the comorbidity of the system human
being. In this case, we obtain:

IPGS2ph � ∑
vsi

<p‖vsi > ∑
vsj

E2
jt

2 < vsj|O|vsi >

� IPGS( )∑
vsj

E2
jt

2 < vsj|O|vsj > .
(3)

In the latter case, the limit t → ∞ corresponds to the assumption
that the patient has contracted COVID-19 and his/her status is
characterized by a small number of variants that are only those
relevant to the contraction/development of the disease. The small set
of variants that are related to the disease and influence the clinic
outcome of the patients can be called variants of the saddle point
Caux (2016) and identified with |vssp > . In this case, the severity score
reads as

IPGS2ph � ∑
vsi

<p‖vsi > ∑
vssp

< vssp|O|vssp >

� IPGS( )∑
vssp

< vssp|O|vssp > .
(4)

In both Eqs. 3, 4, the term ∑vsi
<p‖vsi > is present, which

represents the scalar product between the vector that identifies
the patients’ clinical state and the vector taking into account the
genetic variants. Thanks to the characterization of the single genetic
variant in terms of the spin variable s (s = mild, severe), this scalar
product constitutes the IPGS previously defined in Eq. 1. In other
words, the scalar product ∑vsi

<p‖vsi > is the overlap between the
initial state, i.e., the state of the patient and the base of our system
(the host genetics).

The severity score in Eq. 1 turns out to be corrected by a form
factor that constitutes either the expectation value of the organs on
the state of all genes, weighted with the age in Eq. 3, or the interplay
between the variants of the genes, known to be associated to viral
susceptibility and disease severity and patient status in Eq. 4. While
the form factor present in Eq. 3 can be easily interpreted as the
clinical status of the patient, where organs correlate with the genetic
variants, the form factor in Eq. 4 has a more complex interpretation.
Somehow, the vector |vssp > represents that the variants selected by
LASSO regression in Fallerini et al. (2022) and Eq. 4 can be
interpreted as the product between the scores previously defined
in Eqs. 1, 2: IPGS2ph ≃ (IPGS) × (IPGS1ph).

To summarize, although in the work of Fallerini et al. (2022) the
presence or absence of a genetic variant is identified through a
Boolean variable 1 or 0, essentially a bit of information, in the
present work, in order to maintain the linearity of the problem, we
define a quantum bit to identify the presence/absence of a variant.
Therefore, we pass from a scalar variable (1 or 0) to a spin variable,
thus allowing us to linearly increase the parameter space and

improve the prediction of disease severity. Furthermore, being a
multifactorial disease, when defining a score in terms of matrix
variables, we are able to take age, sex, and organ involvements into
account at the same time. In this respect, the mathematics of
quantum mechanics seems the ideal environment to describe this
type of problem. However, we are just using a quantum-like
formalism when replacing Boolean variables with matrices, but
we are not introducing any quantum feature in the machine
learning algorithm. Irrespective of the fact that we have just
taken inspiration from quantum mechanics, since in the previous
definitions of IPGS2ph, differently from quantummechanical models,
there is no real-time evolution and the vectors are fixed a priori, as
well as the structure of the observables, using the quantum
mechanics formalism helped us generalize the problem and build
a severity score that, in principle, can be generalized to
other diseases.

2.5 The genetic algorithm PyGAD

The genetic algorithm is a method for solving both
constrained and unconstrained optimization problems that
are inspired by natural selection, the process that drives
biological evolution. In a genetic algorithm, we start with an
initial population of chromosomes, which are possible solutions
to a given problem. Those chromosomes consist of an array of

FIGURE 1
Flow chart of a genetic algorithm.
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genes whose values vary in a predefined range. The whole
optimization problem is encoded into a fitness function,
which receives a chromosome and returns a number that tells
the fitness (or goodness) of the solution. The higher the fitness,
the better the solution encoded in the chromosome. The genetic
algorithm repeatedly modifies a population of individual
solutions. At each step, the genetic algorithm selects
individuals from the current population to be parents and
uses them to produce the children for the next generation. At
each iteration (generation), a number of good chromosomes are
selected for breeding (parent selection). Parents are combined
two-by-two (crossover) to generate new chromosomes
(children). The children are finally mutated by (randomly)
modifying part of their genes, allowing for completely new
solutions to emerge. Over successive generations, the
population “evolves” toward an optimal solution, as it is
shown in the flow chart of a genetic algorithm (GA) in Figure 1.

The genetic algorithm is usually applied to solve problems in
which the objective function is discontinuous, non-differentiable,
stochastic, or highly non-linear. Among the genetic algorithms, we
find PyGAD, an open-source Python library Gad (2021), which

supports a wide range of parameters to give the user control over
everything in its cycle of operations (see Figure 2).

2.5.1 Testing and training procedures
The dataset was randomly divided into a training set and a

test set (50/50) for a total of 3,112 patients. In other words, half
of the subjects (1,552) were used for training the model, and the
remaining half (1,560) are used for testing the model. Patients
are chosen randomly to be grouped into the training or the
testing set, and the random sampling is varied across the study.
Letting the algorithm perform training over a limited set of
patients (50%) randomly chosen may potentially diminish the
performances of the scores but allows for a more general
solution, which is not limited to the particular set chosen for
the training/test. The PyGAD algorithm was implemented with
the following characteristics in order to converge to a
stable solution:

• Number of solutions (i.e., chromosomes) within the
population = 32.

• Number of generations 250–500.
• Number of solutions to be selected as parents = 8.
• Parent selection type = sss (for steady-state selection). In
the sss case, only a few individuals are replaced at a time,
meaning most of the individuals will carry out to the next
generation.

• Number of parents to keep in the current population = 1.
• Crossover operation = single_point (for single-point
crossover). All genes to the right of that point are swapped
between the two parent chromosomes. This results in two
offspring, each carrying some genetic information from
both parents.

• Type of the mutation operation = random (for
random mutation).

• The probability of selecting a gene for applying the mutation
operation = 0.2 (for each gene in a solution, a random value
with probability 20% is generated).

In most part of the developed training/testing tests, the
number of generations able to guarantee a convergence of the
solution is 250. We considered a converged solution to be one
that has reached an asymptotic value within the duration
of the test.

The training/testing procedure, for each severity score, was
implemented separately on the male and female patient datasets.
The whole procedure is made up of two parts, both used on the
testing and training samples. In the first part, we let the genetic
algorithm run over the training sample to fit the parameters of
the severity scores in Eqs. 2, 3 that produce the best estimate of
the N-level classification of patient severity (i.e., GRADINGN

parameter). In particular, in this training process, the statistical
weights for different organs are calculated without applying any
constraint in the fitting process: we do not consider, for example,
the possibility that the involvement of certain organs might lead
to worse outcomes when compared to that by others. Then,
IPGS1ph (IPGS2ph) is computed over the test sample by
employing the fitted parameters. For each severity score and
each dataset, the training and testing tests were repeated 10 times

FIGURE 2
PyGAD lifecycle.
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by varying the random sampling. Since the mutation process is
random, this is done to ensure that we are able to get the best
solution among a sufficient number of iterations. In the second
part of the procedure, a multivariable logistic regression is fitted
using IPGS1ph (IPGS2ph) computed according to the steps
described above, together with other input parameters (age,
IPGS, and sex), to predict the same GRADINGN parameter.
The logistic model is first trained on the training sample and
then tested on the test sample. The solutions that are shown in the
following section are those corresponding to the best
performances among the obtained results.

3 Results

The severity scores in Eqs. 2, 3 are used, together with the
GRADINGN data, for training a model that predicts COVID-19
severity. In particular, the training procedure is devoted to fitting the
parameters that are present in the severity score equations: 17 free
parameters for Eqs. 2 and 18 free parameters for Eq. 3. Fitting the
parameters will allow us to assess, for each patient, the level of severity of
his/her COVID-19 infection, in terms of IPGS1ph (IPGS2ph). Since the
final goal is to produce the N-level classification of patient severity, we
have to further reduce the results obtainable from Eqs. 2, 3 in the N-level
classification along the line of GRADINGN.

To obtain the best possible fit, we have implemented the genetic
algorithm PyGAD with the following step fitness function:

• We assign a reward 50 in case the obtained score value is
IPGS1ph (IPGS2ph) = GRADINGN ± 0.5.

• We assign a reward 5 in case the obtained score value is
IPGS1ph (IPGS2ph) = GRADINGN ± 1.

TABLE 3 Numbers of patients present in each phenotype category for
GRADING2.

GRADING2 level Male Female

0 437 507

1 1,428 740

FIGURE 3
(A), (B) confusion male matrix from logistic regression. (A) Input: age, IPGS, and IPGS1ph. Accuracy = 86.1%. (B) Input: age, IPGS, and IPGS2ph.
Accuracy = 86.4%. (C), (D) confusion female matrix from logistic regression. (C) Input: age, IPGS, and IPGS1ph. Accuracy = 83.7%. (D) Input: age, IPGS, and
IPGS2ph . Accuracy = 83.4%.
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• We assign 0 otherwise.

The reward values are chosen without lack of generality: we have
assigned a sufficiently big reward value when the algorithm is able to
predict the right GRADINGN value, a small but non-zero reward
value when the prediction is not too far from the right value and a
0 reward value when the prediction is completely wrong. Any other
set of reward values chosen according to this principle, which
ensures the convergence of the solution, will give comparable results.

3.1 GRADING2

First, we present the results related to GRADING2, where we
have reduced the severity scores to a binary classification of patients
into mild and severe cases, considering a patient severe
(GRADING2 = 1) if hospitalized and receiving any form of
respiratory support or healthy (GRADING2 = 0) in all the other
cases. The number of patients present in each phenotype category
for GRADING2 is reported in Table 3.

Furthermore, a multivariable logistic regression was fitted using
possible inputs IPGS1ph and IPGS2ph, alone or combined with IPGS,

age, and sex. Figure 3 shows the confusion matrices, also known as
error matrices Stehman (1997), for the male (panels (a) and (b)) and
female (panels (c) and (d)) patient dataset, where the best fit is
presented for both sets. The performances of the logistic regression
increase when multiple predictor variables are used, instead of the
single severity score IPGS1ph (IPGS2ph). In particular, the best fit is
obtained, both for the male and female patient dataset, when using
age, IPGS, and IPGS1ph (IPGS

2
ph) as inputs, while for male patients,

the new severity score IPGS2ph gives comparable accuracy results to

FIGURE 4
Comparison between the results obtained from a logistic regression with in input age or age+IPGS1 with shuffled variants for the (A,C)male sample
and the (B,D) female sample.

TABLE 4 Accuracy, sensitivity, and specificity scores resulting from the
logistic regression for GRADING2. The table above (below) shows the
results obtained from the male (female) patient dataset.

Input variable Accuracy Specificity Sensitivity

age 0.78 0.95 0.21

age+ IPGS1ph (shuffle) 0.78 0.95 0.21

Input variables Accuracy Specificity Sensitivity

age 0.74 0.81 0.65

age+ IPGS1ph (Shuffle) 0.74 0.86 0.58
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IPGS1ph, and for female patients, the logistic regression gives higher
accuracy when giving age, IPGS, and IPGS1ph as inputs, with respect
to age, IPGS, and IPGS2ph. However, the reached accuracy values are
comparable for both severity scores; specifically, we reach an
accuracy > 86% for the male patient dataset and an accuracy
> 83% for the female patient dataset. Moreover, the confusion
matrices indicate that we are able to predict grading 1 with a
reasonably high successfully rate, while we have more difficulties
in predicting grading 0. Most errors are done, both for the female
and male patient datasets, when the actual score is 0, but
we predict 1.

In order to confirm the goodness of the results previously
shown, we evaluate the increase in the performances of the
severity score, as shown in Eqs. 2, 3, with respect to the
performances of a model where the values of the IPGS1ph feature
have been shuffled. In other words, we recalculate IPGS1ph by
assigning to each patient a random distribution of variants
instead of his/her genetic variants. To compare the results, we
perform a logistic regression with the age as the input and (age +
IPGS1ph) calculated with the shuffled variants (see Figure 4; and
Table 4).The performances of the logistic regression with the age as
the input and IPGS1ph with shuffled variants are comparable with
those obtained with only age as the input, thus confirming that the
calculation of the severity score with shuffled variants does not add
any information with respect to age. Moreover, in terms of accuracy,
the score of the logistic regression shown in Figure 4m both for male
(panel a) and female patients (panel b), is lower than the

corresponding score presented in Figure 3. The accuracy for
IPGS1ph (IPGS2ph) with the genetic variants is increased by a
factor of 12% (10%) for the male (female) sample with respect to
IPGS1ph with shuffled variants when performing the logistic
regression with age, IPGS, and IPGS1ph as inputs (age, IPGS, and
IPGS2ph). This means that the contribution of genetic variants to the
information is fundamental in our analysis, in addition to the age
factor that seems to be dominant in determining the severity of
the disease.

In order to further investigate the role played by age and other
factors that seem to be discriminant, i.e., sex, in comparison with the
new severity scores presented here, we report a comparison between
the performances of the logistic regression when the predictor
variables in the input are (age + sex), (age + sex + IPGS), or (age
+ sex + IPGS + IPGS2ph) (see Figure 5 and Table 5 for an overview).
Here, we report just the results for IPGS2ph, but comparable results
are obtained when fitting the logistic regression with (age + sex) or
(age + sex + IPGS + IPGS1ph) as the input. Considering both the role
played by the genetic variants through the IPGS and the phenotypic
information on the patients through IPGS1ph (IPGS2ph), we observe
an improvement in sensitivity, specificity, and accuracy scores with
respect to the case where only the information on age and sex is used
as the input for logistic regression. This confirms the initial
hypotheses that comorbidities, age, and sex are important to
determine the disease severity, but these factors do not fully
explain the differences in severity. More in detail, when
comparing the results of the logistic regression with (age and
IPGS), (age and IPGS1ph), (age and IPGS2ph), (age, IPGS, and
IPGS1ph), or (age, IPGS, and IPGS2ph) as inputs for the female
(Figure 6 (a)) and male (Figure 6 (b)) patient datasets, we
observe that the best performances are obtained when using age,
IPGS, and IPGS1ph (IPGS2ph) as input data. The numerical values
corresponding to the histogram representation in Figure 6 are
reported in Tables 6, 7.

Since the applied method is stochastic, for completeness, we also
report the accuracy, sensitivity, and specificity scores averaged over

FIGURE 5
Comparison between AGE + SEX, AGE + SEX + IPGS, and AGE + SEX + IPGS+IPGS2ph as inputs at the logistic regression on the total (female +
male) dataset.

TABLE 5 Accuracy, sensitivity, and specificity scores resulting from the
logistic regression on both female andmale patient datasets for GRADING2.

Input variable Accuracy Specificity Sensitivity

Age + SEX 0.74 0.81 0.65

Age + SEX + IPGS 0.70 0.69 0.71

Age + SEX + IPGS + IPGS2ph 0.84 0.88 0.77
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the different training and testing tests that we specify for the case
where the logistic regression has inputs (age, IPGS, and IPGS1ph). For
the female patient dataset, the average scores are accuracy = 0.83 ±
0.05, specificity = 0.880 ± 0.002, and sensitivity = 0.768 ± 0.004,
while for the male patient dataset, the average scores are accuracy =
0.859 ± 0.003, specificity = 0.952 ± 0.001, and sensitivity = 0.556 ±
0.008. Comparable results can be obtained for the logistic regression

with the inputs (age, IPGS, and IPGS2ph), thus confirming the
stability of the analysis.

Therefore age, genetic variants, and organ involvements seem to
all concur and contribute to the amount of information necessary to
reach good levels of sensitivity and accuracy scores (> 80% in all
cases). Moreover, taking into account the organs involved during the
disease, each with its statistical weight, leads to an improvement in

FIGURE 6
Comparison between IPGS, IPGS1ph , and IPGS2ph for the female (A) and male (B) samples.

TABLE 6 Accuracy, sensitivity, and specificity scores resulting from the
logistic regression on the female patient dataset for GRADING2.

Input variable Accuracy Specificity Sensitivity

Age + IPGS 0.70 0.69 0.71

IPGS1ph 0.59 1 0.0039

IPGS2ph 0.59 0.98 0.016

Age+ IPGS1ph 0.76 0.82 0.67

Age+ IPGS2ph 0.74 0.80 0.66

Age + IPGS + IPGS1ph 0.84 0.88 0.77

Age + IPGS + IPGS2ph 0.83 0.88 0.77

TABLE 7 Accuracy, sensitivity, and specificity scores resulting from the
logistic regression on the male patient dataset for GRADING2.

Input variables Accuracy Specificity Sensitivity

Age + IPGS 0.82 0.92 0.37

IPGS1ph 0.76 1 0

IPGS2ph 0.76 1 0

Age+ IPGS1ph 0.78 0.95 0.23

Age+ IPGS2ph 0.78 0.96 0.21

Age + IPGS + IPGS1ph 0.86 0.95 0.56

Age + IPGS + IPGS2ph 0.86 0.96 0.57
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the score of 10% compared to the previous work (corresponding to
the case where age, sex, and IPGS are used as input variables), in
terms of forecast accuracy. Poor performances are obtained when
calculating the sensitivity, especially for the male patient dataset.
Since the performances are poorer when the input variables to the
logistic regression are smaller, especially when age or IPGS1ph
(IPGS2ph) are the only input variables, we expect a failure of
logistic regression due to the small ratio between the information
provided and the complexity of the parameter space in which it has
to operate. It is worth noticing that the calculation of the logistic
regression with input age + IPGS + IPGS1ph (age + IPGS + IPGS2ph) as
the input is done over a dataset where half of the subjects are used for
training and the remaining subjects are used for testing the model,
and, in both cases, subjects are randomly chosen. This approach is
based on the assumption that the IPGS is the additional independent
information provided to the algorithm. However, since the testing
set used in this work is partially overlapping with the samples used in
Fallerini et al. (2022) to define the IPGS score, this assumption is not
entirely valid. When testing the logistic regression only on the
testing set used in Fallerini et al. (2022), we obtain the
accuracy = 0.70, sensitivity = 0.71, and specificity = 0.70 for the
female patient dataset, while for the male patient dataset, we obtain
the accuracy = 0.83, sensitivity = 0.38, and specificity = 0.92, thus
resulting in performances that are comparable (higher) for the
female (male) patient dataset with respect to the logistic
regression with age + IPGS as the input. In the same way, when
calculating the logistic regression with age + SEX + IPGS + IPGS2ph as
the input on the testing set used in Fallerini et al. (2022), the results
reported in Table 5 vary to accuracy = 0.70, sensitivity = 0.71, and
specificity = 0.69, in line with the results obtained for age + SEX +
IPGS. The lower performances in this case are due to the fact that the
ratio in the training/testing set in Fallerini et al. (2022) is 90/10;
therefore, we are implementing the logistic regression on a much
smaller dataset than before, not compensating with an equivalent
increase in the training set.

Finally, we spend some words on the comparison between
IPGS1ph and IPGS2ph (see Figure 6 and Tables 6, 7). Analyzing the
performances of the logistic regression with in input the severity
scores IPGS1ph and IPGS2ph taken separately, we note that the
proposed severity score models are substantially equivalent. The
small differences in terms of accuracy scores within the same sample
are due to the genetic algorithm procedure: when different minima,
but close in the parameter space, are reached, the algorithm cannot
easily escape, and we accept the proposed solution as the asymptotic
one. However, it is worth noticing that a relevant difference remains
when comparing the results obtained on the male and female patient
datasets. For female subjects, the single scores reach an accuracy of
about 59%, while for the male sample, we obtain an excellent 76%
accuracy, contrary to what we have seen in Figure 6, where the
logistic regression with other variables as inputs (such as age and
IPGS) allows us to obtain similar results for the male and female data
samples. We can speculate that different results in the two data
samples are due to the differences in the genetic pool between male
and female subjects since the total number of genes contributing to
COVID-19 clinical variability was 4,260 in male and 4,360 in female
subjects, 75% of which were in common. Therefore, the non-
common set of genes (25%) may be determinant in giving
different results. Another hypothesis is related to the fact that

male subjects are more prone to have a more severe disease
compared to female subjects; therefore, we have more phenotypic
data for males and more male patients analyzed (1865 male with
respect to 1,247 female subjects): more specific information in this
case means better training and higher performances in the testing
procedure. Discrepancies in the model performance between
genders have been already found and discussed in Fallerini et al.
(2022) on the same female and male patient datasets, while they are
quite known in the literature Mukherjee and Pahan (2021); Jin et al.
(2020); Gebhard et al. (2020); O’Brien et al. (2020).

However, it is clear that the information on the organ
involvement is independent of the chosen severity score model
and that the genetic PyGAD algorithm works very well in
highlighting this aspect. The proposed severity scores perform
comparably within the same sample data because they are both
able to convey all the relevant information from the clinical data
collection, even though they are derived from different principles
and are functionally different.

3.2 GRADING3

In this second part of the section, we present the results related
to GRADING3, where we have reduced the severity scores to a three-
level classification of patients into non-hospitalized (GRADING3 =
0), hospitalized but not receiving supplemental oxygen or receiving
low-flow oxygen (GRADING3 = 1), and patients with severe disease
(GRADING3 = 2). In this last case, patients are considered to
manifest a severe disease when they are hospitalized and
receiving intensive or invasive respiratory support or are dead.
The number of patients present in each phenotype category for
GRADING3 is reported in Table 8.

Figure 7 shows the confusion matrices for the male (panels (a)
and (b)) and female (panels (c) and (d)) patient datasets, where the
best fit is presented for both sets. The results are relative to a logistic
regression with multiple predictor variables used as inputs: age,
IPGS, and IPGS1ph for panels (a) and (c); age, IPGS, and IPGS2ph for
panels (b) and (d). Within the same dataset, the performances of the
severity scores are comparable, while, comparing between the two
datasets, the accuracy experienced on the female sample is higher
than the one on the male sample, irrespectively of the chosen
severity score.

In general, the accuracy reached in each case for GRADING3 is
lower than the accuracy reached for GRADING2, as shown in
Figure 3, due to binning limitations. If we look in detail at the
confusion matrices shown in Figure 7, it turns out that the biggest
errors are done in two cases: i) when we have to predict 0 and we
predict 1; ii) when we have to predict 2 and we predict 1. Probably
the information that we have on the clinical framework of each

TABLE 8 Number of patients present in each phenotype category for
GRADING3.

GRADING3 level Male Female

0 210 323

1 816 551

2 839 373
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patient is not optimized for distinguishing between low and severe
disease, thus explaining why the GRADING2 was performing better
since the algorithm was not required to distinguish between low and
severe disease for GRADING2, but all the hospitalized patients were
treated in the same way. A general comparison of the performances

of the logistic regression on GRADING3 is shown in Tables 9, 10 for
the female and male patient datasets, respectively. Analogously to
the results obtained for GRADING2, the performances are enhanced
when calculating the logistic regression on age, IPGS, and IPGS1ph
(IPGS2ph), with respect to the calculation on age and IPGS only. To

FIGURE 7
Comparison between IPGS1ph and IPGS2ph. Confusion matrices obtained from the logistic regression of the single scores with age and IPGS for the
male (panels (A), (B)) and female (panels (C), (D) datasets. Panels (A) and (C) show results for IPGS1ph and (B) and (D) for IPGS2ph

TABLE 9 Accuracy, sensitivity, and specificity scores resulting from the
logistic regression on the female patient dataset for GRADING3. The
calculation of precision and sensitivity is done by applying the
sklearn.metrics module Pedregosa et al. (2011); Kramer and Kramer (2016)
in Python. The algorithm calculates the metrics for each label and finds
their average scores, weighted by the number of true instances for each
label.

Input variable Accuracy Sensitivity Specificity

Age + IPGS 0.596 0.695 0.582

Age + IPGS1ph 0.656 0.740 0.653

Age + IPGS2ph 0.654 0.738 0.646

Age + IPGS + IPGS1ph 0.757 0.813 0.761

Age + IPGS + IPGS2ph 0.765 0.827 0.765

TABLE 10 Accuracy, sensitivity, and specificity scores resulting from the
logistic regression on the male patient dataset for GRADING3. The
calculation of precision and sensitivity is done by applying the
sklearn.metrics module Pedregosa et al. (2011); Kramer and Kramer (2016)
in Python. The algorithm calculates the metrics for each label and finds
their average scores, weighted by the number of true instances for each
label.

Input variable Accuracy Sensitivity Specificity

Age + IPGS 0.582 0.838 0.255

Age + IPGS1ph 0.594 0.839 0.285

Age + IPGS2ph 0.589 0.870 0.239

Age + IPGS + IPGS1ph 0.683 0.810 0.538

Age + IPGS + IPGS2ph 0.677 0.814 0.529
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ensure the stability of the analysis, we report, as previously done, the
accuracy, sensitivity, and specificity scores averaged over the
different training and testing tests. Specifically, we consider the
case where the logistic regression has the input (age, IPGS, and
IPGS1ph). For the female patient dataset, the average scores are
accuracy = 0.750 ± 0.008, specificity = 0.67 ± 0.09, and
sensitivity = 0.813 ± 0.0005, while for the male patient dataset,
the average scores are accuracy = 0.676 ± 0.007, specificity = 0.64 ±
0.10, and sensitivity = 0.808 ± 0.002. Comparable results can be
obtained for the logistic regression with the input (age, IPGS, and
IPGS2ph). Moreover, when testing the logistic regression only on the
testing set used in Fallerini et al. (2022) to ensure a completely
independent testing set, we obtain the accuracy = 0.594, sensitivity =
0.692, and specificity = 0.522 for the female dataset , while for the
male dataset, we obtain the accuracy = 0.584, sensitivity = 0.840, and
specificity = 0.824, thus resulting in performances that are
comparable for both datasets with respect to the logistic
regression with the input (age + IPG).

3.3 GRADING4

We finally present the results related to GRADING4, where we
have applied the WHO severity grading in five points to classify the

patients, merging the classes (4) and (5). The number of patients
present in each phenotype category for GRADING4 is reported
in Table 11.

Figure 8 shows the confusion matrices for the male (panels (a))
and female (panels (b)) patient datasets, where the best fit is
presented for both sets. The results are relative to a logistic
regression with multiple predictor variables are used as inputs:
age, IPGS, and IPGS1ph for both panels. Since IPGS1ph and IPGS2ph
have shown to give comparable results, here we report the results
just for IPGS1ph. Moreover, a general comparison of the
performances of the logistic regression on GRADING4 is shown
in Tables 12, 13 for the female and patient male datasets,
respectively.

In general, the accuracy reached in each case for GRADING4 is
lower than those reached for both GRADING2 and GRADING3. If
we look in detail at the confusion matrices presented in Figure 8, the
biggest errors are related to the false-positive values detected for
classes 3 and 4. While the algorithm seems to identify quite well the
classes 0, 1, and 2, more difficulties are encountered when it comes to
distinguishing between the class levels relative to severe disease.
Finally, if we compare the results of the logistic regression performed
with (age and IPGS) as inputs with those obtained with inputs (age,
IPGS, and IPGS1ph), we observe a slight increase in the performances
when considering two severity scores at the same time (in line with
what is shown for GRADING3 and GRADING2). Analogously, a

TABLE 11 Number of patients present in each phenotype category for
GRADING4.

GRADING4 level Male Female

0 210 323

1 227 184

2 589 367

3 465 220

4 374 153

FIGURE 8
Confusionmatrices obtained from the logistic regression of the single scores with age, IPGS, and IPGS1ph for themale (panels (A)) and female (panels
(B)) patient datasets.

TABLE 12 Accuracy, specificity, and sensitivity scores resulting from a
logistic regression on the female patient dataset for GRADING4. The
calculation of specificity and sensitivity is done by applying the
sklearn.metrics module Pedregosa et al. (2011); Kramer and Kramer (2016)
in Python. The algorithm calculates the metrics for each label and finds
their average scores, weighted by the number of true instances for each
label.

Input variable Accuracy Sensitivity Specificity

Age + IPGS 0.332 0.639 0.356

Age + IPGS1ph 0.445 0.785 0.441

Age + IPGS + IPGS1ph 0.563 0.709 0.724
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slight increase in the performances is observed if we compare the
results of the logistic regression with (age and IPGS1ph) as inputs with
respect to the analogous case with age and IPGS as inputs (as seen
also for GRADING2 and GRADING3). Finally, to ensure the
stability of the analysis we report, as previously done, the
accuracy, sensitivity, and specificity scores are averaged over
different training and testing tests. Specifically, we consider the
case where the logistic regression has (age, IPGS, and IPGS1ph) as
inputs. For the female patient dataset, the average scores are
accuracy = 0.560 ± 0.003, specificity = 0.720 ± 0.004, and
sensitivity = 0.708 ± 0.001, while for the male patient dataset, the
average scores are accuracy = 0.476 ± 0.004, specificity = 0.582 ±
0.003, and sensitivity = 0.673 ± 0.008. Moreover, when testing the
logistic regression only on the testing set used in Fallerini et al.
(2022) to ensure a completely independent testing set, we obtain for
the female data set an accuracy = 0.326, sensitivity = 0.611, and
specificity = 0.349, while for the male dataset, we obtain accuracy =
0.302, sensitivity = 0.640, and specificity = 0.280, thus resulting in
performances that are comparable for both datasets with respect to
the logistic regression with (age and IPGS) as inputs.

4 Conclusion

In this article, we have presented two severity scores that,
starting from the integrated polygenic score (IPGS) introduced in
Fallerini et al. (2022), integrate the phenotype of the analyzed
patients in order to improve the accuracy, sensitivity, and
specificity performances registered by the IPGS. The
performances of the proposed methods, based on a combination
of clinical and genetic information, are higher than the
performances of methods based on genetic information alone, as
testified by the results of the logistic regression with age+IPGS1ph
(IPGS2ph) as the input with respect to the results with the input age +
IPGS. Moreover, we propose to combine the information given by
the IPGS, with the information supported by the new severity scores
IPGS1ph (IPGS2ph) when performing the logistic regression, as we
have observed that, in general, the best performances are obtained
when using age, IPGS, and IPGS1ph (IPGS2ph) as input data. We
believe that there is still the possibility to improve the performances
of the algorithm either choosing the patients to belong to the testing/
training set not completely random or including some constraints
on the calculation of the statistical weights determining the organ
involvements. In the first case, it would be worth choosing the
patients proportionally to the number of cases present in each
phenotype level of GRADINGN to avoid that some categories

with a low number of cases are underrepresented in the training
phase. In the latter case, it would be worth considering that the
involvement of certain organs might lead to worse outcomes (e.g.,
kidney), with respect to others (e.g., olfactory/gustatory system).

However, since both our scores include information about
organ involvements, which are available only in the course of the
viral infection, these scores cannot be used as predictive tools in
the general population, thus resulting as the main limitation of
the study. Another limitation of this study is that the estimated
performances are likely an overestimation of the predictive
performances in a completely independent cohort, i.e., one
that is not used to identify the genetic features to be used in
the IPGS score. However, this limitation does not affect the main
result of the study, which is the comparison in performances
between IPGS and the new proposed scores. Irrespectively of the
scores’ inability to make predictions on phenotype information
since the information on the clinical history of each patient is
needed to train the model, it is possible to profit from severity
scores when investigating the role played by genetic variants in
influencing the host response. The coefficients Ff representing
the frequency of the variants as well as the sign α of the mild
variants remain coefficients to be fitted through the ML
algorithm. In this way, we could explore and test different
possibilities, such as different Ff coefficients weighting the
contribution of different variants (while in Fallerini et al.
(2022), Ff was assumed to be all equal to 1), or different signs
for the mild variants, thus releasing the hypothesis that mild
variants are always protective.

The development of a tool able to predict, prior to viral
infection, if one will be severely affected would have a
tremendous impact on the social life and world economy,
improving our capability of treatment and thus reducing
mortality. In this view, the COVID-19 disease represents an
ideal scenario for developing methods that could be used for
other complex disorders since, compared to other complex
disorders, in COVID-19, the environmental trigger is well-
known (e.g., SARS-CoV-2 infection).

Data availability statement

Publicly available datasets were analyzed in this study.
Sequencing data have been deposited in CINECA through
http://www.nig.cineca.it/, specifically, http://nigdb.ext.cineca.
it/, in the COVID-19 section through https://www.nig.cineca.
it/?page_id=25. There are no restrictions on data access. Only
registration is needed. A section dedicated to COVID-19
samples has been created within the NIG database (http://
nigdb.ext.cineca.it/) that provides variant frequencies as a free
tool for both clinicians and researchers. The GEN-COVID
Biobank (GCB), a collection of biospecimens from patients
affected by COVID-19, and the associated GEN-COVID
Patient Registry (GCPR) were established and maintained at
the University of Siena using the infrastructure of an already
well-established biobank (est. 1998) (http://www.biobank.unisi.
it/). The data and samples housed in the GEN-COVID Patient
Registry and the GEN-COVID Biobank are available for
consultation. For consultation, you may contact the last

TABLE 13 Accuracy, specificity, and sensitivity scores resulting from a
logistic regression on the male patient dataset for GRADING4. The
calculation of specificity and sensitivity is done by applying the
sklearn.metrics module Pedregosa et al. (2011); Kramer and Kramer (2016)
in Python. The algorithm calculates the metrics for each label and finds
their average scores, weighted by the number of true instances for each
label.

Input variable Accuracy Sensitivity Specificity

Age + IPGS 0.306 0.572 0.286

Age + IPGS1ph 0.341 0.871 0.138

Age + IPGS + IPGS1ph 0.480 0.681 0.585
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author, AR (e-mail: alessandra.renieri@unisi.it). The data from
high-density (700k) SNP genotyping are also generated on the
same cohort and shared with international collaborations,
including the COVID-19 Host Genetics Initiative (https://
www.covid19hg.org/) and with GoFAIR VODAN [COVID-19
Host Genetics Initiative. The COVID-19 Host Genetics
Initiative, a global initiative to elucidate the role of host
genetic factors in susceptibility and severity of the SARS-
CoV-2 virus pandemic. Eur J Hum Genet. 2020;28:715–8]
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