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Background: Osteomyelitis is a severe bone marrow infection, whose
pathogenesis is not yet fully understood. This study aims to explore the causal
relationship between immune cell characteristics and osteomyelitis, hoping to
provide new insights for the prevention and treatment of osteomyelitis.

Methods: Based on two independent samples, this study employed a two-sample
Mendelian randomization (MR) analysis to assess the causal relationship between
731 immune cell characteristics (divided into seven groups) and osteomyelitis.
Genetic variants were used as proxies for risk factors to ensure that the selected
instrumental variables meet the three key assumptions of MR analysis. Genome-
Wide Association Studies (GWAS) data for immune characteristics were obtained
from the public GWAS catalog, while data for osteomyelitis was sourced from
the FinnGen.

Results: At a significance level of 0.05, 21 immune phenotypes were identified as
having a causal relationship with osteomyelitis development. In the B cell group,
phenotypes such as Memory B cell % B cell (percentage of memory B cells within
the total B cell population, % finger cell ratio), CD20−%Bcell (percentage of B cells
that do not express the CD20 marker on their surface), and Memory B cell %
lymphocyte showed a positive causal relationship with osteomyelitis, while
Naive-mature B cell %B cell and IgD-CD38-absolute cell counts (AC)
phenotypes showed a negative causal relationship. In addition, specific
immune phenotypes in the conventional dendritic cells (cDCs) group, Myeloid
cell group, TBNK (T cells, B cells, natural killer cells) cell group, T cell maturation
stage, and Treg cell group also showed significant associations with
osteomyelitis. Through reverse MR analysis, it was found that osteomyelitis
had no significant causal impact on these immune phenotypes, suggesting
that the occurrence of osteomyelitis may not affect these immune cell
phenotypes.

Conclusion: To our knowledge, this is the first study to shed light on the causal
relationship between specific immune cell characteristics and the development
of osteomyelitis, thereby providing a new perspective to understand the immune
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mechanism of osteomyelitis. These findings are significant for formulating targeted
prevention and treatment strategies, and hold promise to improve the treatment
outcomes for patients with osteomyelitis.
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1 Introduction

Osteomyelitis represents one of the most severe and treatment-
resistant bone infections, characterized by inflammatory destruction
of the bone and bone marrow tissues driven by aggressive and
dysregulated host immune responses (Lew and Waldvogel, 2004).
Both acute and chronic forms of osteomyelitis remain major
challenges in musculoskeletal medicine and impose substantial
clinical and economic burden worldwide (Kremers et al., 2015b).
In the United States alone, the annual incidence of osteomyelitis is
approximately 1 in 5,000 children, while in low- and middle-income
countries, limited diagnostic facilities and antibiotic access further
exacerbate osteomyelitis-associated disability and morbidity
(Hatzenbuehler and Pulling, 2011; Kremers et al., 2015a). Despite
therapeutic advancements, successful treatment of osteomyelitis
continues to be thwarted by the ability of pathogens to evade
host defenses and antibiotics by forming resilient biofilms within
the avascular sequestrum areas of necrotic bone, coupled with the
emergence of multidrug-resistant strains (Costerton et al., 1999).
Therefore, better understanding of the intricate immunopathogenic
mechanisms governing osteomyelitis development and progression
is imperative to enable the identification of novel preventive,
prognostic, diagnostic, and therapeutic strategies.

A major determinant of osteomyelitis outcomes is the nature of
the host innate and adaptive immune responses against invading
pathogens. While controlled inflammation is crucial for microbial
clearance and bone repair, excessive or improperly regulated
inflammation can potentiate irreversible bone destruction and
damage (Mader et al., 1999). For instance, hyper-stimulation of
osteoclasts by pro-inflammatory cytokines such as interleukin-1 (IL-
1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) can
prompt aggressive and permanent bone resorption (Teitelbaum,
2000). Dysregulated inflammation can also disrupt coupling
between bone formation and resorption, hence impairing bone
remodeling and repair (Sims and Martin, 2014). Furthermore,
the formation of rigid sequestrum areas consisting of avascular
and necrotic bone in chronic osteomyelitis creates an
immunologically privileged niche that facilitates the persistence
of pathogens, sustaining chronic inflammation and progressive
bone loss (Lazzarini et al., 2004). Hence, clarifying how specific
perturbations in immune cell phenotypes causally influence
osteomyelitis susceptibility and severity is paramount, as this
knowledge can pave the way for targeted immunomodulatory
therapies that can resolve deleterious inflammation while
retaining the protective antimicrobial immunity.

The current understanding of immune responses in
osteomyelitis is derived predominantly from animal models and
observational analyses of patient samples (Gómez-Barrena et al.,
2015; Birt et al., 2017). While these approaches have offered clues in

terms of the participating immune components such as neutrophils,
macrophages, T cells, and B cells, they have limitations that impede
the definitive establishment of causal relationships between immune
traits and osteomyelitis risk. Confounding factors, reverse causation,
and the inability to arrive at interventional inferences are key
restrictions of conventional observational studies that necessitate
alternative approaches (Davey Smith and Hemani, 2014).
Mendelian randomization (MR) is one such powerful technique
that leverages genetic variants as instrumental variables (IVs) to
strengthen causal inferences and overcome biases inherent in
observational analyses (Hemani et al., 2018; Little, 2018). MR
provides a framework to delineate causal effects of modifiable
exposures on disease outcomes by minimizing issues such as
confounding factors that affect traditional regression analyses
(Lawlor et al., 2008).

Herein, we performed a comprehensive MR study to
systematically evaluate the causal associations between a broad
range of immune cell phenotypes, encompassing innate and
adaptive populations, and genetic susceptibility to osteomyelitis.
By clarifying the causal roles of specific immune cell subsets and
activation states in osteomyelitis pathogenesis, this study aimed to
advance the understanding of the immunological landscape
governing this refractory bone infection and uncover potential
prognostic biomarkers and therapeutic targets to improve
prevention, monitoring, and clinical management of
osteomyelitis. Elucidating causal immune factors influencing
osteomyelitis risk can provide significant insights into disease
mechanisms and guide the development of targeted
immunomodulatory interventions that resolve detrimental
inflammation while retaining protective antimicrobial immunity.

2 Materials and methods

2.1 Study design

Based onMR analyses of the two samples, we assessed the causal
associations between 731 immune cell traits (seven groups: B cells,
cDCs, myeloid cells, mature T cells, monocyte, TBNK and Treg
cells) and osteomyelitis. MR uses genetic variation to represent risk
factors, and therefore valid IVs in causal inference must satisfy three
key assumptions (Lew and Waldvogel, 2004): genetic variation is
directly associated with exposure (Kremers et al., 2015b); genetic
variation is not associated with confounders between exposure and
outcome; and (Hatzenbuehler and Pulling, 2011) genetic variation
will not influence outcome through pathways other than exposure
(Yang et al., 2023). Data on osteomyelitis were obtained from the
FinnGen R5, which included 210,417 Europeans that were
genotyped for GWAS. Among these Europeans, 842 had
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osteomyelitis and served as GWAS cases, while the remaining
209,575 were controls. The GWAS comprised 16,380,449 single
nucleotide polymorphisms (SNPs) (Dai et al., 2023).

2.2 Immunity-wide GWAS data sources

The total GWAS statistics for each immunological profile are
publicly available from the GWAS catalog (registry numbers
GCST90001391 to GCST90002121). A total of
731 immunophenotypes were included, including absolute cell
counts (AC) (n = 118), median fluorescence intensity (MFI)
reflecting surface antigen levels (n = 389), morphology parameter
(MP) (n = 32), and relative cell count (RC) (n = 192). Specifically, the
MFI, AC, and RC features contained B cells, conventional dendritic
cells (cDCs), mature T cells, monocytes, myeloid cells, TBNK
(T cells, B cells, natural killer cells) and regulatory T (Treg) cells,
while the MP feature contained cDCs and TBNK cells only
(Kanazawa, 2022). The original immune signature GWAS used
data from 3,757 Europeans with no overlap. SNPs were
calculated for approximately 22 million high-density array
genotypes using a reference panel based on Sardinian sequences,
and correlations were examined after adjusting for covariates
(i.e., sex and age) (Cheng et al., 2020).

2.3 Selection of IVs

The significance level of IVs for each immune characteristic was
set at 5 × 10−6, because genetic variation is directly related to
exposure (Labrecque and Swanson, 2021). To obtain site-
independent IVs, we used the “TwoSampleMR” packet data with
a linkage disequilibrium (LD) threshold set at R2 < 0.001 and an
aggregation distance of 10,000 kb (Hughes et al., 2014). For
osteomyelitis, we adjusted the significance level to 1 × 10−5,
which is typically used to indicate genome-wide significance in
GWAS, with an LD threshold of R2 < 0.001 and an aggregation
distance of 10,000 kb.

2.4 Statistical analysis

All statistical analyses were performed using the R software
(version 4.2.1) (http://www.Rproject.org) (Daly and Soobiah, 2022).
To determine the causal relationship between the
731 immunophenotypes and osteomyelitis, we mainly used
inverse variance weighting (IVW) and weighted median (Xu
et al., 2022). These analyses were carried out by the
“TwoSampleMR” package (version 0.5.7) in the R software
environment (Yang et al., 2021). This package is specifically
designed for performing MR analyses and provides tools for
estimating, testing, and sensitivity analyses of causal effects. The
IVW method is a standard method in MR that combines Wald
analysis (ratio of SNP outcome associations to SNP exposure
associations) from multiple genetic variants, weighted by the
inverse variance of each SNP outcome association (Bowden et al.,
2016). Weighted median and model-based approaches were used as
complementary methods to provide reliable causal estimates even

when some IVs were invalid, provided certain assumptions were met
(Hartwig et al., 2017). These analyses are supported by rigorous
sensitivity analysis, including Cochran’s Q-test, to test for
heterogeneity between instrumental variables. We performed a
stability selection analysis using the leave-one-out method to
complement our sensitivity analyses (Bowden et al., 2017). This
thorough statistical assessment ensured that findings regarding the
relationship between immunophenotypes and osteomyelitis were as
reliable and accurate as possible. A detailed flowchart of the analysis
is shown in Figure 1.

3 Results

3.1 Exploration of the causal effect of
immunophenotypes on osteomyelitis risk

A total of 21 immunophenotypes were identified to be causally
associated with the development of osteomyelitis at a significance
level of 0.05. The genetic instruments for each immune phenotype
can be found in Supplementary Table S1. There were five cases in the
B-cell group, five in the cDCs cell group, three in the Myeloid cell
group, five in the TBNK cell group, two in the Maturation stages of
T cell group, and one in the Treg cell group (Figure 2).

In the B cell group, Memory B cell %B cell (p = 0.035, OR =
1.137, 95%CI = 1.008–1.281); CD20− %B cell (p = 0.037, OR = 1.171,
95%CI = 1.009–1.359); andMemory B cell % lymphocyte (p = 0.013,
OR = 1.105, 95%CI = 1.021–1.196) showed a positive causal
relationship with the development of osteomyelitis, while Naive-
mature B cell %B cell (p = 0.014, OR = 0.863, 95%CI = 0.776–0.971)
and IgD- CD38− AC (p = 0.024, OR = 0.831, 95%CI = 0.708–0.976)
showed a negative causal relationship with the development of
osteomyelitis. In cDC cells, HLA DR on myeloid DC (p = 0.005,
OR = 1.134, 95%CI = 1.037–1.240) and HLA DR on plasmacytoid
DC (p = 0.004, OR = 1.139, 95%CI = 1.041–1.246) showed a positive
causal relationship, while CD62L on CD62L + plasmacytoid DC (p =
0.034, OR = 0.805, 95%CI = 0.658–0.984); CD62L-monocyte %
monocyte (p = 0.042, OR = 0.854, 95%CI = 0.734–0.994); and CD86+

plasmacytoid DC %DC (p = 0.006, OR = 0.800, 95%CI =
0.682–0.939) showed a negative causal relationship with the
development of osteomyelitis. In the Myeloid cell group,
CD45 on lymphocyte (p = 0.021, OR = 1.214, 95%CI =
1.029–1.432) showed a positive causal relationship with the
development of osteomyelitis, while CD33br HLA DR +
CD14dim AC (p = 0.036, OR = 0.920, 95%CI = 0.851–0.994) and
CD11b on CD66b++ myeloid cell (p = 0.013, OR = 0.779, 95%CI =
0.638–0.950) showed a negative causal relationship with the
development of osteomyelitis. In the TBNK cell group, all
immune features showed a positive causal relationship with the
development of osteomyelitis: CD4+ AC (p = 0.016, OR = 1.163, 95%
CI = 1.028–1.316); HLA DR+ CD4+ %T cell (p = 0.032, OR = 1.316,
95%CI = 1.023–1.692); HLA DR+ CD4+ %lymphocyte (p = 0.046,
OR = 1.228, 95%CI = 1.003–1.504); HLA DR + CD8br AC (p =
0.010, OR = 1.146, 95%CI = 1.032–1.273); and CD3 on HLA DR +
T cell (p = 0.025, OR = 1.184, 95%CI = 1.021–1.373).

In the maturation stages of the T cell group, herpesvirus-entry
mediator (HVEM) on T cell (p = 0.028, OR = 1.161, 95%CI =
1.016–1.328) showed a positive causal relationship with the
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development of osteomyelitis, and CD3 on delayed reaction T cell
(TD) CD4+ (p = 0.047, OR = 0.873, 95%CI = 0.764–0.998) showed a
negative causal relationship with the development of osteomyelitis.
In the Treg cell group, CD127 on CD4+ (p = 0.031, OR = 0.654, 95%
CI = 0.445–0.962) showed a negative causal relationship with the
development of osteomyelitis. The results of sensitivity analyses
showed the robustness of the observed causal associations
(Supplementary Figure S1). Scatterplots and funnel plots also
showed the stability of the results (Supplementary Figures S2, S3).

3.2 Exploration of the causal effect of
osteomyelitis risk on immunophenotypes

To investigate the causal relationship between osteomyelitis and
immune phenotype, two-sample MR analysis was used, with the
IVW method as the primary analysis method and other methods as
auxiliary methods. Then, we used inverse MR to study the effect of
osteomyelitis on immune phenotype cells. The results showed that
there was no causal relationship between osteomyelitis and any of
the above-mentioned 21 immune cells.

4 Discussion

This two-sample MR study provides novel evidence for causal
associations between specific immune cell phenotypes and
susceptibility to osteomyelitis. The findings highlight 21 immune
cell traits across B cells, DCs, myeloid cells, TBNK cells, T cell
maturation stages, and Treg cells that demonstrate significant causal
relationships with osteomyelitis risk. Our results have important

implications for furthering our understanding of osteomyelitis
pathogenesis, identifying potential biomarkers, and developing
targeted immunomodulatory treatments.

Overall, the study reveals a complex interplay between both pro-
and anti-inflammatory immune phenotypes in influencing
osteomyelitis development. Increased proportions of memory
B cells and decreased naive B cells suggest that adaptive immune
memory may enhance susceptibility to osteomyelitis. This aligns
with the evidence that memory B cells mediate more rapid and
heightened antibody responses upon re-exposure to pathogens
(Tangye et al., 2015; Cyster and Allen, 2019). Conversely,
depletion of naive B cells, which typically demonstrate more
restricted specificity, may hamper initial pathogen control. The
positive association of memory B cell proportions with
osteomyelitis risk emphasizes the likely role of humoral
immunity in driving excessive inflammation during infection.

Furthermore, reduced IgD-CD38-naive B cells linked to lower
osteomyelitis risk also indicates that impaired early B cell responses
could ameliorate disease severity. As IgD + CD38− B cells represent a
subpopulation of mature naive B cells primed for activation (Nutt
et al., 2015), their decline may attenuate acute inflammatory
responses to osteomyelitis-causing pathogens. This aligns with
observations in other inflammatory conditions like lupus, where
lower IgD + CD38− B cells are associated with reduced disease
activity (Sanz et al., 2008). The contrasting effects of memory and
naive B cell phenotypes highlight the delicate balance between
efficient pathogen clearance and uncontrolled inflammation that
likely shapes osteomyelitis outcomes.

The identification of HLA-DR expression on DCs as an
osteomyelitis risk factor also provides further insights into
antigen presentation processes that may drive inflammation in

FIGURE 1
Flow diagram for quality control of the instrumental variables (IVs) and the entire Mendelian randomization (MR) analysis process. Abbreviations:
SNPs, single-nucleotide polymorphisms; IVW, inverse variance weighted; MR, Mendelian randomization; MR Presso, Mendelian Randomization
Pleiotropy RESidual Sum and Outlier.
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osteomyelitis. HLA-DR enables dendritic cells to activate T cells by
presenting pathogen-derived peptides, thus initiating adaptive
responses (Steinman and Banchereau, 2007). Elevated HLA-DR
levels on myeloid and plasmacytoid DCs may therefore lead to
excessive T cell stimulation, perpetuating inflammatory damage
characteristic of osteomyelitis. This finding reveals new facets of
DC involvement in skewing T cell responses during bony infection,
warranting further characterization.

Conversely, reduced frequencies of CD62L-expressing
monocytes and CD86+ plasmacytoid DCs linked to lower
osteomyelitis risk suggest that restrained antigen presentation
capacity in these populations may mitigate inflammation. Loss of
CD62L and CD86, molecules crucial for antigen presentation and
T cell co-stimulation (Lanzavecchia and Sallusto, 2001), could
attenuate dendritic cell activation of T cells. This highlights a
possible mechanism by which downregulation of DC stimulatory
capacity may protect against exacerbated osteomyelitis
inflammation.

The observed effects of myeloid cell phenotypes offer additional
insights into innate immune processes influencing osteomyelitis
pathogenesis. Elevated CD45, a tyrosine phosphatase regulator of
immune cell activation (Hermiston et al., 2003), on lymphocytes
increased osteomyelitis risk. This implies that enhancing early
lymphocyte responsiveness to infection may worsen osteomyelitis

outcomes. By contrast, reduced frequencies of CD33 + HLA-DR +
monocytes and CD11b expression on myeloid cells linked to lower
osteomyelitis risk suggest that constraining the activation and
adhesive capacity of these innate populations could alleviate
damage due to inflammation. CD33 and CD11b enable myeloid
cell recruitment and pathogen response (van der Touw et al., 2017);
hence, their downregulation may limit detrimental effects of
myeloid hyperactivity. Together, these results highlight how
altering lymphocyte and myeloid cell responsiveness could shape
osteomyelitis susceptibility.

The TBNK phenotypes demonstrating positive associations with
osteomyelitis risk provide clues into how augmenting T and NK cell
inflammatory activity could enable detrimental immune-mediated
bone damage. Elevations in circulating CD4+ T cells, potentially
enriching Th1 and Th17 proinflammatory subsets, as well as
increases in HLA-DR+ CD4+ and CD8+ T cells indicative of
activation were linked to higher osteomyelitis risk. This implies
that increased accumulation and stimulation of pathogen-
responsive T cell subsets may drive osteomyelitis
immunopathology. The contribution of CD3 signaling strength in
activated T cells further substantiates the involvement of T cell
hyper-responsiveness in osteomyelitis pathogenesis. The positive
correlation between activated NK cell levels and osteomyelitis risk
also accords with evidence that NK cells can induce bone loss

FIGURE 2
Forest plots depicting the causal associations between osteomyelitis and specific immune cell traits. Abbreviations: IVW, inverse variance weighting;
CI, confidence interval; HVEM, Herpesvirus-entry mediator; DC, dendritic cell; HLA, human leukocyte antigen; TD, delayed reaction T cell; CD, cluster of
differentiation.
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through stimulating osteoclast differentiation and activity
(Söderström et al., 2010). Together, these findings reveal that T
and NK cell phenotypes are likely to ignite damaging inflammation
in osteomyelitis.

The observed effects of T cell maturation patterns provide
additional insights into how tuning T cell inflammatory capacity
could impact osteomyelitis outcomes. Greater expression of HVEM,
which can act as a T cell co-stimulator (Cheung et al., 2009),
associated with increased osteomyelitis risk highlights that
enhancing T cell activation may exacerbate bone inflammation.
Conversely, reduced CD3 signaling strength in TD CD4+ T cells
linked to protection against osteomyelitis suggests that dampening
naïve T cell responsiveness could alleviate inflammation. This
indicates that modulating T cell maturation and activation status
could crucially shape osteomyelitis susceptibility.

The negative causal association between Treg frequencies and
osteomyelitis risk comes along with a protective role for
immunosuppressive Tregs in restraining inflammatory bone
damage. Tregs expressing CD127 enable immune tolerance
(Sakaguchi et al., 2008), thus their decline may remove a key
obstacle in osteomyelitis inflammation. This is consistent with
findings that Treg supplementation alleviates osteomyelitis in
animal models (Zaiss et al., 2007), confirming their therapeutic
potential. Overall, the collective insights into T cell phenotypes
emphasizes the likely involvement of both amplifying T effector
responses and impairing Treg-mediated immune regulation in
driving osteomyelitis pathogenesis.

The application ofMR in this study enables these causal immune
associations to be identified while minimizing the limitations of
conventional observational research. The use of genetic variants as
IVs circumvents biases from confounding variables and reverse
causation that typically restrict observational analyses (Davey
Smith and Hemani, 2014). This facilitates more robust causal
inference, allowing for the delineation of immune traits that
influence osteomyelitis risk. The bi-directional analysis also
revealed that osteomyelitis per se did not causally impact the
identified immune phenotypes. This implies that while certain
immune cell features may drive osteomyelitis development, the
disease itself does not physically alter these specific parameters.

Our findings carry valuable implications for translating insights
on osteomyelitis pathogenesis into clinical practice. The immune
phenotypes causally linked to osteomyelitis risk could be evaluated
as potential prognostic biomarkers to enable early risk stratification
and guide clinical monitoring in patients. Memory B cells, DC HLA-
DR expression, and frequencies of activated T cell subsets may hold
promise as predictors of osteomyelitis development or severity
(Kawai et al., 2017). Additionally, the identified immune cell
traits could represent novel therapeutic targets for
immunomodulatory treatments that control detrimental
inflammation while retaining the protective responses. Selective
depletion of memory B cells, augmentation of naive B cells, and
timed Treg supplementation represent possible avenues for
exploration.

This study has some limitations. First, the MR analyses used
data predominantly from European cohorts, necessitating
confirmation in other populations. Integrating detailed clinical
metadata could also help assess the effects of factors such as
age, sex, and comorbidities (Little, 2018). Second, the specific

molecular mechanisms by which the identified cell types
influence osteomyelitis pathogenesis warrant further
characterization through in vitro and in vivo investigations.
How shifts in these immune cell phenotypes specifically impact
processes like leukocyte migration, microbial clearance, bone
remodeling, and inflammatory signaling require deeper
mechanistic interrogation. Third, as genetic instruments only
capture the variations during the life cycle of cells and their
subsets, changes in their levels arising during active
osteomyelitis could not be addressed. Longitudinal tracking of
fluctuations in these immune traits pre- and post-osteomyelitis
onset could provide further temporal insights. Exploring
interactions between immune phenotypes in relation to
osteomyelitis using mediation analyses may also clarify
interdependencies between leukocyte subsets (Hemani et al.,
2018). Additionally, the inherent limitations of MR approaches
should be acknowledged, including potential pleiotropic effects of
genetic variants and limited power when using modest sample
sizes. Fourth, While our analysis provides robust evidence using
genetic variants as instrumental variables, the inherent limitations
of observational data and the potential for unmeasured
confounding factors highlight the need for subsequent validation
in independent cohorts. Specifically, experimental studies in
diverse populations and different environmental contexts are
crucial to establish the direct impact of these immune cell
phenotypes on osteomyelitis development and progression. This
step is vital for translating our findings from genetic associations
into clinically relevant interventions and understanding the
complex immunological mechanisms underlying osteomyelitis.
Therefore, we advocate for the replication of our results through
experimental approaches to confirm causality and inform the
development of targeted therapies.

However, it is important to note that bottleneck populations and
island populations, due to their unique genetic structures and
historical demographic events, may affect the accuracy and
generalizability of MR analysis. Firstly, the genetic variability in
bottleneck and island populations might be limited due to historical
reductions in population size and geographical isolation. This
specificity in genetic structure could potentially limit our MR
analysis to specific population backgrounds, affecting the
universal applicability of our results. Nonetheless, by selecting
strong IVs directly associated with immune cell characteristics
and conducting sensitivity analyses, we have endeavored to
minimize the impact of this issue. Secondly, the genetic
heterogeneity of bottleneck and island populations could lead to
a unique correlation between genetic instrumental variables and
environmental factors, possibly violating the no confounding
assumption in MR analysis. We have assessed this potential bias
using multiple complementary methods, such as the weighted
median method, to ensure the robustness of our findings.

In summary, despite the aforementioned limitations, our study
provides new insights into the causal relationship between immune
cell characteristics and the development of osteomyelitis. Future
research should consider the diversity of population genetic
structures to further deepen the understanding of the
immunological mechanisms of osteomyelitis and provide a
scientific basis for developing targeted prevention and treatment
strategies.
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5 Conclusion

In summary, this study provides compelling evidence that
alterations in B cell, DC, myeloid cell, T cell, and NK cell
phenotypes induce causal effects on osteomyelitis susceptibility.
These findings substantially advance understanding of the
immunological landscape underlying osteomyelitis pathogenesis.
This knowledge could pave the way for biomarker development,
patient stratification, and targeted immunomodulatory interventions
to improve the prevention and management of this debilitating bone
infection. To strengthen the evidence base and ensure the
generalizability of our conclusions, we advocate for the replication of
our findings across different populations and with additional genetic
datasets. Such replication efforts are warranted to validate the causal
associations we have identified and to account for potential population
stratification, environmental influences, and genetic heterogeneity that
may affect the observed relationships. Further research on these
observations holds promise for translating new insights on
osteomyelitis immunopathology into tangible clinical benefits.
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