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Introduction: The global headlines have been dominated by the sudden and
widespread outbreak ofmonkeypox, a rare and endemic zoonotic disease caused
by the monkeypox virus (MPXV). Genomic composition based machine learning
(ML) methods have recently shown promise in identifying host adaptability and
evolutionary patterns of virus. Our study aimed to analyze the genomic
characteristics and evolutionary patterns of MPXV using ML methods.

Methods: The open reading frame (ORF) regions of full-length MPXV genomes
were filtered and 165 ORFs were selected as clusters with the highest homology.
Unsupervised machine learning methods of t-distributed stochastic neighbor
embedding (t-SNE), Principal Component Analysis (PCA), and hierarchical
clustering were performed to observe the DCR characteristics of the selected
ORF clusters.

Results: The results showed that MPXV sequences post-2022 showed an obvious
linear adaptive evolution, indicating that it has become more adapted to the
human host after accumulating mutations. For further accurate analysis, the ORF
regions with larger variations were filtered out based on the ranking of homology
difference to narrow down the key ORF clusters, which drew the same
conclusion of linear adaptability. Then key differential protein structures were
predicted by AlphaFold 2, which meant that difference in main domains might be
one of the internal reasons for linear adaptive evolution.

Discussion: Understanding the process of linear adaptation is critical in the
constant evolutionary struggle between viruses and their hosts, playing a
significant role in crafting effective measures to tackle viral diseases.
Therefore, the present study provides valuable insights into the evolutionary
patterns of the MPXV in 2022 from the perspective of genomic composition
characteristics analysis through ML methods.

KEYWORDS

monkeypox viruses, machine learning, linear adaptation, open reading frame clusters,
dinucleotide composition representation (DCR)

OPEN ACCESS

EDITED BY

Yinhu Li,
City University of Hong Kong, Hong Kong SAR,
China

REVIEWED BY

Yijing Chen,
Chinese Academy of Sciences (CAS), China
Qiangchuan Hou,
Hubei University of Arts and Science, China
Zheng Wang,
Chinese Center for Disease Control and
Prevention, China

*CORRESPONDENCE

Tao Jiang,
jiangtao@bmi.ac.cn

Li-Li Bao,
baolili1203@126.com

Jing Li,
lj-pbs@163.com

†These authors have contributed equally to
this work

RECEIVED 27 December 2023
ACCEPTED 21 February 2024
PUBLISHED 01 March 2024

CITATION

Zhang S, Li Y-D, Cai Y-R, Kang X-P, Feng Y,
Li Y-C, Chen Y-H, Li J, Bao L-L and Jiang T
(2024), Compositional features analysis by
machine learning in genome represents linear
adaptation of monkeypox virus.
Front. Genet. 15:1361952.
doi: 10.3389/fgene.2024.1361952

COPYRIGHT

© 2024 Zhang, Li, Cai, Kang, Feng, Li, Chen, Li,
Bao and Jiang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 01 March 2024
DOI 10.3389/fgene.2024.1361952

https://www.frontiersin.org/articles/10.3389/fgene.2024.1361952/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1361952/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1361952/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1361952/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1361952&domain=pdf&date_stamp=2024-03-01
mailto:jiangtao@bmi.ac.cn
mailto:jiangtao@bmi.ac.cn
mailto:baolili1203@126.com
mailto:baolili1203@126.com
mailto:lj-pbs@163.com
mailto:lj-pbs@163.com
https://doi.org/10.3389/fgene.2024.1361952
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1361952


1 Introduction

The current human monkeypox outbreak since May 2022 has
quickly spread to 116 countries, caused more than 90,000 confirmed
cases and 167 deaths as of October 2023 (WHO, 2023), showing no
self-limiting with taking steps at the global level. The causative agent
of monkeypox virus (MPXV) belongs to the Orthopoxvirus genus,
which also comprises variola virus (causing smallpox), vaccinia
virus, and cowpox virus (Brown and Leggat, 2016; Mitjà and
Ogoina et al., 2023). As a zoonotic virus, MPXV is probably
harbored in natural mammals such as nonhuman primates,
rodents, squirrels (McCollum and Damon, 2014; Brown and
Leggat, 2016; Durski et al., 2018; Bunge et al., 2022), sporadically
infects human on the occasion of close contact with the animal
reservoir/reservoirs. MPXV infection cause a smallpox-like disease
in humans, additionally with the distinguishing lymphadenopathy
(Durski et al., 2018). Human monkeypox was recorded to infect
human primarily in DR Congo in 1970 (Ladnyj et al., 1972), then in
West Africa area (Di Giulio and Eckburg, 2004) and to sporadically
outbroke in central and west Africa (Di Giulio and Eckburg, 2004;
Gong and Wang, 2022). There are two distinct monkeypox virus
clades of the Congo Basin clade and the west African clade,
respectively responsible for the outbreaks in the two areas
(Brown and Leggat, 2016; Karagoz et al., 2023), and only the
former clade was initially documented to be transmissible in
human population and high pathogenic (Reynolds et al., 2007;
Karagoz et al., 2023). Worryingly, the current outbroken MPXV
is also human to human transmissible, and its origin and genomic
characterization have not been concluded, though the analysis based
on the sequencing data in early outbreak stage indicated the current
prevalent MPXV the belonged to the west Africa clade (Isidro
et al., 2022).

MPXV is an enveloped double-stranded DNA virus, which is
also one of the largest and the most complex among all known
human and animal viruses (Canessa, 2022). Their genome contains
up to 197 open reading frames (ORFs), encoding more than
200 different proteins (Canessa, 2022; Sereewit et al., 2022).
Unlike influenza virus (Deng et al., 2017), SARS-Cov-2 (D and S
et al., 2023) and other RNA viruses, most of the protein-coding
genes are highly conserved among the members of Orthopoxvirus
genus (Gershon et al., 1989; Gillard et al., 1989). Due to the
complexity and stability of MPXV genome, research on its
genomic characteristics is somewhat challenging. The annual
mutation rate of MPXV genome before 2022 is slow with 1-
2 substitutions per year (Firth et al., 2010). Studies have shown
that there was an explosive single-nucleotide polymorphisms (SNP)
mutation in 2022 MPXV (about 50) compared with the previous
sequences, which might be one of the important reasons for the
sudden outbreak of monkeypox (Isidro et al., 2022). However,
current research still lacks a comprehensive analysis of the
overall characteristics of the full-length genome of MPXV, thus it
may not be able to fully explain the evolutionary patterns and
directions of MPXV.

Sequence composition characteristics of nucleic acids and proteins
are significantly related to biological evolution (Liam and Fowler, 2021;
Shuai et al., 2022). The viral genome features representing the virus
evolution patterns information can be transformed into language
representation that can be learned by artificial intelligence methods

(Brian et al., 2021). Machine learning (ML) has performed well to
predict virus evolution, viral host adaptation or viral pathogenicity
based on the nucleotide or amino acids composition (Simon et al., 2018;
Jing et al., 2020; Jing et al., 2022). Dinucleotide composition
representation (DCR) characterization method has been proved well
in analysis of viral evolution trends and host adaptation prediction in
SARS-Cov-2 (Jing et al., 2022), bat coronaviruses (Jing et al., 2023) and
swine coronaviruses (Daniele et al., 2023). Machine learning methods
based on DCR characteristics can distinguish small differences in viral
genomes, thus making scientific predictions about the further
evolutionary trends of viral genomes. Therefor, machine learning
methods are expected to analyze the full-length genome composition
characteristics of MPXV, in order to provide a certain degree of
explanation for the evolutionary trends of MPXV post 2022.

The present study aimed to infer the genomic characteristics of
2022 MPXV using machine learning methods, in comparison to
earlier virus data from the sameWest African clade, or virus genome
sequences from the Congo Basin clade. We have filtered the ORF
regions of all MPXV genomes and selected 165 ORFs as clusters with
the highest homology. Unsupervised machine learning methods of
t-distributed stochastic neighbor embedding (t-SNE), Principal
Component Analysis (PCA), and hierarchical clustering were
performed to observe the DCR characteristics in the selected
ORF clusters. Then, in order to better explain their evolutionary
patterns, the ORF regions with larger variations were filtered out
based on the ranking of DCR characteristics to narrow down the key
ORF clusters for further unsupervised machine learning. Our
research provides valuable insights into the evolutionary patterns
of the MPXV in 2022.

2 Materials and methods

2.1 Data processing and ORFs screening
of MPXV

More than 7,000 full genome sequences of MPXV were
downloaded from the National Center of Biotechnology
Information (NCBI) database (https://www.ncbi.nlm.nih.gov/
nuccore) up to 3 November 2023. An amount of 6,822 high-
quality sequences were selected, with 383 were before 2022 and
6439 post 2022. Two reference MPXV sequences (NC_003310.1 and
NC_063383.1), which were also the designated reference sequences
in NCBI, were selected to manually filter the ORF regions as
templates. By comparing the full-length sequences of all cleaned
MPXV with template ORF sequences, and calculating the
levenshtein distance (LD) value (threshold less than 0.05), the
ORF regions of all sequences could be obtained. The calculation
formula of LD is as follows:

Then through homology analysis, 165 ORF regions with highest
homology were selected as clusters.

2.2 Genomic compositional characteristics
parsing of MPXV ORF clusters

A nucleotide counting script of python was utilized for genome
sequence decomposition (Jing et al., 2022). The frequency of
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compositional characteristics, 1536 dinucleotide composition
representations (DCRs), was determined for each MPXV
sample’s ORF clusters sequence using the following formula:
‘count’ represents the quantity, and ‘seq_len’ represents the total
length of the selected gene sequence.

2.3 Reduction, visualization, and clustering
of DCR characteristics of MPXVORF clusters

Dimension reduction techniques such as Principal Component
Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding
(t-SNE) were utilized to visualize data distribution and clustering for
the full-dimensional features of 1,536 DCRs for MPXV ORF
clusters. The PCA and t-SNE procedures were carried out using
sklearn.decomposition.PCA (Jolliffe and Cadima, 2016) and
sklearn.manifold.TSNE (https://scikit-learn.org/stable/about.
html#citing-scikit-learn), respectively. The Python Seaborn
package was used to plot two main components (PCA1 and
PCA2, or t-SNE1 and t-SNE2) with a collection date label
for each data point. An unsupervised machine learning
approach based on hierarchical clustering was then employed
to observe the clustering and homology of MPXV with
various collection date labels, using the full-dimensional
features of DCR compositional characteristics. Euclidean
distance was used as a hierarchical clustering scalar, and
the sns.clustermap package was utilized to perform
hierarchical clustering. Additionally, to address the biased
sample number and reduce the impact of sample differences
between MPXV with the two collection date labels (before and
post 2022) on machine learning, random down- and
up-sampling were carried out using the imblearn.over_
sampling.SMOTE package prior to dimension reduction and
visualization.

2.4 Phylogenetic analysis of MPXV
ORF clusters

In order to explore the phylogenetic relationship of the
MPXV samples, phylogenetic trees were constructed on the
basis of ORF clusters. The DNA sequences of all randomly
sampled MPXV with known collection information were first
aligned by MAFFT (Katoh et al., 2002), and maximum likelihood
trees were constructed using RAxML v8.2.12 (Stamatakis, 2014)
with 100 bootstrap iterations and other variables set to default.
Phylogenetic trees were visualized using iTol (Letunic and
Bork, 2016).

2.5 Protein structure prediction by
AlphaFold 2

Protein structure prediction begins with the use of
AlphaFold2 for prediction. The brief process is as follows: (1)
Open and run the terminal in the Ubuntu system, activate the
AlphaFold environment with “conda activate alphafold”;
(2) Run the AlphaFold prediction model using the command

“python/home/inspur/git_package/alphafold-main/docker/run_
docker.py—fasta paths = /home/inspur/git_package/alphafold-
main/MPXV_protein.fasta—max_template_data = 2020-05–14";
(3) Visualize the predicted results using PyMOL, open PyMOL
with "/home/inspur/pymol/pymol”, then use the file toolbar to
open the ranked0_.pdb file (the top-ranked predicted structure
file) for visualizing the structure.

3 Results

3.1 Workflow of linear adaptive evolution
analysis of MPXV

As the schematic diagram (Figure 1) shows, full length of all
MPXV genome sequences were downloaded and cleaned first. The
duplicate and incomplete sequences were removed, and the rest were
classified according those uploaded time (before and post 2022). A
total of 383 sequences before 2022 and 6439 sequences post
2022 were obtained, which were further annotated (Figure 1A).
Then, two reference MPXV sequences (NC_003310.1 & NC_
063383.1) were selected to manually filter the ORF regions as
templates for following analysis. By comparing the full-length
sequences of all cleaned MPXV with template ORF sequences,
and calculating the levenshtein distance (LD) value (threshold
less than 0.05), the ORF regions of all sequences could be
obtained. Through homology analysis, 165 ORF regions with
highest homology were selected as clusters for genome
composition characteristics analysis (Figure 1B). The
unsupervised projection methods of t-distributed stochastic
neighbor embedding (t-SNE) and Principal Component Analysis
(PCA) were utilized to learn the separation and linear adaptation of
MPXV (Figure 1C). Finally, 30 ORF regions with greatest difference
in DCR characteristics were selected for further analysis, and the
protein structures with significant difference were predicted by
AlphaFold2 (Figure 1D).

3.2 Unsupervised learning of highly
homologous ORF clusters of MPXV

To better evaluate the adaption and evolution trends of MPXV,
the ORF regions of all MPXV sequences were first separated and
screened. MPXV sequences before 2022 (NC_003310.1) and post
2022 (NC_063383.1) were separately selected as reference sequences
to manually filter their ORF regions, which were templates for
subsequent resolution of all MPXV ORFs (Figure 2A). By
calculating the LD value and analyzing homology with template
ORF sequences, a total of 165 ORF regions were selected to form
ORF clusters for subsequent analysis. The DCR characteristics,
initially introduced in our preceding research, represented a
novel approach for learning the general host adaptation of
viruses. This methodology has demonstrated its efficacy in
analyzing evolutionary trends and predicting host adaptation in
SARS-CoV-2 (Jing et al., 2022), bat coronaviruses (Jing et al., 2023),
and swine coronaviruses (Shuyang et al., 2023). Consequently,
machine learning models built upon DCR characteristics have
proven to be highly effective in delineating the host adaptation
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properties of various viruses with a significant degree of precision.
Then, T-SNE and PCA based on DCR characteristics were
conducted for visualization and dimensional reduction of each
type of compositional trait of ORF clusters sequences of MPXV.
The results showed a separation among Congo Basin clade, West
African clade and post 2022 MPXV clade in the two reduced t-SNE
components of the 1536-dimentional-DCR (Figure 2B). The data
linearity was further evaluated to reflect its continuity and
distinguishability, as well as to support the machine learning
classification of these samples. The linearity feature was designed
as the ratio of the data range of PCA1 to the data range of
PCA2 based on the orthogonal distribution between PCA1 and
PCA2 (Figure 2C), showing that MPXV post 2022 possessed an
obvious linear adaptation characteristic compared with ones before
2022. Due to the component 1 was the primary contributor to the
variance in the data reduced by PCA, the results also showed a linear
distribution of Congo Basin clade, West African clade and post
2022 MPXV clade from top to bottom of the Y-axis (PCA1). It
meant that the evolution of all MPXV might follow a linear
adaptation process. To further prove the linear adaptation, we
have conducted machine learning analyses only on the MPXV of
the West African clade and post 2022 clade (Figure 2D), as well as
focusing solely on post 2022 MPXV clade (Figure 2E). The results
showed that the linear fitting of the post 2022MPAV clade showed a
good correlation with an R-squared value of 0.28, indicating a
positive linear relationship in its host adaptability. In order to
further verify the reliability of linear adaptation characteristic,

randomly sampling was taken from sequences before and post
2022, and a total of 123 sequences were obtained. The sampled
sequences were also significantly separated on the basis of two main
components reduced by both t-SNE (Figure 2F) and PCA
(Figure 2G) in DCR characteristics. What’ more, the MPXV post
2022 was closely related to the West African clade (before 2022) and
was on the same evolutionary trend line (Figures 2C, G). It indicated
that the MPXV post 2022 had high homology with the West African
clade and had underwent further evolution to be adaptable to
human. The relationship between the sampled sequences by
hierarchical clustering based on the DCR characteristics of ORF
clusters was similar to the distribution obtained by reduction,
showing clear discrimination (Figure 2H). These results showed a
clear separation of MPXV before 2022 (divided into “Congo Basin”
clade and “West African” clade) and post 2022, which also indicated
linear adaptation of MPXV.

3.3 Phylogenetic analysis of highly
homologous ORF clusters of MPXV

Phylogenetic analysis is classical for understanding the
evolutionary relationships and genetic divergence in virology for
tracking virus spread and studying genetic diversity (Washburne
et al., 2018). In order to elucidate the phylogenetic relationships
between the MPXV sequences before and post 2022, a phylogeny
tree was constructed on the basis of 165 ORF clusters of 123 sampled

FIGURE 1
Workflow of linear adaptive evolution analysis of MPXV. The workflow was designed with four parts. (A) Download, cleaning and annotation of
genomic sequence of MPXV. (B) Algorithm for filtering ORF data and the resulting output. (C) Schematic diagram of unsupervised learning and
phylogenetic analysis. (D) Structure prediction of key mutant proteins by AlphaFold 2.
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FIGURE 2
Unsupervised learning of highly homologous ORF clusters of MPXV. (A)ORF regions of all MPXV sequences were separated and screened according
to homology analysis with reference sequences (NC_003310.1 and NC_063383.1). A total of 165 ORF regions were selected to form ORF clusters. (B, C)
Visualization of DCR characteristics reduced with t-SNE (B) and PCA (C) of 165 ORF clusters from each MPXV sequence. (D, E) Visualization of DCR
characteristics reduced with PCA of 165 ORF clusters from MPXV sequences except for the Congo Basin clade (D) and only the post 2022 MPXV
clade (E). (F, G) Visualization of DCR characteristics reduced with t-SNE (D) and PCA (E) of 165 ORF clusters from each randomly sampled MPXV
sequence. (H) Hierarchical clustering of DCR characteristics of 165 ORF clusters from each randomly sampled MPXV sequence. Statistical significance in
the PCA value difference between two neighboring clades is indicated, respectively, according to an unpaired, nonparametric Mann-Whitney test.
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sequences. The phylogenetic results showed two major branches, the
Congo Basin clade and theWest African clade, while theWest African
clade was further divided into two smaller branches, the traditional
West African strains (sequences before 2022) and strains post 2022
(Figure 3A). It indicated that MPXV post 2022 were more closely
related to the traditional West African strains. These results were

consistent with the unsupervised learning with 1536-dimentional-
DCR characteristics, confirming the accuracy of the hierarchical
clustering with machine learning methods. However, the
phylogenetic analysis results could not directly reveal the
evolutionary trends of virus. From the annotation information of
phylogenetic tree, it could also be observed that the traditional Congo

FIGURE 3
Phylogenetic analysis of highly homologous ORF clusters of MPXV. (A) The phylogenetic tree was constructed using iqtree with 100 bootstrap
replicates for 165 ORF clusters from randomly sampledMPXV sequence. (B)Collection date of MPXV in public database. (C)World distribution of MPXV in
public database. (D) World distribution of MPXV before 2022 in public database. (E) World distribution of MPXV post 2022 in public database.
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Basin clade and West African clade strains were mainly isolated from
African countries, while MPXV strains post 2022 had spread globally
(Figure 3A). Additionally, the sequences of MPXV in the public

database were mainly isolated in 2022 and 2023 (accounting for
95.02%) (Figure 3B), and mainly distributed in North America
(account for 54.76%) and Europe (account for 35.56%)

FIGURE 4
Unsupervised Learning of ORFs with high mutation regions. (A) The relative positions of selected 30 high mutation ORF regions in the genome of
MPXV. (B) Hierarchical clustering of DCR characteristics of 30 high mutation ORF regions from each randomly sampled MPXV sequence. (C) The
phylogenetic tree was constructed using iqtree with 100 bootstrap replicates for 30 highmutationORF regions from randomly sampledMPXV sequence.
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(Figure 3C) as results of the 2022 global epidemic spread. Before 2022,
the majority of MPXV was only distributed in Africa (account for
88.42%), with North America and Europe only accounting for a small
percentage (2.70% & 6.95%) (Figure 3D), however, in 2022 and 2023,
the proportion of cases in North America and Europe separately
increased to 56.89% and 36.73%, while Africa accounted for a smaller
percentage (1.64%) (Figure 3E). These results indirectly reflected the
adaptive evolution of MPXV to be more adaptable to humans,
consistent with the machine learning analysis.

3.4 Unsupervised learning of ORFs with high
mutation regions

Based on the machine learning of the whole genomic
composition characteristics of MPXV, it revealed the presence of
linear adaptation evolution. To further screen and validate the key
regions that might affect this linear adaptation, the homogeneity
differences of 165 ORFs in the MPXV genome before and post
2022 were calculated based on LD values. A total of 30 major variant
ORF regions were selected and the relative positions of them in the
genome were shown in Figure 4A. There were 6 ORFs located in the
tandem repeat regions at both ends, which were also considered to
be high mutation regions, and other 24 ORFs located in the central
conserved region. Subsequently, randomly sampling was taken from
sequences before and post 2022, and a total of 132 sequences
(67 before 2022 and 65 post 2022) were obtained. These
30 major variant ORFs of sampled sequences were analyzed by
unsupervised learning. Sequences were analyzed according to DCR
characteristic and then conducted by dimensionality reduction
analysis, and the hierarchical clustering results showed clear
discrimination between strains before and post 2022 (Figure 4B).
Additionally, phylogenetic analysis was conducted on 30 major
variant ORFs of sampled sequences, and the results showed three
main branches, Congo Basin clade, West African clade and post
2022 MPXV clade, and the post 2022 MPXV clade was more closely
related to the West African clade (Figure 4C), which were consistent
with the hierarchical clustering results and the full-length 165 ORF
clusters phylogenetic analysis results. These indicated that the
disparities within the main mutant domains of the MPXV were
pivotal in shaping the linear adaptive evolutionary trend of the
genomic landscape.

3.5 The structure prediction of key mutant
proteins by AlphaFold 2

Predicting protein structure is important for understanding
pathogen evolution, by which researchers can gain insights into
how these proteins evolve or interact with hosts. AlphaFold 2,
developed by DeepMind, is a deep learning system that
accurately predicts the 3D structure of a protein based on its
amino acid sequence, leveraging evolutionary information and
multiple sequence alignment to generate highly accurate protein
structure predictions (Senior et al., 2020). To study the potential
differences in protein structure changes during the evolution of
MPXV, we selected two strains with significant differences as
representative strains before and post 2022 (JX878417.1 &

OR459778.1) for protein structure prediction based on
hierarchical clustering and phylogenetic analysis results. Later,
based on the distribution of SNP sites in 30 ORF regions and the
functions of encoded protein, D7L (Yanjiao et al., 2023) and C9L
(UKHSA, 2022)proteins, which might be associated with virus
replication and immune evasion, were selected for structural
prediction. The results indicated that D7L protein formed two
different coil structures between amino acids 165-176 in the two
MPXV strains (Figures 5A–C). The coil structure could provide
binding sites between proteins, thereby participating in biological
processes such as protein interactions and signal transduction
(Nicholas et al., 2017). Additionally, between amino acids 408-
425, the JX878417.1 strain exhibited a coil structure (Figures 5A,
B), whereas the OR459778.1 strain primarily consisted of an α-helix
(Figures 5B, C). For the C9L protein, the overall structural
differences between the two strains were greater compared to
D7L (Figures 5B, E), mainly reflected in the N-terminus between
amino acids 8-50. Although both strains exhibited alternating forms
of α-helix, coil, and β-sheet in this region, there were obvious
structural differences between amino acids 8-50 (Figures 5D–F).
However, in the alignment of these protein sequences, in addition to
the main structurally different sites mentioned above, there were
also other single amino acid differing sites, but these differences did
not manifest as significant structural variances. This meant that
sequence differences might not necessarily absolutely affect protein
structure. These results indicated that as MPXV spread in humans,
the protein associated with pathogenicity could also be affected by
structural variations, which might be one of the internal reasons for
the linear adaptive evolution of MPXV and deserved further study.

4 Discussion

Key data from our study illustrated a clear linear adaptive
evolution in MPXV sequences post 2022, suggesting an increased
adaptation to the human host due to accumulated mutations. This
study offers valuable insights into the evolutionary patterns of
MPXV in 2022 through genomic composition characteristic
analysis using machine learning methods.

Biological sequences, such as genome sequences, typically
exhibit advantageous textual characteristics conducive to analysis.
The essential information concealed within the original sequence
data can be revealed by numerically transforming and characterizing
the sequence information, followed by applying machine learning or
deep learning techniques (Angermueller et al., 2016; Brian et al.,
2021). Unsupervised learning methods have achieved excellent
representation effects for protein (Zhen et al., 2018), DNA (Laiyi
et al., 2020), and RNA (Xiaoyong et al., 2018) sequences. The
genomic compositional analysis method is a genome sequence
representation method that does not rely on pre-training and
boasts fast computational speed. It utilizes the differences in
genomic composition between different organisms to represent
gene characteristics in a compositional numerical space,
demonstrating good linearity, which can be used for machine
learning research. DCR characteristics is a genomic
compositional representation method that we previously
proposed, which has shown good representation effects for the
evolution and host adaptability of viruses (Jing et al., 2022; Jing
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et al., 2023; Shuyang et al., 2023). Machine learning based on DCR
characteristics analysis of the MPXV genome will help to better
explain the reasons for its outbreak in 2022.

Here, we focused mainly on the complex genomic information
analysis of the monkeypox virus, and described its evolutionary
trends based on genomic composition characteristics using machine
learning. Previous studies on the genomic sequences of MPXV have
mainly relied on classical homology comparisons and phylogenetic
analysis (Hongling et al., 2023; Marie et al., 2023). Due to the
complexity of the MPXV genome, the ORF regions were first
cleaned and analyzed to delete ones with poor homology, which
would cause significant bias in the machine learning results.
Unsupervised machine learning on 165 highly homologous ORF
clusters based on DCR characteristics demonstrated a clear linear
adaptability of the evolutionary trend of MPXV. Linear adaptation is
a process in which viruses evolve in a consistent and predictable
manner over time (Sanjuán and Domingo-Calap, 2016;
Primadharsini et al., 2021). This type of evolution occurs when
the virus undergoes gradual changes in response to selective
pressures, such as the host’s immune system or antiviral drugs
(Duggal and Emerman, 2012). As a result, the virus may develop
mutations that allow it to persist and replicate more effectively
within the host (Juan et al., 2014; Sun et al., 2014). The linear
adaptive evolution of MPXV might be reflected in its continuous
expansion of the geographical spread, more pronounced human-to-
human transmission characteristics, and improved adaptation to
human hosts, which were obvious features of MPXV post 2022
(Hatmal et al., 2022; Thornhill et al., 2022). These explained the
outbreak of monkeypox in 2022 from the perspective of genomic
composition characteristics. Recent studies have shown that MPXV
might have been circulating and evolving within human populations
since 2016 to evade the human immune system (Áine et al., 2023).
Meanwhile, researchers found that the accelerated evolution MPXV
was potentially driven by the action of host APOBEC3 enzymes, as

the mutations follow signatures of APOBEC3-mediated editing.
Early signs of microevolution were seen, with 15 additional SNPs
emerging within the outbreak cluster, also following the
APOBEC3 mutation bias. Ongoing viral intra-patient diversity
and minor variants were observed, again with an
APOBEC3 signature, in some cases targeting immune-related
viral genes (Isidro et al., 2022). It explained the potential
mechanisms for the adaptive evolution of the MPXV at the level
of the host immune system. This was consistent with our linear
adaptation conclusion, the MPXV gradually gained adaptive
advantages during its long-term evolution and continuous
interactions with human hosts, leading to a sudden outbreak.
What’s more, the global spread of the MPXV might further
exacerbate its trend of adaptive evolution.

The mutation rate of MPXV is lower than RNA viruses.
Estimated through molecular clock analysis, the nucleotide
substitution rate of MPXV ranges from 2 × 10−6 to 1 × 10−5

(nucleotide substitutions/site/year), which is 1-2 orders of
magnitude lower than RNA viruses (Xiang and White, 2022).
However, the 2022 MPXV differs from the related 2018-
2019 viruses by an average of 50 SNPs, which is substantially
higher (approximately 6–12 times more) than anticipated based
on previous estimates of the substitution rate for Orthopoxviruses
(Isidro et al., 2022). Our study screened 30 ORFs related to linear
adaptation of MPXV. Unsupervised learning results confirmed that
the dimensionality reduction analysis of these 30 ORFs sequences
also showed significant linear evolution. Furthermore, comparison
revealed that these 30 ORF regions were largely consistent with the
previous study where the high-mutation SNP sites located (Isidro
et al., 2022). Accurate protein structure prediction could play
significant roles in advancing understanding of pathogen
evolution (Guangyu et al., 2023). The subsequent predicted
results of the major mutant protein structures showed obvious
differences in the protein structures of MPXV before and post

FIGURE 5
The structure prediction of key mutant proteins by AlphaFold 2. (A–C) Structure prediction results of D7L protein of MPXV JX878417.1 strain (A) and
OR459778.1 strain (C), and alignment of two structures (B). (D–F) Structure prediction results of C9L protein of MPXV JX878417.1 strain (D) and
OR459778.1 strain (F), and alignment of two structures (E).
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2022. Variations in the three-dimensional arrangement of proteins
can alter their biological activity and interactions with other
molecules, which could potentially further affect the virus’s host
adaptability and transmission capabilities. These highly mutable
ORF regions (SNP sites) might affect the protein function by altering
the structure of key domains, ultimately leading to the linear
adaptive evolution of MPXV.

However, research like this article, which relies on a public
MPXV sequence database, is influenced by the quality and
distribution of the available sequence data. The results of this
study were somewhat affected by the uneven distribution of
samples before and post 2022, in which the number of samples
before 2022 was small. We reduced the error by using random
sampling to make the sample sizes more consistent. What’s more,
the unsupervised learning data analysis method we used could make
inferences about the evolution direction of MPXV, nevertheless, the
single data label prevents us from conducting supervised learning,
thus hindering the prediction of the adaptability of MPXV to
humans. This also constitutes the research direction we are
presently endeavoring to pursue.

In summary, the machine learning results of 165 ORF clusters
based on DCR characteristics indicated that MPXV sequences post-
2022 showed a clear linear adaptive evolution, suggesting an
increased adaptation to the human host due to accumulated
mutations. To enhance accuracy, the ORF regions with
significant variations were excluded based on homogeneity
difference, narrowing down the key ORF clusters and reinforcing
the conclusion of linear adaptability. Subsequently, AlphaFold 2 was
employed to predict key differential protein structures, suggesting
that differences in main domains could be a contributing factor to
the observed linear adaptive evolution. Linear adaptation is a key
factor in the ongoing arms race between viruses and their hosts, and
understanding this process is crucial for developing effective
strategies to combat viral infections. Consequently, this study
offers valuable insights into the evolutionary patterns of MPXV
in 2022 through genomic composition characteristic analysis using
machine learning methods.
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