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Eucalyptus dunnii is one of the most important Eucalyptus species for short-fiber
pulp production in regions where other species of the genus are affected by poor
soil and climatic conditions. In this context, E. dunnii holds promise as a resource
to address and adapt to the challenges of climate change. Despite its rapid growth
and favorable wood properties for solid wood products, the advancement of its
improvement remains in its early stages. In this work, we evaluated the
performance of two single nucleotide polymorphism, (SNP), genotyping
methods for population genetics analysis and Genomic Selection in E. dunnii.
Double digest restriction-site associated DNA sequencing (ddRADseq) was
compared with the EUChip60K array in 308 individuals from a provenance-
progeny trial. The compared SNP set included 8,011 and 19,008 informative SNPs
distributed along the 11 chromosomes, respectively. Although the two datasets
differed in the percentage of missing data, genome coverage, minor allele
frequency and estimated genetic diversity parameters, they revealed a similar
genetic structure, showing two subpopulations with little differentiation between
them, and low linkage disequilibrium. GS analyses were performed for eleven
traits using Genomic Best Linear Unbiased Prediction (GBLUP) and a conventional
pedigree-based model (ABLUP). Regardless of the SNP dataset, the predictive
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ability (PA) of GBLUP was better than that of ABLUP for six traits (Cellulose content,
Total and Ethanolic extractives, Total and Klason lignin content and Syringyl and
Guaiacyl lignin monomer ratio). When contrasting the SNP datasets used to
estimate PAs, the GBLUP-EUChip60K model gave higher and significant PA values
for six traits, meanwhile, the values estimated using ddRADseq gave higher values for
three other traits. The PAs correlated positivelywith narrow sense heritabilities, with the
highest correlations shown by the ABLUP and GBLUP-EUChip60K. The two
genotyping methods, ddRADseq and EUChip60K, are generally comparable for
population genetics and genomic prediction, demonstrating the utility of the
former when subjected to rigorous SNP filtering. The results of this study provide a
basis for future whole-genome studies using ddRADseq in non-model forest species
for which SNP arrays have not yet been developed.

KEYWORDS

double digest restriction-site associated DNA sequencing, genotyping by sequencing, SNP
array, genomic prediction, ABLUP, GBLUP

1 Introduction

The genus Eucalyptus comprises more than 700 species of
native trees from Australia, New Guinea, Timor, Indonesia and
the Philippines (Ladiges et al., 2003; Thornhill et al., 2019), with
some of them exhibiting excellent growth and adaptability in
different environments. The most widely planted species include
E. grandis, E. saligna, E. pellita, E. urophylla, E. globulus, E.
dunnii, E. nitens, E. tereticornis and E. camaldulensis
(Grattapaglia and Kirst, 2008). Despite its limited natural
distribution in Australia, E. dunnii (Maiden, 1905) has shown
relevant genetic variability for growth, adaptation to different
soils and tolerance to abiotic stresses such as frost, drought and
high summer humidity, when planted as an exotic (Darrow, 1994;
Jovanovic et al., 2000; Clarke, 2009; Thomas et al., 2009; Shi et al.,
2016). As a result of these advantages, E. dunnii plantations have
been established in subtropical areas such as southern China,
South Africa, South America and Australia, where it is considered
to be an alternative to other species, particularly in the context of
climate change (Marcó and White, 2002; Marcó, 2005; Maseko
et al., 2007; Hardner et al., 2016; López et al., 2016; Shi et al., 2016;
Gallo et al., 2018; Resquin et al., 2019). However, genetic
improvement of E. dunnii is still at an early stage.

Molecular breeding programs facilitate the selection of the best
individuals in the early stages of development, before the phenotypic
traits of interest have been expressed. It therefore has significant
potential to accelerate the rate of genetic gain in a shorter time,
which is extremely important in forest species with long generation
times (Neale and Kremer, 2011; Varshney et al., 2017). Numerous
studies have been conducted in forest trees demonstrating that
Genomic Selection (GS) equals or outperforms phenotypic
selection for traits related to growth and wood properties. This
enhances the rate of genetic improvement over time by intensifying
selection, significantly reducing generation intervals, and improving
the precision of breeding values (Grattapaglia, 2022).

In GS, the underlying assumption is that all markers might be
tied to genomic loci influencing the trait under study and therefore
can be used to select the best individuals for breeding (Meuwissen
et al., 2001) through the application of novel statistical methods

based on whole genome regression (Cappa et al., 2019). Unlike
marker-assisted selection (MAS), which applies stringent hypothesis
testing to declare the association of markers with variation in the
target trait, GS relies on capturing all loci that cause phenotypic
variation among individuals with dense marker coverage (Hayes and
Goddard, 2010; Isik, 2014).

By building predictionmodels based on the analysis of a population
with both phenotypes and genotypes data (Training population, TP),
the sum of marker effects can be used to predict the genomic estimated
breeding values (GEBVs) of individuals that were only genotyped
(Selection candidates, SC). It is a consensus now that GS depends
largely on the existence of genetic relatedness between the TP and SC
and some degree of Linkage Disequilibrium (LD) between markers and
causal loci (Desta and Ortiz, 2014; Tan et al., 2017).

A commonly used GS approach is the or Genomic Best Linear
Unbiased Prediction (GBLUP, Strandén and Garrick, 2009;
VanRaden, 2008). This method predicts breeding values using a
genomic-based relationship matrix between individuals (G-matrix).
By using the G-matrix instead of the conventional matrix of
expected pedigree relationships (A-matrix), GBLUP predicts the
GEBVs more accurately, thus increasing the genetic gain and
selection accuracy for the next-generation of the breeding cycle
(Nejati-Javaremi et al., 1997; Villanueva et al., 2005).

In recent decades, different types of molecular markers have been
developed for genetic analysis, such as Single Nucleotide
Polymorphism (SNP), Simple Sequence Repeats (SSR) or
Microsatellites, Insertions/Deletions (InDels), Structural Variants
(SV), etc (Fuentes-Pardo and Ruzzante, 2017). SNPs have become
the markers of choice due to their abundance, stability, codominance,
low cost per datapoint and ease in assay design, automation and data
interpretation (Bajgain et al., 2016; Torkamaneh et al., 2018).

The ideal genotyping technique for GS would beWhole Genome
Sequencing (WGS) providing the full sampling of genetic variants
among individuals (Fuentes-Pardo and Ruzzante, 2017).
Nevertheless, this is still too expensive to accommodate
experiments with large sample sizes, especially for forest tree
breeding programs that operate on low budgets. SNP arrays and
reduced representation sequencing (RRS) have been used in practice
to obtain genome-wide SNP data in a cost-effective way for
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molecular breeding studies. Both methodologies have their
advantages and disadvantages (Pavan et al., 2020).

For commercially relevant species of Eucalyptus, multispecies SNP
genotyping platforms were developed including the Illumina Infinium
based EUChip60K (Silva-Junior et al., 2015) and the second generation
Euc72K array based on the Axiom technology1. These two systems
allow genotyping over 60,000 genome-wide SNPs, have approximately
28,000 SNPs in common and satisfy essential requirements of high
precision, throughput, data reproducibility and low genotyping cost
(Silva-Junior et al., 2015). The SNPs included in these arrays were
discovered from low-depthWGS data of 240 individuals of 12 different
species and detected using a reference genome of E. grandis v1.0
(Myburg et al., 2014). E. dunnii was represented by only
12 unrelated individuals in which 17,014 SNPs were converted with
Minor Allele Frequency (MAF) > 0.01 (Silva-Junior et al., 2015).
Although these arrays have been very successful worldwide for they
accommodate several different eucalypt species, SNP discovery from a
small number of individuals is subject to ascertainment bias
(Albrechtsen et al., 2010; Li and Kimmel, 2013).

Medium-density SNP arrays with several tens of thousands of
SNP, have been developed for all mainstream forest tree species, such
as for Populus trichocarpa (Geraldes et al., 2013), Picea ssp. (Pavy
et al., 2013; Bernhardsson et al., 2021), Pinus ssp. (Plomion et al., 2015;
Perry et al., 2020; Caballero et al., 2021; Graham et al., 2022; Jackson
et al., 2022; Kastally et al., 2022), Pseudotsuga menziesii (Howe et al.,
2020), Araucaria angustifolia (Silva et al., 2020), Eucalyptus
ssp. (EUChip60K and Euc72K). In the case of Eucalyptus, the two
SNP arrays have been used in a large number of studies (e.g., Telfer
et al., 2015; Müller et al., 2019; Marco de Lima et al., 2019; Mhoswa
et al., 2020; Ballesta et al., 2018; Mostert-O’Neill et al., 2020; Jurcic
et al., 2021; Paludeto etal., 2021; Valenzuela et al., 2021; Tan and
Ingvarsson, 2022; Duarte et al., 2023). Given its multispecies nature,
this platform generally provides between 10,000 and
30,000 informative SNPs in all planted species. Due to its fixed
content it is unclear whether population genomics analyses
ultimately exclude relevant variants in unsampled genomic regions.

As a practical alternative to SNP array development, especially for
orphan species, SNP genotyping based on RRS strategies have been
used. SNP genotyping following Restriction Enzyme based RRS
(REbRRS) techniques are approaches that combine genome
reduction and sampling of both coding and non-coding regions
without the need for prior genomic information (Davey et al., 2011;
Andrews et al., 2016). These techniques rely on Next-Generation
Sequences (NGS) of a reduced genome portion of several individuals
analysed simultaneously (multiplexed), do not require a reference
genome or prior knowledge of polymorphisms, and combine
marker discovery and genotyping in a single protocol. Therefore,
they provide a rapid, high-throughput, and cost-effective strategy for
performing genome-wide analyses. Furthermore, they can be applied to
non-model species and unique germplasm sets to obtain exclusive
polymorphism information (Davey et al., 2011; Andrews et al., 2016), to
sample alternative genomic regions providing complementary data to
SNP array data, especially in plants (Deschamps et al., 2012).

REbRRS embraces a group of similar protocols that include
Genotyping by Sequencing (GBS, Elshire et al., 2011), Restriction
site Associated DNA sequencing (RADseq, Baird et al., 2008),
and double digest RADseq (ddRADseq, Peterson et al., 2012),
being widely adopted in the conservation and breeding area
(Andrews et al., 2016; Fuentes-Pardo and Ruzzante, 2017;
Campbell and Dupuis, 2018; Wright et al., 2019). In
comparison to fixed content SNP arrays, RRS techniques
require bioinformatics analysis of sequence data to detect
variants and declare genotypes (Nielsen et al., 2011). Missing
data, loci sampling and genotype reproducibility issues across
experiments are common features of these methods due to
polymorphisms in enzyme cleavage sites and variation in the
sequence coverage across individuals and loci (Andrews et al.,
2016), potentially causing bias in population genetic statistics. To
mitigate these limitations, stringent filtering for high call rates
and imputation are highly recommended (Money et al., 2015;
Andrews et al., 2016; Bajgain et al., 2016; Torkamaneh et al.,
2018). Both methods are powerful means to study the genome
and provide sufficient resolution to perform different molecular
genetic approaches, despite the fact that chip-based SNP
genotyping requires less computational knowledge and data
processing resources than the REbRRS method, resulting in
less missing data and higher reproducibility (Bajgain et al., 2016).

REbRRS methods have been applied to forest species mainly for
linkage mapping, QTL detection, marker development,
phylogenetics, phylogeography, parentage analysis, association
mapping, genomic selection, population genetics, genome
scanning, among others (Parchman et al., 2018). In particular,
ddRADseq combined with reference genomic SNP calling yielded
a higher number of reliable markers compared to other REbRRS
methods such as GBS and RADseq in beech and oak Ulaszewski
et al. (2021). In Eucalyptus, a few studies have used REbRRS
methods, including GBS (Grattapaglia et al., 2011; Durán et al.,
2018; Klápště et al., 2021), DArT-seq (Sansaloni et al., 2011; Marco
de Lima et al., 2019), and ddRADseq (Aguirre et al., 2019).
Specifically, for E. dunnii ddRADseq has been optimized
(Aguirre et al., 2019), and there is a scale-up protocol (Aguirre
et al., 2023).

In this work, we were interested in evaluating the comparative
performance of two high-throughput genotyping systems,
ddRADseq and the SNP platform EUChip60K, for population
genetics analyses and GS. To our knowledge, this is the first
report where a restriction enzyme-based RRS method,
ddRADseq, is compared to SNP array data for population genetic
parameters and GS analyses in a tree species, and specifically in
Eucalyptus.

2 Materials and methods

2.1 Eucalyptus dunnii breeding population

The E. dunnii breeding population (1,520 trees) under study was
established in 1991 (31° 45′S, 58° 15′W, 40 m. a.s.l., Entre Ríos
province, Argentina) with a complete block design (Marcó and
White, 2002). This population was composed of 72 open-pollinated
(OP) families, of which 60 were from four native origins in New

1 https://www.thermofisher.com/order/catalog/product/551134; accessed

on 13 December 2023
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South Wales (NSW) state in Australia. The remaining 12 families
came from a local provenance or seed sources of known Australian
origin (Moleton, NSW), where they were selected by their
superiority in stem straightness and volume
(Supplementary Table S1).

2.2 Phenotypic characterization of E. dunnii
breeding population

E. dunnii trees were measured for growth traits by Diameter at
Breast Height at six and 20 years old (DBH6, and DBH20) and
Stem Straightness at 6 years old (SS6; López et al., 2016; Marcó and
White, 2002). At 20 years old, the intensity of growth stresses was
evaluated by measuring the Log End Split Index (LESI20, López
et al., 2016), and Wood basic Density (WD20, Kg/m3) was
estimated by water immersion. Estimates of six wood chemical
properties at 20 years were obtained using Near Infrared
spectroscopy (NIR) at the Instituto Superior de Agronomia
(ISA, Portugal). These included: Cellulose content (CEL20),
Total and Ethanolic extractives (TE20 and EE20), Total and
Klason Lignin content (TL20 and KL20) and Syringyl and
Guaiacyl lignin monomer ratio (S/G20), as described by
Rodrigues et al. (1998). Details of the traits measured are
summarized in Supplementary Table S2. Phenotypic traits data
were adjusted to normal distributions and standardized if required,
except for the SS6 categorical variable, which was transformed to a
continuous variable using a Normal Score (stats R package, R Core
Team, 2023). The experimental design effect was removed using
breedR (Muñoz and Sánchez, 2014), with an individual tree mixed
linear model using restricted maximum likelihood inference
(REML, Patterson and Thompson, 1971).

2.3 Genotypic data of E. dunnii breeding
population

DNA was extracted from lyophilized leaves of 308 E. dunnii
individuals using a CTAB method (Hoisington et al., 1994) with
modifications for the species (Marcucci Poltri et al., 2003),
quantified with Qubit 2.0 fluorometer (Thermo Fisher Scientific),
and quality verified by both Nanodrop (Thermo Fisher Scientific)
and 1% agarose gel electrophoresis (as described in Aguirre et al.,
2019; 2023).

2.3.1 SNP ddRADseq dataset
A ddRADseq genotyping protocol optimized for E. dunnii

(Protocol 2 from Aguirre et al., 2019; Aguirre et al., 2023) was
applied to the breeding population, by constructing 13 libraries/pool
of 24 samples each (including four extra samples, as required by the
protocol), at the Unidad de Genómica, IABiMo-INTA, Argentina.
The libraries were sequenced using a NextSeq 500 instrument
(Illumina, Inc., San Diego, CA, USA). Sequencing was carried out
with a 150-cycle high-output kit NextSeq and set up for 75 bp
paired-end (PE) reads (Illumina Inc.).

To search for loci and SNP markers in the ddRADseq data,
Stacks v1.48 software (Catchen et al., 2013) was used, as described by
Aguirre et al. (2019) for “with reference analysis”. In summary,

sequences were filtered by quality with process_radtags (removing
barcodes, adapters, reads without enzyme cutting site, and with
Phred quality value mean below 10, also truncating them to 66 bp).
The loci and SNPs were identified using the ref_map.pl pipeline,
where reads were previously mapped against the E. grandis reference
genome v2.0 (Myburg et al., 2014) using Bowtie2 (Langmead and
Salzberg, 2012) with default parameters. In detail, a minimum of
three reads was used to define an allele (tag or stack) within an
individual (-m 3), two bases of difference between alleles were
allowed to build a locus within an individual (-M 2), and two
different bases between loci were allowed to build the loci catalogue
(-n 2) between individuals. Stacks or alleles with great depth of
sequences were removed since it is very likely that they came from
repetitive regions of the genome (-t). As a diploid species, only loci
made up of two stacks (-X “ustacks: -max_locus_stacks 2″) were
considered. Additionally, the rxstacks program was applied as
described by Aguirre et al. (2019); however, in this case, the loci
logarithm of the likelihoods was filtered up to −20 (minus 20).
Finally, the populations component was executed using a filter of
defined loci with a minimum of six reads (-m 6), as the call of
heterozygous loci is more robust as the ddRADseq read depth
increases (from 3 to 6; Rochette and Catchen, 2017).

2.3.2 SNP EUChip60K dataset
DNA samples from 308 individuals were lyophilized in 96-well

plates and sent to the NEOGEN (USA, © Neogen Corporation) for
genotyping with the EUChip60K (Silva-Junior et al., 2015). For
allelic designation, the genotyping module of GenomeStudio
2.0 program was used (Illumina, San Diego, CA, USA). A cluster
file optimized for the Maidenaria section of subgenus
Symphyomyrtus (i.e.,: E. globulus, E. nitens and E. dunnii) and a
technical filter for quality parameters were used as suggested by
Silva-Junior et al. (2015).

Because the SNP coordinates were provided based on the E.
grandis reference genome v1, oligonucleotide sequences of chip
probes were mapped against the E. grandis v2.0 reference
genome using Bowtie2 (Langmead and Salzberg, 2012; with
default parameters). Next, to compare with the ddRADseq
dataset, the SNP coordinates of the EUChip60K dataset were
converted to the E. grandis v2.0 genome using our own script in
bash/R language.

2.4 Genomic datasets quality filter and
imputation

The proportion of total and per genotype missing data, observed
heterozygosity per individual, and genetic relationships between
them were calculated using PLINK v1.9 (Chang et al., 2015). An
individual was eliminated from both datasets using VCFtools
software (Danecek et al., 2011) if it showed at least one of the
following occurrences in at least one SNP dataset: a high proportion
of missing data (more than 60%), high heterozygosity values
(outside the range of population distribution, higher than three
times the standard deviation), or unexpected genetic relationships
with other individuals (greater than expected for an OP population,
such as father or mother/child relationship and/or very close to
clones, --king-cutoff 0.354). SNPs were then filtered out using a
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MAF of 0.01 by PLINK v1.9. As a final quality control of the filtered
data, pairwise genetic distances were calculated with each
genotyping dataset using the snpgdsIBS option of the SNPRelate
R package (Zheng et al., 2012). Both datasets were correlated with a
Mantel test (Mantel, 1967; vegan R package; Dixon, 2003).

Imputation of missing data, in both genotypic datasets, was
performed using the LinkImpute program (Money et al., 2015).
After imputation, ddRADseq and EUChip60K datasets were merged
with the BCFtools tool (Li et al., 2009) to generate a third joint SNP
dataset (hereinafter called ddRADseq + EUChip60K or combined data).

2.5 Population genetics analyses

2.5.1 SNP distribution andMAF in the three datasets
To compare the performance of the applied genotyping

methodologies and the combined data, SNP distributions and their
allele frequencies along the E. grandis genome were evaluated by
CMplot2 and synbreed R packages (Wimmer et al., 2012).

2.5.2 Linkage disequilibrium estimation
The LD between each SNP pair was estimated using TASSEL

software (Bradbury et al., 2007) considering SNPs with
MAF ≥0.01 and no correction for population structure or
relatedness as Estopa et al. (2023). Patterns of LD decay for each
dataset were plotted in a 10 Kbp window using R software according
to the method of Hill and Weir (1988) and based on the physical
distance of the E. grandis v2 genome (Myburg et al., 2014).

2.5.3 Population genetic structure and diversity
parameter estimation

To estimate genetic structure and genetic diversity parameters, each
dataset was LD pruned (r2 greater than 0.2) by implementing the
--indep-pairwise function of the PLINK v1.9 program, using 2Mb
windows with an overlap between them of 200 kb. This filter was used
to eliminate redundant information, obtain a more accurate estimation,
and reduce the computational demand of statistical analyses.

Population genetic structure was estimated by Discriminant
Analysis of Principal Components (DAPC; Jombart et al., 2010)
using adegenet 2.0.0 R package (Jombart, 2008). Because DAPC
requires defining the number of groups in advance, SNP data was
transformed using PCA and a k-means clustering algorithm.
Successive k-means were run using find. clusters function of
adegenet, and optimal grouping was chosen through the lowest
Bayesian Information Criterion (BIC; Schwarz, 1978) value.
For these population structure analyses, random sub-sampling
of 800 SNPs was applied to each of the three genomic datasets
filtered by LD. Subsequently, FST was calculated between the
genetic groups defined by DAPC for each of the three datasets
using the populations module (option: -fstats) of the Stacks
program (Catchen et al., 2013). The significance of each FST
value was calculated through bootstrap resampling
implemented in the said population module (--fst_correction
p_value -k --bootstrap_fst). This calculation was used with

the default parameters, which were a resampling number
of 10,000 times and a p-value less than 0.05, to report the
FST value.

The following population genetic diversity statistics were calculated
for each dataset and genetic structure group: allele frequencies p and q,
expected (He) and observed (Ho) Heterozygosity and Polymorphic
InformationContent (PIC) with the popgen function in the snpReady R
package (Granato et al., 2018).

2.6 Genomic selection

2.6.1 Genomic selection models
For the GS proof-of-concept, a single-trait model was used with the

corresponding A- or G-matrix for the conventional ABLUP and
GBLUP models and 11 phenotypic traits evaluated. For the ABLUP
model, the additive relationship matrix (A) was calculated using the
getA function in pedigreemm R software (Vazquez et al., 2010). For the
GBLUP model the genetic relationship matrix (G) was calculated using
the function A. mat in the rrBLUP program (Endelman, 2011). ABLUP
and GBLUP models were applied by kin.blup function (rrBLUP R
package), thus solves mixed models of the form:

y = Xβ + Zg +ε
Where β is a vector of fixed effects, g is a vector of random

genotypic values with covariance G = Var (g), and the residuals
follow Var (ε) = Riσ

2
e, with Ri = 1 by default. For all models and

phenotypic traits, the number of trees with genotypic data was the
same (280 trees). However, the number of individuals with both
phenotypic and genotypic data varied by trait (Supplementary
Table S2). For ABLUP only the genotyped individuals in the trial
were predicted to make the results comparable to those obtained
with GBLUP.

2.6.2 Validation of the model
A leave-one-out (LOO) cross-validation strategy was performed

for all traits, where in each case the entire population except one
individual was used as the TP and the phenotype of the excluded
individual was predicted. Pearson’s correlations (stats R package, cor
function, R Core Team, 2023) between the phenotypic records
corrected for environmental effects and the predicted values were
used to obtain the predictive ability (PA) of each model. The
significance of Pearson’s correlation was determined using a two-
tailed t-test with an alpha level of 0.05.

2.6.3 Heritability
For the estimation of variance components and heritability,

ABLUP results from the kin.blup function of the rrBLUP
package were used (Endelman, 2011).

3 Results

3.1 Genotyping data of E. dunnii breeding
population

3.1.1 SNP ddRADseq dataset
Sequencing of all 13 library pools on the NextSeq instrument

yielded 383.5 million PE (57.6 Gb) passing filter reads (mean quality2 https://github.com/YinLiLin/R-CMplot
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greater than 30 Phred index). The average number of PE reads per
pool of 24 samples was 24,224,266.5.

After all sequence quality filters, an average of 1,009,344.5 PE
reads per sample was finally obtained. However, there was a large
variation in the number of PE reads between samples (112,342 to
3,116,508). This variation is expected and mainly due to the
variation in the number of reads within sample pools (Aguirre
et al., 2019).

A mean of ~80% of reads per individual mapped to the E.
grandis v2.0 reference genome and 530,885 SNPs at 195,010 loci
(75bp each locus) were found in the SNP calling analysis. After
applying the first loci and SNPs quality filters with Stacks software, a
raw ddRADseq dataset was obtained, with 42,058 SNPs in
16,123 polymorphic loci. Each locus was defined by a depth of at
least 6 reads, a likelihood greater than −20, a MAF greater than
0.01 and the presences in at least 50% of the 308 individuals.

3.1.2 SNP EUChip60K dataset
Following the standard genotyping and quality control

procedures (Illumina, 2010), all 308 individuals were
successfully genotyped.

3.2 Genomic datasets quality filter and
imputation

The overall proportions of missing data for the EUChip60K
(64,639 SNPs) and ddRADseq (42,058 SNPs) datasets were
0.11 and 0.34, respectively. The proportion per individual
ranged from 0.13 to 0.87 with a mean of 0.34 ± 0.15 for
ddRADseq and between 0.10 and 0.14 with a mean of 0.11 ±
0.006 for the EUChip60K data. Twenty-eight individuals were
eliminated from both datasets: 18 of them showed a high
proportion of missing data (60%) in ddRADseq dataset; 10 of
them presented heterozygosity values greater than 0.4 (mean of
308 individuals: 0.29 ± 0.04) and a closer than expected genetic
relationship with another individual (two of them in both
datasets and eight only in the EUChip60K dataset).

SNPs with more than 20% of missing data and MAF below
0.01 were filtered out. The final datasets were composed of
280 individuals with 8,170 ddRADseq SNPs and a total of
13% missing data and the same 280 individuals
19,045 EUChip60K with SNPs and a total of 3% missing data.
The Mantel test correlation between the genetic distance
matrices obtained with the two datasets was found to be r =
0.69 (Significance 0.001). LinkImpute, the software/algorithm
used to impute, estimates accuracy before processing by sub-
sampling the existing data, removing and imputing (Money
et al., 2015). Imputation accuracies of 0.89 and 0.84 were
achieved for the ddRADseq (8,170 SNPs) and EUChip60K
(19,045 SNPs) dataset.

Finally, both datasets were joined, creating the combined
dataset. Since the imputation could modify SNPs allele
frequencies, the three datasets were again filtered by MAF,
giving a total of 8,011, 19,008 and 27,019 SNPs for
ddRADseq, EUChip60K, and the combined dataset, respectively.

3.3 Population genetics analyses

3.3.1 SNPs distribution and MAF in the
three datasets

The average number of SNPs per chromosomewas 712, 1,698 and
2,410 for ddRADseq, EUChip60K and the combined dataset
respectively, distributed along the 11 chromosomes (Figure 1).

FIGURE 1
Density and distribution of the SNPs per chromosome for each
dataset of the Eucalyptus dunnii population. The chromosomes are
plotted from 1 (top) to 11 (bottom) on the ordinate axis and their sizes
are given in Mb on the abscissa axis. The colour scale varies from
zero SNPs (green) to more than 100 SNPs per 1 Mb (deep blue). From
top to bottom: (A) ddRADseq (7,831 SNPs); (B). EUChip60K
(18,678 SNPs); (C). ddRADseq + EUChip60K (26,509 SNPs).
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Examining the mean distances between contiguous SNPs
(Supplementary Table S3) and, given the lower number of
markers, the ddRADseq dataset shows the largest distances
(75,831 ± 20,108 bp). The EUChip60K data showed on average
less than half that distance (33,198.04 ± 2,217.10 bp). The combined

datasets showed the lowest inter-SNPs distance (average:
23,009.75 bp ± 2,217.10 bp). In Figure 1, the ddRADseq dataset
reflected a more clustered pattern of SNP distribution than the
EUChip60K dataset, again consistent with the higher mean
distances between SNPs and its higher standard deviation.

FIGURE 2
Allele frequency distribution of SNPs. (A) ddRADseq; (B) EUChip60K; (C) ddRADseq + EUChip60K.
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In relation to the sum of the extreme SNP distance for all
chromosomes (Total), it is observed that, with the combined
dataset (coverage of 611.09 Mb), this value closely approximates
the sizes of the E. grandis genome (640 Mb). It is important to
note that these distances are relative, since they were estimated
based on the E. grandis reference genome (Myburg et al., 2014)
(Figure 1) which has a larger size compared to the E. dunnii
genome (~530 Mb, Grattapaglia & Bradshaw, 1994). These
results suggest that both genotyping methods cover the whole
genome, as shown in the SNP density and distribution scheme
per chromosome (Figure 1).

The allele frequency spectrum of SNP data generated by the
two genotyping systems showed a striking difference (Figure 2).
ddRADseq showed a strong bias towards low-frequency alleles,
with 68% of SNPs (5,469 of 8,011 SNPs) having a MAF <0.1,
consistent with the fact that the vast majority of variants will be
rare. The EUChip60K data showed the expected MAF
distribution based on the preselection made during chip

development aimed to enrich SNPs with higher frequency,
reflecting the coverage bias in fixed-content SNP chip data
(37% of the SNPs with MAF <0.1, 7,070 of 19,008 SNPs). The
combined datasets provided a MAF distribution that should be of
interest for the GS approach (46% of the SNPs with MAF <0.1,
12539 of 27,019 SNPs).

3.3.2 Linkage disequilibrium estimation
The average genome-wide LD for SNP pairs (r2) for ddRADseq,

EUChip60K and ddRADseq + EUChip60K were 0.025, 0.032 and
0.033, respectively. LD was observed to fall below the 0.2 r2 threshold
at a distance of 37 bp for the ddRADseq dataset, 6,387 bp (6.4 Kbp)
for EUChip60K and 3,298 bp (3.3 Kbp) for the combined
dataset (Figure 3).

3.3.3 Population genetic structure and diversity
parameters estimation

To ensure more reliable estimates of population genetic
structure parameters, SNP pairs displaying an r2 value greater
than 0.2 were pruned. The LD-pruned datasets consisted of
4,848 SNPs for ddRADseq, 13,385 SNPs for EUChip60K, and
17,611 SNPs for the combined set.

Population genetic structure analysis with the DAPC method
identified two genetic groups based on the lowest BIC value
(Figure 4; Supplementary Figures 1A–C). Only two individuals
differed in group assignment when datasets were compared. These
two individuals were assigned to group one by EUChip60K and
combined datasets, but belonged to group two when the ddRADseq
dataset was applied. Group one was composed of 43 (ddRADseq) or 45
(EUChip60k and combined data-set) of the 52 individuals coming
from local provenance seeds (Australian origin: Moleton, NSW;
Supplementary Table S1). The group two consisted of the
remaining 239 (ddRADseq) or 237 (EUChip60k and combined
data-set) individuals, depending on the dataset considered
(Supplementary Figures 1D–F). However, the FST estimates between
these two genetic groups were low, irrespective of the SNP dataset used
(FST = 0.0148, p-value <0.05 for ddRADseq; FST = 0.0155,
p-value <0.05 for EUChip60K, and FST = 0.0148, p-value <0.05 for
the combined dataset). Population genetic statistics were estimated
with each SNP dataset (Table 1). Higher diversity was estimated with
the SNP chip data, consistent with the higher MAF observed for the
SNPs sampled. No significant difference was seen in diversity measures
between the two groups found in the structure analysis.

FIGURE 3
Pattern of linkage disequilibrium decay in E. dunnii. Pairwise SNP
distances up to 10 Kbp versus r2 for ddRADseq (pink), EUChip60K
(blue) and ddRADseq + EUChip60K (purple). Abline at 0.2 r2 in green.

TABLE 1 Population genetic diversity parameters estimated with the three genotyping datasets. Total pop.: parameters calculated for whole population;
Group 1 and Group 2: parameters calculated for each genetic group defined by DAPC analysis; p: average major allele frequency; q: average minor allele
frequency; He: expected heterozygosity; Ho: observed heterozygosity; PIC: polymorphic information content.

ddRADseq EUChip60K ddRADseq+EUChip60K

Total pop. Group 1 Group 2 Total pop. Group 1 Group 2 Total pop. Group 1 Group 2

p 0.89 0.89 0.89 0.80 0.80 0.80 0.82 0.82 0.82

q 0.11 0.11 0.11 0.20 0.20 0.20 0.18 0.18 0.18

He 0.17 0.14 0.17 0.28 0.25 0.28 0.25 0.22 0.25

Ho 0.15 0.13 0.15 0.29 0.27 0.29 0.26 0.24 0.26

PIC 0.14 0.12 0.14 0.23 0.20 0.23 0.21 0.18 0.21
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3.4 Genomic selection

The predictive ability (PA) of GBLUP (all genomic datasets) was
superior to ABLUP for six of the traits evaluated (Figure 5,

Supplementary Table S4), specifically wood quality traits
estimated by NIR (EE20, TE20, KL20, TL20, S/G20, CEL20).
However, for the growth trait DBH6, despite GBLUP
demonstrating superiority, the PA value was nearly zero and not

FIGURE 4
Population genetic structure by DAPC. Plot of density by discriminant function 1. (A) ddRADseq; (B) EUChip60K; (C) ddRADseq + EUChip60K. Group
1 (green) composed by 43 (A) or 45 (B, C) individuals; group 2 (violet) composed by 239 (A) or 237 (B, C) individuals.
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statistically significant (p > 0.05). In contrast, ABLUP presented
higher PA values for SS6, DBH20, LESI20 and WD20.

When comparing the GBLUP PA obtained with the ddRADseq
and EUChip60K SNP datasets, the latter yielded higher and
significant PA values for six traits (SS6, LESI20, EE20, TE20,
KL20 and TL20), while ddRADseq dataset yielded higher PA
values for three traits (S/G20, CEL20 and WD20). For both DBH
traits PA values were close to zero and not significant (p > 0.05) with
the two datasets. For six of the 11 traits PAs obtained with the
EUChip60K data were higher than those obtained with ddRADseq
data and for some traits such EE20, KL20, TE20 and TL20 the
differences were substantial.

Contrasting the results of the combined dataset with each
independent dataset, it is observed that for three traits (DBH20,
LESI20 and S/G20), the former showed slightly higher PA values,
although overall the PA values obtained with the combined datasets
mostly close to the highest PA value obtained with one of the
independent datasets.

The mean squared errors (MSEs) were similar between ABLUP
and GBLUP, with the three datasets, EUChip60K and the combined
dataset showing slightly lower average MSEs (ABLUP: 0.904,
ddRADseq: 0.898, EUChip60K: 0.885 and ddRADseq +
EUChip60K: 0.885).

Heritabilities estimated with the ABLUP model varied
between 0.251 for CEL20 and 0.834 for LESI20
(Supplementary Table S4). Four traits showed high (>0.5) h2

values (LESI20, EE20, KL20 and TL20) while the remaining traits
had moderate values (0.15 < h2 < 0.50). Pearson’s correlations
between h2 and PA were 0.819, 0.732, 0.805 and 0.796 for
pedigree, ddRADseq, EUChip60K and ddRADseq +
EUChip60K data respectively.

4 Discussion

The present study aimed to evaluate SNP data obtained with two
alternative genotyping methods, ddRADseq and fixed-content SNP
array, for estimating population genetic parameters and modeling
GS for wood quality and growth traits in a breeding population of E.
dunnii, a forest tree. This Eucalyptus species is important in the
context of climate change, due to its growth advantages on some
environmental conditions. Having access to a high-density, low-
cost, flexible, and accurate genotyping platform is essential for the
successful application of GS. The number of informative markers is
expected to be directly proportional to the predictive power of a GS
model, by more accurately capturing relatedness between training
set and selection candidates and increasing the likelihood that loci
controlling the target quantitative trait will be in LD with at least one
marker (Meuwissen and Goddard, 2010).

4.1 ddRADseq application

Due to the absence of a reference genome for E. dunnii, we
initially evaluated SNP discovery and genotyping with both a de
novo and a reference-based analysis to compare the results (Stacks
program; Catchen et al., 2013). Both analyses can be applied to
identify SNPs with high accuracy after applying stringent
bioinformatics and quality filters (Aguirre et al., 2019). After
implementing the first quality filters 42,058 SNPs were found in
16,123 polymorphic loci with a reference-based method. In contrast
to the reference-based analysis, which only considers reads that map
on the E. grandis genome v2.0 (80% of reads), the de novo analysis
uses all reads for marker identification. As expected, the de novo

FIGURE 5
Predictive abilities obtained with ABLUP and GBLUP (for each genomic dataset). PA: Predictive ability. Traits under study: DBH: diameter at breast
height, SS: stem shape, LESI: log end split index, EE: ethanolic extractives, TE: total extractives, KL: Klason lignin, TL: total lignin, SG: Syringyl/Guaiacyl, CEL:
cellulose, WD: basic density. Methodology: a- ABLUP (red), b-ddRADseq (green), c- EUChip60K (blue), d-ddRADseq + EUChip60K (violet).
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analysis recovered more SNPs and loci (55,338 SNPs in
22,629 polymorphic loci). These results are encouraging to
explore these E. dunnii SNPs that could not be detected using
the E. grandis reference. On the other hand, de novo discovery
requires stricter criteria and parameters when defining loci, due to
the higher number of false positives obtained (Rochette and
Catchen, 2017). Thus, only SNPs detected by the reference-based
analysis were considered for the goal of comparing ddRADseq with
EUChip60K datasets in downstream applications. Additionally,
based on previous work with imputation strategies for ddRADseq
data (Merino, 2018), a further filter was applied to this SNPs dataset,
leaving only those with call rate >80% (Aguirre et al., 2019). These de
novo analysis results suggest that ddRADseq has the potential to be
widely applicable to forest tree species that do not have a reference
genome. Nevertheless, it should be pointed out that for species
without a reference genome, the sequencing data should aim for
longer paired-end reads than the 75 bp long ones obtained for E.
dunnii in this study. In addition, the number of optimal reads per
sample required depends on the optimal number of loci and depth of
coverage driven by the project’s goals and the genetic nature of the
species under study (Andrews et al., 2016). Reliable de novo locus
discovery and genotyping in diploids requires high coverage
(10–20x or >20x; Andrews et al., 2016; Rochette and Catchen,
2017). According to the previous setup of the ddRADseq
protocol for E. dunnii (Aguirre et al., 2019), a minimum of
700,000 reads per sample is required to achieve 10x depth
coverage, although it is better to guarantee a minimum average
of 1 million reads per sample to ensure good results for all samples.
In our hands, as well as filtering for quality of ddRADseq loci and
removing individuals with a high proportion of missing data,
extreme heterozygosity and unexpected relatedness (in both
datasets), this minimum average number of reads per sample was
employed to acquire sturdy data for the study.

In the Eucalyptus genus, despite its high cost, WGS was applied
in some cases (Kainer et al., 2019; Yong et al., 2021). RRS has been
applied for association studies by using target re-sequencing of
specific genes (Ghosh Dasgupta et al., 2021; Candotti et al.,
2023). Besides, sequence capture, where E. grandis reference
genome (Bartholomé et al., 2014; Myburg et al., 2014) was used
to design probes and capture genomic regions to be sequenced, was
evaluated (de Moraes et al., 2018). It is worth mentioning that, as the
latter methodologies, ddRADseq has the potential and allows the
discovery and detection of all kinds of DNA variation (e.g., copy
number variants or CNV, microsatellites or SSRs, SNP, InDels,
plastid DNA; Aguirre et al., 2019; Meger et al., 2019; Aballay et al.,
2021) and the inclusion of all types of variants could improve the
predictive ability in GS (Lyra et al., 2019; Della Coletta et al., 2021).

4.2 EUChip60K microarray application

As expected, the number of polymorphic SNPs obtained with
the EUChip60K in the 308 individuals (19,011 SNPs, with Call
rate >80% and MAF> 0.01) was slightly higher than the number
originally reported based on genotyping only 12 individuals
(17,014 SNPs; Call rate 98.8%, MAF >0.01) (Silva-Junior et al.,
2015). As pointed out by Resende et al. (2017), less than 50% of the
64 thousand SNPs available in the EUChip60K are typically

polymorphic in line with the multi-species nature of the
EUChip60K, in which not all SNPs were designed to be
informative in each single species, but rather that the chip would
provide approximately 15,000 to 30,000 useful SNP in each one of
almost 20 eucalypt species (Silva-Junior et al., 2015). The highest
proportions of informative SNPs in the EUChip60K are generally
found in species that were more represented in the sequencing data
used for SNP discovery. This was the case of the work of Cappa et al.
(2019), who obtained 33,398 SNPs (MAF >0.01) for 999 trees of
hybrids between E. grandis × E. urophylla and E. grandis × E.
camaldulensis. Conversely, for less represented species like E. dunnii
in this work, Jurcic et al. (2021), reported 11,284 with a more
rigorous MAF>0.05, and Suontama et al. (2019) reported
12,236 SNPs in 691 individuals of E. nitens.

4.3 Comparison of genotyping
methodologies

4.3.1 Missing data and imputation
ddRADseq was chosen to evaluate against the standard

EUChip60K data because it is the REbRRS method that typically
yields a higher number of reliable markers, as observed for beech
and oak (Ulaszewski et al., 2021), when comparing RADseq, GBS
and ddRADseq. When comparing the ddRADseq and EUChip60K
datasets, the latter had a much lower proportion of total and per
sample missing data. This was expected due to the EUChip60K
design and DNA hybridisation-based methodology (de Moraes
et al., 2018). However, in order to overcome missing data,
imputation methods were applied as reported for Picea glauca
(Gamal El-Dien et al., 2015). The LD-kNNi imputation algorithm
was applied to both genomic datasets for the E. dunnii population.
High accuracies of genotype assignment to missing data were
obtained (0.8949 for ddRADseq dataset with 8,170 SNPs; and
0.8443 for EUChip60K dataset with 19,045 SNPs). Likewise, an
algorithm also based on the use of nearest-neighbour genotype
information, kNN-Fam, together with the Expectation
Maximisation algorithm, showed the highest accuracies in
imputing GBS data for GS in P. glauca (Gamal El-Dien et al.,
2015) when compared to the mean imputation and singular
value decomposition methods. On the other hand, Rutkoski et al.
(2013) compared four imputation methods for application in GS
and found that the random forest regression method produced
superior accuracy, followed by the kNNi method, and the lowest
accuracy was the mean imputation method. Furthermore, they
concluded that including markers with a large proportion of
missing data almost always led to higher GS accuracies after
imputing, even when the order of the markers is not known
(Rutkoski et al., 2013). Another study in E. cladocalyx also
applied the LD-kNNi algorithm, implemented in 5.2 (Trait
Analysis Association, Evolution and Linkage; Bradbury et al.,
2007), which allowed them to impute data and apply GS in this
non-model species (Ballesta et al., 2020).

4.3.2 Minor allele frequencies
Eucalyptus species is primarily outcrossing and has wide pollen/

seed dispersal. As a result, high proportions of polymorphic loci with
rare alleles are observed in natural populations (Byrne, 2008). The
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breeding population genotyped in the present work is likely to retain
a high proportion of such rare variants as it is only one generation
removed from natural stands. SNPs with MAF >0.01 were retained
for the downstream analyses since 4,011 of the 8,011 SNPs in the
ddRADseq dataset had a frequency <0.05. SNPs with a
MAF >0.01 were also used in GS in Eucalyptus (Cappa et al.,
2019; Suontama et al., 2019). The inclusion of rare variants has
the potential to contribute to the accuracy of GS prediction models,
although the overall contribution of rare SNPs to the variance of
quantitative traits in breeding populations has been questioned (Liu
et al., 2015), and some reports suggest that low MAF SNPs, do not
influence genomic predictions (Zhu et al., 2017; Zhang et al., 2019;
Trujano-Chavez et al., 2021).

The multispecies strategy used for the development of
EUChip60K somewhat mitigated the ascertainment bias towards
more common SNPs (Silva-Junior et al., 2015). However, when
comparing the MAF distributions obtained in the datasets of the two
genotyping methods, EUChip60K SNPs showed a higher average
allele frequency and a lower proportion of rarer SNPs than
ddRADseq in this E. dunnii population. This corroborates the
expectation that the EUChip60K targets more common
polymorphisms in the population than ddRADseq. This same
trend was observed in other studies comparing RRS and SNP
arrays for the same sample set. Negro et al. (2019) working with
maize observed that array data showed a uniformMAF distribution,
while GBS data presented an excess of rare alleles with an “L” shaped
MAF distribution. The authors justify these differences because
maize microarrays (50K and 600K) were developed based on
sequencing 27 and 30 lines respectively, while SNPs from GBS
data were detected in 247 lines, allowing for a greater discovery of
rare alleles. Otherwise, in Eucalyptus, as expected, the proportion of
rare variants was significantly higher with the sequence capture
method than with the EUChip60K (de Moraes et al., 2018).

4.3.3 SNP density
With respect to the distribution of SNPs along the genome, it was

observed that SNPs obtained from ddRADseq analysis showed amore
clustered and less homogeneous pattern than those obtained with the
chip data. This is consistent with the expectations based on the design
of the EUchip60K. To develop it, 240 tree genomes from 12 species
were sequenced at a depth of 3.5× each, resulting in a total of
46,997,586 raw SNP variants. The SNPs were filtered using
multivariable metrics, retaining only variant SNPs of high quality
that displayed polymorphism in the largest number of species. This
resulted in an array containing 60,904 SNPs, with a homogeneous
genome-wide coverage of 96% (1 SNP per 12–20 kb) as reported by
Silva-Junior et al., in 2015. Similar pattern was seen when EUChip60K
data was compared to sequence capture data (de Moraes et al., 2018)
and also in maize, where SNPs from GBS showed higher SNP density
in telomeric regions, while the 50K microarray data showed a more
homogeneous distribution, and the 600Kmicroarray showed a higher
density of markers in pericentromeric regions (Negro et al., 2019).
These results demonstrate the benefit of pre-selecting polymorphic
loci when developing a SNP array, despite the inherent limitation of
variable levels of ascertainment bias. Similarly, in E. dunnii no SNPs
were found common to both genotypingmethods, which is consistent
with a study in E. globulus (Durán et al., 2018), where it was observed
that of the 2,597 SNPs obtained with the GBS method, only 24 SNPs

were common to the 13,669 polymorphic SNPs presented
by EUChip60K.

4.3.4 Linkage disequilibrium
Pairwise estimates of LD (r2) between all SNPs (MAF ≥0.01) and

all chromosomes were independently estimated for the three
datasets. A rapid LD decay in Eucalyptus genus was reported in
several studies, presenting values of LD that dropped below
0.2 between 5.7 Kbp to 637.7 Kbp (Silva-Junior and Grattapaglia,
2015; Muller et al., 2019; Estopa et al., 2023). E. dunnii showed a
rapid LD decay between this range (EUChip60K dataset).

The genome-wide LD decay to an r2 below 0.2 was significantly
faster for ddRADseq (37 bp) compared to EUChip60K (6.4 Kbp).
This difference can be explained by the small distances between
SNPs within the same locus in the ddRADseq dataset, which were
generated for 75 bp of the Illumina read length (average of 2.6 SNPs
every 75bp genomic region or locus).

Similar results were obtained when comparing sequence capture
with EUChip60K. The same trend was observed by de Moraes et al.
(2018) for twoMAF thresholds (0.05 and 0.1), falling below the 0.2 r2

value at lower distances (50-100Kbp) for the sequence-capture SNP
dataset than with the SNP array (250 Kbp) for a MAF of 0.05. They
explain that these LD decay differences between datasets could be
due to the intensive pre-selection step for the SNPs included in the
SNP array (1 SNP every 12–20 Kbp, Silva-Junior et al., 2015) likely
resulting in ascertainment bias.

4.3.5 Genetic diversity
The maintenance of genetic diversity is key to the viability of a

population, particularly in a breeding program where long-term
sustainable genetic gain with GS should be in balance with genetic
diversity (Grattapaglia, 2022). According to the MAF distribution,
for E. dunnii a lower average heterozygosity (He) was observed with
ddRADseq (0.17) than with the microarray (0.28). This difference is
consistent with the observed allele frequency spectrum of the two
datasets where the SNPs genotyped with the EUChip60k have a
higher average allele frequency which will result in higher
heterozygosity. Negro et al. (2019) observed the same trend in
maize, where He for GBS (Elshire et al., 2011) was 0.27 and for
the 50K and 600K microarrays was 0.35 and 0.34, respectively. The
observed heterozygosity for E. dunnii (Ho: 0.29) with the
EUChip60K dataset was similar to that found in E. cladocalyx
with the same SNP-chip (Ho: 0.22; Ballesta et al., 2020). As
expected it was lower than the estimate for an E. dunnii seed
orchard using nine multiallelic SSR markers (Ho: 0.66; Zelener
et al., 2005).

4.3.6 Genetic structure
The population genetic structure detected with the two datasets

was similar despite the differences in allele frequency distributions,
and only two individuals differed in the genetic groups assignment.
Such correspondence between the population structure obtained
with the GBS and SNP-chip datasets was also observed by Negro
et al. (2019) in maize and by Elbasyoni et al. (2018) in winter wheat.
Such population genetic structure detected by DAPC analysis in E.
dunnii population refers to two groups with little but significant
genetic differentiation between them. This is likely due to the genetic
composition of the smallest group (trees selected for growth and
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stem straightness in a local commercial plantation with a narrow
genetic base) and the composition of the largest genetic group,
which has many families from different geographical sources of
seeds, resulting in dissimilar allele frequencies (Alqudah et al., 2019).
However, the population genetic structure detected was very low
(FST = 0.0148) although significant. As suggested by Yu et al. (2006),
kinship relationships are able to capture the underlying genetic
structure except in cases where there is an obvious regional
difference (Cappa et al., 2013). In the case of the E. dunnii
population under study, it is derived from seeds from a very
narrow geographic region in Australia, corresponding to the
distribution of the species, suggesting high gene flow and
therefore little genetic differentiation.

4.3.7 Genomic selection
This study compared the performance of two genomic datasets

and their combination, in building a genomic selection model for a
breeding population of E. dunnii. They were contrasted with the
traditional approach using pedigree information (ABLUP). The
evaluation was based on their predictive ability for 11 growth
and wood quality traits. When considering the present results, it
must be taken into account that the size of the population studied is
rather small, a factor that affects the accuracy of the prediction
(Grattapaglia, 2022).

Several studies have also applied GS in Eucalyptus using
EUChip60K data (Müller and Neves, 2017; Durán et al., 2018;
Cappa et al., 2019; Suontama et al., 2019; Jurcic et al., 2021;
Duarte et al., 2023), but none of them used the ddRADseq
genotyping method. This present work is the first to compare
ddRADseq and SNP array data for the application of GS in
forest trees and the first to apply GBLUP using ddRADseq in
E. dunnii.

Genomic approaches are expected to perform better than
pedigree-based approaches because they use more accurate
kinship information (Cappa et al., 2019). Our results showed that
the GBLUP (with any of the three data sets) outperformed the
ABLUP for six out of 11 traits. However, the ABLUP approach
performed better than GBLUP for four traits, two of which were
growth traits. This may be due to an overestimation of additive
variation by the ABLUP approach, which cannot disentangle the
non-additive variation (Muñoz and Sanchez, 2014; Gamal El-Dien
et al., 2016; Cappa et al., 2019).

Previous studies have used the EUChip60K platform and
applied GBLUP and five other Bayesian GS methods to predict
traits in different Eucalyptus populations. For instance, Müller and
Neves (2017) showed predictive abilities for DBH of 0.16 and
0.44 for populations of E. benthamii (n = 505) and E. pellita (n =
732), respectively. In contrast, our study found lower and no
significant PA values for DBH at 6 and 20 years in the Ubajay
population of E. dunnii (PA with chip: 0.054 and 0.035 DBH6 and
DBH20, respectively, with GBLUP). These results suggest that the E.
dunnii population has lower additive genetic variation for this trait.
Another study by Durán et al. (2018) applied GBLUP and three
other Bayesian GS models to predict stem volume and wood density
traits in a clonal population of E. globulus using the EUChip60K
microarray. This population had a similar size (310 trees) to the E.
dunnii population (280 trees). The study found a higher PA value,
using GBLUP, for wood density (0.63) in E. globulus compared to E.

dunnii (PAWD20: 0.160 with chip data). The difference in accuracy
between the two populations might be due to E. globulus having
closer kinship relationships and involving a smaller number of
families (40 full-sib families and 13 half-sib families, produced by
crossing 23 parents). This corroborates the well documented fact in a
number of studies that effective population size and relationship are
the main drivers of genomic prediction (Grattapaglia, 2022;
Isik, 2022).

In E. benthamii, Estopa et al. (2023) compared different genomic
prediction models with ABLUP in a population of 780 individuals
from 77 families genotyped with the EUChip60K and phenotyped
for five traits, including wood density, extractives content, and lignin
content. They found that the PAs for ABLUP were lower than for
GBLUP for all five traits, which is consistent with the results of the
present work. For lignin content, the PA values were 0.23 for ABLUP
and 0.34 for GBLUP, which are similar to the results of the present
work (0.269 for ABLUP and 0.368 for GBLUP). For extractive
content, the PA values were 0.16 for ABLUP and 0.18 for
GBLUP. In comparison to E. dunnii, ABLUP was similar (0.156)
and GBLUPwas lower (0.258). For wood density, the PA values were
0.27 for ABLUP and 0.43 for GBLUP, which were higher than in the
present work (ABLUP: 0.190 and GBLUP: 0.160).

Genomic selection in E. dunnii using EUChip60K data has only
been applied in a few studies. In a preliminary study by Naidoo et al.
(2018), GBLUP was applied to an E. dunnii population in South
Africa. The study analyzed 9,102 SNPmarkers in 840 offspring from
89 half-sib families and applied GBLUP to predict five phenotypic
traits. The results showed PA values of 0.38 for diameter at breast
height and 0.51 for wood density. However, much lower values were
found in the present study, which could be due to different
environments, different origins, and a small number of
genotyped individuals. Jones et al. (2019) investigated whether
combining data from different trails could improve the accuracy
of the GS model in E. dunnii. The study found that accuracy for
diameter at breast height increased by 86% and tree height by 290%
(from 0.18 to 0.72). Jurcic et al. (2021) applied GS in E. dunnii using
multiple-trait multiple-site single-step GBLUP (ssGBLUP models)
for DBH6 and SS6. The h2 of DBH6 obtained by ABLUP was 0.262
(s.d.: 0.039), which is similar to the present work results (0.242), and
the PA was 0.324, but near zero in the present work. For SS6, the h2

was 0.19 and the PA was 0.350, while in the present work, the h2 was
0.413 and PA 0.25 for the same trait. However, Jurcic et al. (2021)
applied a model using both genomic and pedigree information,
based on a different number of individuals in the population
(1,520 trees), and two additional trials, such that the PA and h2

values are not directly comparable.
In general, it can be concluded that models including genomic

data are promising for the application in breeding programs, in
particular in E. dunnii, as they show higher PA for most of the
traits, compared to ABLUP. These models can be used to generate
a ranking of E. dunnii individuals based on the priorities of the
breeding program, such as selecting individuals with high wood
quality and higher growth. The choice of genotyping platform is a
key element that can affect the performance of GS (Elbasyoni et al.,
2018). Sequencing-based genotyping methods in principle provide
a large number of molecular markers, but often have a high
proportion of missing data requiring rigorous filtering that
often result in an operationally lower number of SNPs when
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compared to chip-based data. SNP arrays, on the other hand,
provide large number of markers with very little missing data, but
due to their fixed content may suffer from ascertainment bias in
allele frequencies and do not allow the discovery of population-
specific variants (Albrechtsen et al., 2010; Li and Kimmel, 2013;
Bajgain et al., 2016). Elbasyoni et al. (2018) compared the
performance of these two genotyping platforms for GS in
299 lines of winter hard wheat (Triticum aestivum L.), one of
the few studies that compared the performance of these genotyping
methods for GS in crops. They observed that GBS, imputing 10%
(10,775 SNPs) and 50% (39,674 SNPs) of missing data, showed
similar or even higher genomic prediction accuracy than the
microarray data (19,515 SNPs) for all agronomic traits,
depending on the percentage of missing data imputed from the
starting GBS. In contrast, for E. dunnii, although ddRADseq
showed slightly higher PA for some traits, the EUChip60K data
provided higher PA values. This suggests that the performance of
different genotyping platforms can vary depending on the species
and population being studied. In the present work, it was observed
that EUChip60K provided higher PA for most of the traits
compared to ddRADseq. A similar trend was observed in the
study by de Moraes et al. (2018), where the performance of
sequence capture and EUChip60K was compared for GS. The
study found that the microarray method showed higher PA for
most traits.

There are various factors that affect the accuracy of
prediction models, and one of them is the genotyping density
(Grattapaglia, 2022). The EUChip60K dataset was found to be the
most effective in predicting most of the traits evaluated in this
study. This could be related to its higher marker density, which
can better explain phenotypic variation compared to ddRADseq
for most of the traits evaluated. Nevertheless, for two traits, the
ddRADseq + EUChip60K dataset showed a higher PA, indicating
that the number of markers is not the only factor that influences
the PA. Kinship also plays an important role and studies on forest
trees demonstrate that moderate genotyping densities of around
10,000 to 15,000 data points are sufficient for reasonable
predictive power (Grattapaglia, 2022). A similar observation
was made by de Moraes et al. (2018), where the combined
datasets of sequence capture and EUChip60K did not improve
the accuracy of the model.

Growth traits, such as diameter at breast height, are likely to be
related to fitness and are controlled by a large number of genes
(Falconer and Mackay, 1996) with a large interaction with the
environment therefore expressing a low heritability (Nunes et al.,
2016). Diameter at breast height DBH showed low to moderate h2,
consistent with reports in other eucalypts with values between
0.11 and 0.41 (Gallo et al., 2018; Cappa et al., 2019; Marco de
Lima et al., 2019; Jurcic et al., 2021). Chemical traits, on the other
hand, are often related to specific biosynthesis pathway, likely
controlled by fewer loci, less influenced by the environment with
higher heritability (Gion et al., 2011). The heritability estimated
from the pedigrees for growth and wood quality traits were
moderate to high, with LESI20 and TL20 showing higher values
than most wood quality traits estimated from NIR analysis or
growth, in agreement with other evaluations in Eucalyptus
(Resende et al., 2017; Tan et al., 2017; Cappa et al., 2019; Marco
de Lima et al., 2019), and E. dunnii (Jurcic et al., 2021).

Heritability for wood density, S/G ratio and extractive
content in the E. dunnii population were generally estimated
in the same range as in previous studies of other Eucalyptus
species (Stackpole et al., 2011; Makouanzi et al., 2017; Resende
et al., 2017; Tan et al., 2017; Varghese et al., 2017; Gallo et al.,
2018; Marco de Lima et al., 2019; Cappa et al., 2019; Suontama
et al., 2019; Paludeto etal., 2021). For E. dunnii, Gallo et al. (2018)
observed high broad-sense individual heritability estimates
(0.64) for Klason lignin. NIR estimates of KL yielded
moderate to high narrow heritability values in half-sib
progeny of E. camaldulensis (0.21), E. globulus (0.27) and E.
urophylla (0.76) (Stackpole et al., 2011; Hein et al., 2012;
Varghese et al., 2017). Similar results were found for E. dunnii
in this paper, where narrow h2 showed high values (KL: 0.669 and
TL: 0.726), which are also in the range of the literature (de Moraes
et al., 2018; Cappa et al., 2019; Marco de Lima et al., 2019). These
results suggest that this trait has a high level of genetic control
with a better possibility of obtaining significant genetic gains.
This is also evidenced by the highest PAs obtained by genomic
selection in this study. A positive correlation between heritability
and predictive ability was observed in E. dunnii regardless of the
genotyping data used. Furthermore, this correlation has already
been demonstrated by Grattapaglia and Resende (2010) by means
of simulations. This trend has also been observed for Eucalyptus
(de Moraes et al., 2018), pine (Resende et al., 2012), animals
(Hayes et al., 2014) and crops (Poland et al., 2012; Crossa
et al., 2013).

In summary, when comparing the ddRADseq and EUChip60K
methodologies, we observed differences in the percentage of missing
data, genome-wide marker coverage, minor allele frequency ratios
and in the estimation of genetic diversity parameters. Furthermore,
no major differences were observed in the estimation of genetic
structure and linkage disequilibrium.

Regarding their performance in GS, the inclusion of any of the
three genomic data sets in the prediction models increases the
predictive ability of the estimates compared to traditional
methods. This trend was observed for most of the traits
evaluated that showed significant values (six out of ten), all of
them being wood quality traits. This indicates an advantage of
using genomic data for selection. When comparing the
ddRADseq and EUChip60K datasets, the EUChip60K yielded
higher predictive abilities in most cases, although ddRADseq
provided slightly higher predictions for some traits.

Both genotyping methods, ddRADseq and EUChip60K, are
generally comparable for diversity analysis and genomic
prediction, demonstrating the usefulness of the former provided
that it undergoes rigorous SNP filtering. The results of this study
provide a foundation for future whole-genome studies using
ddRADseq in non-model forest species for which SNP arrays
have not been developed.
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