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Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor
prognosis and limited treatment options. Although immune checkpoint inhibitors
(ICIs) have been proven to improve outcomes in TNBC patients, the potential
mechanisms and markers that determine the therapeutic response to ICIs
remains uncertain. Revealing the relationship and interaction between cancer
cells and tumormicroenvironment (TME) could be helpful in predicting treatment
efficacy and developing novel therapeutic agents. By analyzing single-cell RNA
sequencing dataset, we comprehensively profiled cell types and subpopulations
as well as identified their signatures in the TME of TNBC. We also proposed a
method for quantitatively assessment of the TME immune profile and provided a
framework for identifying cancer cell-intrinsic features associated with TME
through integrated analysis. Using integrative analyses, RARRES1 was identified
as a TME-associated gene, whose expression was positively correlated with
prognosis and response to ICIs in TNBC. In conclusion, this study
characterized the heterogeneity of cellular components in TME of TNBC
patients, and brought new insights into the relationship between cancer cells
and TME. In addition, RARRES1was identified as a potential predictor of prognosis
and response to ICIs in TNBC.
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1 Introduction

Worldwide, female breast cancer is the most common
malignancy and accounts for the highest mortality rate in woman
among cancers (Sung et al., 2021). Triple-negative breast cancer
(TNBC), which is a subtype of breast cancer with poor prognosis
and limited treatment options, accounts for about 15%–20% of all
breast cancers (Cancer Genome Atlas Network, 2012).
Characterized by the lack of estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor receptor 2
(HER2) expression, TNBC has limited therapeutic options
(Bianchini et al., 2022).

Whether in localized or advanced stage, chemotherapy is
currently the main first-line treatment option for TNBC.
However, the prognosis for triple-negative breast cancer is the
worst among all major subtypes of breast cancer. Immune
checkpoint inhibitors (ICIs) have made important breakthroughs
in the treatment of a variety of solid tumors, including TNBC
(Bianchini et al., 2022). However, only a subset of TNBC patients
can benefit from treatment with ICIs. Therefore, it is a major issue to
identify the potential mechanisms and markers that determine the
therapeutic response to ICIs.

The tumor microenvironment (TME) is a complex ecosystem
that includes multiple cell types such as cancer cells, immune cells,
stromal cells, vascular cells, surrounded by the extracellular matrix
(de Visser and Joyce, 2023). Various types of cells in the TME have
important roles in tumorigenesis, progression, and response to
treatment, which can be either tumor-suppressive or tumor-
promotive. It has been demonstrated that the function of cells in
TME can be regulated by the intrinsic features of cancer cells
(Wellenstein and de Visser, 2018). Thus, revealing the
relationship and interaction between cancer cells and TME could
be helpful in predicting treatment efficacy and developing novel
therapeutic agents.

Recent developments in single-cell RNA sequencing (scRNA-
seq) have made it possible to analyze the heterogeneity, functional
status, interactions, and evolving trajectories of cells in the TME at
single-cell resolution (Bassez et al., 2021; Huang and Zhang, 2021b;
Wu et al., 2021; Yan et al., 2021; Zhao et al., 2022). Several studies
have revealed the heterogeneity of immune cells, especially T cells
and Myeloid cells, in TNBC, based on single-cell sequencing. For
example, CXCL13+ tumor reactive T cells were the only
subpopulation that associated with favorable response to ICIs
(Zhang et al., 2021). In addition, high level of CXCL9+ tumor-
associated macrophages (TAMs) was associated with favorable
prognosis, implying that this subpopulation of macrophage may
activate anti-tumor immune responses (Bill et al., 2023). In
contrast, SPP1+ or TREM2+ TAMs play an important role in
the immune escape of the tumor cells (Nalio Ramos et al., 2022; Bill
et al., 2023). Herein, we comprehensively profiled cell types and
subpopulations as well as identified their signatures in the TME of
TNBC based on scRNA-seq data. We also proposed a method for
quantitatively assessment of the TME immune profile and
provided a framework for identifying cancer cell-intrinsic
features associated with TME through integrated analysis. In
addition, we characterized RARRES1 as a predictor of prognosis
and response to ICIs in TNBC (Figure 1). These results bring new
insights into the relationship between cancer cells and TME and

are expected to provide groundwork for the development of
biomarkers and new therapies for TNBC.

2 Materials and methods

2.1 Data source

Four independent published breast cancer cohorts were
included in this study. Cohort 1 was obtained from the
GSE176078 scRNA-seq dataset from the Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/),
containing 11 ER+, 5HER2+ and 10 TNBC cases (Wu et al.,
2021). Cohort 2 consisted of 141 patients with primary TNBC in
the Cancer Genome Atlas (TCGA) database who were profiled using
bulk RNA-seq (Hutter and Zenklusen, 2018). Cohort 3 is the
Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) cohort of 1980 breast cancer patients, including
320 triple-negative breast cancer patients, with mRNA Expression
matrix profiled using Illumina HT-12 v3 microarray (Curtis et al.,
2012). The TCGA and METABRIC datasets were downloaded from
cBioPortal database (https://www.cbioportal.org/) (Cerami et al.,
2012). Cohort 4 was a scRNA-seq dataset from the BioKey study
(http://biokey.lambrechtslab.org), in which 3 ER+, 1 HER2+, and
6 TNBC patients received neoadjuvant chemotherapy followed by
pembrolizumab before surgery (Bassez et al., 2021). In all cohorts
described above, data of TNBC patients were divided for analysis.

2.2 Quality control, integration,
dimensionality reduction, and clustering of
scRNA-seq data

The Seurat package (version 4.4.0) in R software (https://www.r-
project.org/, version 4.2.3) was used for analyses of scRNA-seq data
(Hao et al., 2021). After import into the R software, scRNA-seq data
was split by sample. Cells with less than 200 genes, more than
7000 genes, or more than 15% mitochondrial gene expression were
removed. Normalized data of the remaining cells was integrated
with “FindIntegrationAnchors” and “IntegrateData” function using
default parameters. Subsequently, linear dimensional reduction was
performed on scaled data using principal component analysis
(PCA). Cells were clustered with the first 35 principal
components and a resolution of 0.8. For re-clustering immune
cells, the first 20 and 15 principal components were used for T &
NK cells, andmyeloid cells, respectively, with a resolution of 0.9. The
uniform manifold approximation and projection (UMAP) method
was used to visualize all data sets.

2.3 Annotation of cell clusters and
identification of signature genes

We used the “FindAllMarkers” function to select differentially
expressed genes (DEGs). The markers of cell types and clusters for
annotation were collected from multiple published data and were
cross-referenced with DEGs of each cluster. To determine the
signature genes for each cell type and cluster, we first selected
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the top 15 DEGs and then removed some genes from them that were
repeated in multiple clusters according to the following principles.
Top 10 DEGs of T cells and myeloid cells were defined as general T
genes and general myeloid genes. For clusters in T cells, general T
genes that appeared in both Treg and other cell clusters were
removed. For tumor-associated macrophages (TAMs) clusters,
general myeloid genes that occurred in more than two clusters
were excluded. For three cDC clusters, genes that appeared in all
3 clusters were deleted.

2.4 TME score analysis

Enrichment score (ES) of each cell type or cluster for each
sample was calculated with the single-sample gene set enrichment
analysis (ssGSEA) method implemented in the GSVA (version
1.44.5) package based on signature genes selected above (Barbie
et al., 2009). We then developed a TAM score, a T score and a
TME-hot score based on the ES. The TAM score measures the
ratio of TAM_CXCL9 score and TAM_SPP1/TREM2 score. The
T score calculates the sum of CD8_Ttr_CXCL13 score, CD8_
Teff_GZMB score, and Tact_IFI6 score. While the TME-hot is
defined as the sum of the TAM score, the T score, the ES of NK
cells, and the ES of cDC1 cluster. The subpopulations and
signatures used to calculate the TME-hot score was shown in
Supplementary Table S3.

2.5 Statistical analysis

R software (version 4.4.0) was employed for all of the statistical
analyses and visualization. The prognostic value of variables was
analyzed by using Kaplan-Meier survival curve and Cox regression
analysis in TNBC cohorts. The log-rank test was used to determine
the significance of different survival curves. Linear correlations

between continuous variables were analyzed with Pearson
correlation coefficient.

3 Results

3.1 Cellular composition of TME in TNBC

To elucidate the cellular composition of the TME in TNBC, we
acquired and reanalyzed a scRNA-seq dataset with 10 TNBC
samples. After quality control, data from 40834 high-quality cells
were retained for subsequent analyses. Data from individual samples
were integrated and clustered with the canonical correlation analysis
and UMAP algorithm (Figure 2A). According to canonical lineage
marker, 9 major cell types were annotated (Figures 2B, C), including
epithelial cells (EPCAM), T cells (PTPRC, CD3D, CD3E), natural
killer (NK) cells (NKG7, GNLY, KLRD1), B cells (MS4A1, CD79A),
plasma cells (JCHAIN,CD79A), myeloid cells (LYZ, CD68),
mesenchymal cell (COL1A1, ACTA2), endothelial cells
(PECAM1), and cycling cells (MKI67, CDC20, TOP2A).
Subsequently, cancer cells were distinguished from normal
epithelial cells according to the copy number variant estimated
by inferCNV (Figure 2B, Supplementary Figure S1). Proportion
of cell types in each sample was shown in Figure 2D.

We further inspected the cellular heterogeneity in the immune
microenvironment of TNBC through re-clustering T cells, NK cells,
and Myeloid cells. In T cells and NK cells, 12 clusters were identified
(Figures 3A, B), including two tumor-reactive T (Ttr) cell cluster (c5:
CD4_Ttr_CXCL13 and c6:CD8_Ttr_CXCL13) with high expression
of CXCL13 and PDCD1; one regulatory T (Treg) cell cluster (c4:
CD4_Trg_FOXP3) marked by FOXP3 and IL2RA; three clusters (c1:
Tn_LEF1, c9:Tact_IFI6, and c10:Tprf_MKI67) with both CD4+ and
CD8+ T cells comprising naive (Tn), activated (Tact), and
proliferative (Tprf) T cells; four classical CD4+ and CD8+ T cell
clusters (c2:CD4_Tcm_LMNA, c3:CD4_Tem_IL7R, c7:CD8_Tem_

FIGURE 1
The flowchart of the present study.
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GZMK, and c8:CD8_Teff_GZMB) comprising central memory
(Tcm), effector (Teff), and effector memory (Tem) T cells; and
two NK cell clusters (c11:NK_GNLY, c12:NK_FCGR3A). In
myeloid cells (Figures 3C, D), we identified three tumor-

associated macrophages (TAMs) clusters (c0:TAM_SPP1/TREM2,
c1:TAM_FOLR2, c2:TAM_CXCL9) according to the expression of
SPP1, TREM2, FOLR2, and CXCL9; monocyte (c3:Mono) marked by
FCN1 and IL1B expression; plasmacytoid dendritic cells (pDC) with

FIGURE 2
Cellular composition of TME in TNBC. (A)UMAP visualization of 40834 cells integrated across 10 TNBC. (B)UMAP visualization of major cell types in
TNBC. (C) Relative proportions of cell types in each sample. (D) Log-normalized expressions of selected marker genes in major cell types.
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high expression of LILR44 and TCF4; three conventional dendritic
cells (cDCs) characterized by high expression of either CLEC9A (c5:
cDC1), CD1C (c6:cDC2), or LAMP3 (c7:cDC3); and a MKI67 high
cycling cluster (c9:Cycling myeloid).

3.2 Identification of TME-associated cancer
cell-intrinsic genes

To quantitatively evaluate the TME immune profile of
individual TNBC samples, we obtained signature gene sets
(Supplementary Table S1) of each cell type or cell cluster by
differential gene analysis, which can be used for ssGSEA. Firstly,
we analyzed the top 15 DEGs as signature genes for each cell type

and cluster. Then, genes co-existing in multiple cell clusters were
removed (Supplementary Table S2) according to the following
criteria. For signature genes of clusters in T cells, general T genes
that appeared in both Treg and other cell clusters were removed. For
signature genes of TAM clusters, general myeloid genes that
occurred in more than two clusters were excluded. For signature
genes of three cDC clusters, genes that appeared in all 3 clusters
were deleted.

Subsequently, ES of each cell type and cluster for each TNBC
sample in TCGA cohort was calculated using ssGSEA method. We
assessed the TME-hot score, T score, and TAM score for each TNBC
sample (Figure 4A; Supplementary Table S3). By investigating the
correlation between the TME-hot score and the top 30 DEGs of
cancer cells, six TME-associated genes were picked out (Figures 4A,

FIGURE 3
Landscape of immune cells in TNBC. (A) Re-clustering T/NK cells into 12 clusters. (B) Average expression of canonical markers across T/NK cell
clusters. (C) Re-clustering myeloid cells into 9 clusters. (D) Log-normalized expressions of selected marker genes in myeloid cell clusters.
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FIGURE 4
Identification of TME-associated cancer cell-intrinsic genes. (A) The Pearson correlation between the top 30 genes in cancer cells and TME-hot
score. ES = enrichment score, * = 0.01 < p < 0.05, ** = 0.001 < p < 0.01, *** = p < 0.001. (B) Three intersecting genes between TME-related genes and
survival-related genes in Venn diagram. (C) Forest plot showing the 12 cancer cell-intrinsic genes significantly associated with overall survival using
univariate Cox regression in TCGA cohort. (D) Overall survival and progression-free survival of TNBC patients with low or high expression of
RARRES1 in TCGA cohort. (E) The correlation between RARRES1 expression and TME-hot score, TAM score, and T score, respectively. ES =
enrichment score.
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B). Three genes were then identified as being associated with survival
by using univariate Cox regression analyses (Figures 4B, C),
including RARRES1, S100A8, and S100A9.

We then focused on the role of RARRES1 in TNBC, because
S100A8 and S100A9 were positively correlated with TME-hot score
but negatively correlated with overall survival, which was
contradictory. High RARRES1 expression is associated with not
only better overall survival but also better progression-free survival
in TCGA TNBC patients (Figure 4D). Furthermore, correlation
analysis demonstrated that high RARRES1 expression was
associated with not only better TME-hot score, but also better
TAM score and T score (Figures 4A, E). In summary, high
RARRES1 expression was associated with “hot” TME and good
prognosis in TCGA cohort.

3.3 RARRES1 is a predictor of prognosis and
immune response in TNBC

The predictive role of RARRES1 for clinical outcomes in TNBC
was further validated in the METABRIC cohort with 320 TNBC

patients. Kaplan–Meier survival analysis suggested that patients
with high RARRES1 expression had significantly better overall
survival (p = 0.0066) than those with low RARRES1 expression
(Figure 5A). Multivariate Cox regression revealed that the RARRES1
expression was an independent prognostic indicator, with a hazard
ratio (HR) of 0.66 and 0.62 in the univariate and multifactorial
analyses, respectively (p < 0.001) (Figure 5B). In addition,
RARRES1 expression was not related to tumor stage of TNBC
(Supplementary Figure S2).

ICIs have made important breakthroughs in the treatment of a
variety of solid tumors, including TNBC. However, only a subset of
TNBC patients can benefit from treatment with ICIs. Therefore, it is
a major issue to identify the potential mechanisms and markers that
determine the therapeutic response to ICIs. Therefore, to clarify
whether RARRES1 is associated with response to immunotherapy,
we investigated pretreatment RARRES1 levels in the scRNA-seq data
set of the BioKey cohort (NCT03197389), in which patients with
TNBC received neoadjuvant chemotherapy followed by
pembrolizumab before surgery. As expected, RSRRES1 was highly
expressed only in cancer cells (Figures 5C, D) and significantly
enriched in patients with T cells clonotype expansion (Figure 5E),

FIGURE 5
RARRES1 is a predictor of prognosis and immune response in TNBC. (A) Kaplan–Meier curves showing the overall survival of TNBC patients with low
or high expression of RARRES1 in METABRIC cohort. (B) Multivariate Cox regression of RARRES1 expression and other clinical prognostic parameters in
METABRIC cohort. (C) UMAP visualization of cells from 6 pre-treatment TNBC patients in BioKey study. (D) Log-normalized expressions of RARRES1 in
major cell types. (E) RARRES1 expression in cancer cells between patients with (E) or without (NE) T cell clonotype expansion. *** = p < 0.001.
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which represents a better immune response. Overall, the above
results indicated RARRES1 as a potential predictor of prognosis
and treatment response to ICIs in TNBC.

3.4 RARRES1 is a TNBC-specific predictor of
prognosis and immune response

We further explored the role of RARRES1 in pan-cancer.
Kaplan–Meier survival analysis indicated that high RARRES1
expression was also a protective factor for overall survival in
patients with luminal breast cancer (Figure 6A). However, it was

not related to overall survival in patients with HER2-positive breast
cancer (Figure 6B). Notably, RARRES1 expression level was
significantly different between subtypes of breast cancer
(Figure 6C). Specifically, RARRES1 level was significantly higher in
TNBC than in Luminal orHER2-positive breast cancer, and it was also
significantly higher in HER2-positive breast cancer than in luminal
breast cancer (Figure 6C). The correlation between RARRES1
expression and overall survival was subsequently evaluated in
26 other cancer types based on the TCGA database. Univariate
Cox regression suggested that high RARRES1 level had a protective
role in diffuse large B-cell lymphoma (DLBC, p = 0.006),
mesothelioma (MESO, p = 0.005), skin cutaneous melanoma

FIGURE 6
RARRES1 is a TNBC-specific predictor of prognosis. (A) Kaplan–Meier curves showing that high RARRES1 expression is a protective factor for overall
survival in patients with luminal breast cancer in the METABRIC cohort. (B) RARRES1 expression is not associated with overall survival in patients with
HER2+ breast cancer in the METABRIC Cohort. (C) RARRES 1 expression in patients with different subtype of breast cancer. (D) The correlation between
RARRES1 expression and overall survival in 26 other cancer types based on TCGA database.
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(SKCM, p = 0.002) and Sarcoma (SARC, p = 0.004), while it was
associated with shorter overall survival in ovarian cancer (OV, p =
0.008), pancreatic adenocarcinoma (PAAD, p = 0.027), uterine corpus

endometrial carcinoma (UCEC, p < 0.001), glioblastoma multiforme
(GBM, p < 0.001), kidney renal clear cell carcinoma (KIRC, p < 0.001),
and lower grade glioma (LGG, p < 0.001) (Figure 6D).

FIGURE 7
RARRES1 is not a predictor of immune response in melanoma and gastric cancer. (A) the distribution of RARRES1 expression level among different
immunotherapy response patient cohorts. (B) RARRES1 expression among patients with breast cancer, gastric cancer, and melanoma in TCGA cohort.
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We also investigated the predictive value of pre-treatment
RARRES1 level for the response to immunotherapy in four
published cohorts with other types of cancer. Regrettably,
RARRES1 level was not associated with immunotherapy
response in melanoma or gastric cancer (Figure 7A). This may
be attributed to the lower expression levels of RARRES1 in gastric
cancer and melanoma (Figure 7B). In conclusion, RARRES1 is a
TNBC-specific predictor whose role is heterogeneous across
cancer types.

4 Discussion

The tumor microenvironment consists of a variety of cellular
and non-cellular components that play a critical role in the
carcinogenesis and progression of cancer. [4] Characterizing the
interactions between TME and cancer cells can help predict the
efficacy of immunotherapy and develop novel anti-tumor
treatments. [4] Single-cell sequencing techniques provide
valuable tools for systematic profiling of cells in the TME
(Huang and Zhang, 2021a; Mei et al., 2023; Zhang et al.,
2023). Several studies have identified key cellular components
or subpopulations associated with immune response in breast
cancer. T cells and myeloid cells are the main infiltrating cell
components of the tumor microenvironment in breast cancer
(Wu et al., 2021). Pre-treatment CXCL13+ tumor-reactive
T cells were associated with a favorable response to ICIs in
TNBC, and were significantly expanded after treatment with
chemotherapy combined with ICIs (Zhang et al., 2021; Liu et al.,
2022). Overall macrophage infiltration is associated with
unfavorable response to immunotherapy and poor survival,
whereas there is heterogeneity in the role of distinct
subpopulations of TAMs in the regulation of the immune
response (Zhao et al., 2017). Conventional M1 and
M2 markers were co-expressed in macrophage subsets in
TNBC, and were not strongly associated with immune
response and prognosis (Azizi et al., 2018; Zhang et al.,
2021). In contrast, macrophage polarity as defined by CXCL9,
SPP1, and TREM2 had a remarkable correlation with the
response to ICIs (Nalio Ramos et al., 2022; Bill et al., 2023).
The ratio of CXCL9 and SPP1 was identified as a key determinant
in regulating TME in multiple cancers (Bill et al., 2023). In
responders to ICIs, lymphoid tissue inducer cells, follicular
B cells, and cDC1s increased synergistically after treatment,
which also suggests potentially roles for these cells in
immune response (Zhang et al., 2021).

In the present study, we systematically profiled the cellular
components of the TME in TNBC by scRNA-seq data, as well as
identified signature genes of pro-inflammatory immune cells,
including CXCL13+ tumor-reactive T cells, activated T cells,
effector T cells, CXCL9+ TAMs, NK cells, and cDC1. We also
established a method for quantitatively evaluation of the tumor
immune microenvironment, TME-hot score, which can be used
not only for TNBC but also for other types of cancer in the future.
The TME-hot score allows us to apply the characteristics of each
cell type depicted by scRNA-seq to bulk RNA-seq data, which
comes with advantages of low cost and large sample size.
Furthermore, by screening cancer cell-intrinsic genes

associated with TME-hot score, we identified RSRRES1 as a
predictor of prognosis and immune response in TNBC.
RARRES1 could also be a potential target for immunotherapy,
which requires further studies on the mechanism of its
interaction with TME in the future.

RARRES1, Retinoic acid receptor responder 1, was thought to be
a membrane protein which regulates metabolism, differentiation,
and apoptosis of cell lines in vitro (Oldridge et al., 2013; Maimouni
et al., 2019). Although RARRES1 has been identified as a tumor
suppressor gene in several studies, however, the relationship
between RARRES1 and prognosis is controversial. In prostate
cancer, epigenetic silencing of RARRES1 was shown to be
associated with poor prognosis (Kloth et al., 2012; Oldridge et al.,
2013). However, several studies suggested that high RARRES1
expression is significantly correlated with poorer clinical
outcomes in patients with clear cell renal cell carcinoma and
inflammatory breast cancers (Wang et al., 2013; Geng et al.,
2022). The present study demonstrated that RARRES1 level is
positively related with favorable prognosis and “hot” TME in two
large TNBC cohorts. A recent study revealed that RARRES1 exerts
an anti-tumor effect by promoting ICAM1 expression and inducing
M1 macrophage activation in renal cancer in vitro (Geng et al.,
2022). Therefore, the role of RARRES1 and its effect on TME needs
to be further confirmed by in vivo experiments.

There are several limitations in our study that should be noted.
Although the role of RARRES1 in prognosis and response to
immunotherapy was validated in two published cohorts, further
illumination through experimental and clinical studies remains
necessary. Comprehensive functional experiments would
contribute to understanding the detailed role of RARRES1 in the
interactions between tumor cells and TME. Meanwhile, the response
to ICIs of patients in the BioKey cohort was determined by T cell
expansion, so the predictive role of RARRES1 on immunotherapy
needs to be further confirmed in prospective clinical trials.
Furthermore, the characterization of TME in TNBC may be
limited by the small sample size of the scRNA-seq cohort.

In conclusion, we comprehensively resolved cell types and
subpopulations in the TME of TNBC by scRNA-seq. We also
proposed a method for quantitatively assessment of the TME
immune profile and provided a framework for identifying factors
associated with TME through integrated analysis. In addition, we
characterized high RSRRES1 expression as a predictor of favorable
prognosis and response to ICIs in TNBC. The role of RARRES1
requires to be further clarified in the future by functional
experiments and clinical trials.
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