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Genome-wide association studies (GWAS) have emerged as popular tools for
identifying genetic variants that are associated with complex diseases. Standard
analysis of a GWAS involves assessing the association between each variant and a
disease. However, this approach suffers from limited reproducibility and
difficulties in detecting multi-variant and pleiotropic effects. Although joint
analysis of multiple phenotypes for GWAS can identify and interpret
pleiotropic loci which are essential to understand pleiotropy in diseases and
complex traits, most of the multiple phenotype association tests are designed for
a single variant, resulting in much lower power, especially when their effect sizes
are small and only their cumulative effect is associated with multiple phenotypes.
To overcome these limitations, set-based multiple phenotype association tests
have been developed to enhance statistical power and facilitate the identification
and interpretation of pleiotropic regions. In this research, we propose a new
method, named Meta-TOW-S, which conducts joint association tests between
multiple phenotypes and a set of variants (such as variants in a gene) utilizing
GWAS summary statistics from different cohorts. Our approach applies the set-
based method that Tests for the effect of an Optimal Weighted combination of
variants in a gene (TOW) and accounts for sample size differences across GWAS
cohorts by employing the Cauchy combination method. Meta-TOW-S combines
the advantages of set-based tests and multi-phenotype association tests,
exhibiting computational efficiency and enabling analysis across multiple
phenotypes while accommodating overlapping samples from different GWAS
cohorts. To assess the performance of Meta-TOW-S, we develop a phenotype
simulator package that encompasses a comprehensive simulation scheme
capable of modeling multiple phenotypes and multiple variants, including
noise structures and diverse correlation patterns among phenotypes.
Simulation studies validate that Meta-TOW-S maintains a desirable Type I
error rate. Further simulation under different scenarios shows that Meta-
TOW-S can improve power compared with other existing meta-analysis
methods. When applied to four psychiatric disorders summary data, Meta-
TOW-S detects a greater number of significant genes.
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1 Introduction

Genome-wide association study (GWAS) is typically employed
to identify an individual genetic variant associated with a specific
phenotype. However, in cases where causal variants have weak
effects on the trait and it is challenging to detect these variants,
set-based tests are employed to identify the joint effects of multiple
variants (multi-variants) on a particular phenotype (Lin et al., 2022;
Huang et al., 2011; Liu et al., 2010; Neale and Sham, 2004).
Compared to single-variant approaches, set-based tests can help
to reduce the number of genome-wide association tests and are
effective when a causal variant is unobserved or multiple causal
variants are present (Lin et al., 2022). Consequently, set-based tests
have been applied in gene-set analyses of common variants and rare
variants (Liu et al., 2014). For instance, both weighted and
unweighted burden tests have a good performance when variants
in a gene affect a phenotype in the same direction (Morris and
Zeggini, 2010). The sequence kernel association test (SKAT) is a
score-based variance-component test that accommodates variants in
a gene with opposite effects on a phenotype (Wu et al., 2011).
However, the performance of the approaches mentioned above
depends on the weighting scheme, such as the MAF-based
weighting scheme that up-weights the contribution of rare
variants and down-weights that of common variants. This
weighting scheme may lead to a loss in power when common
variants in the region are associated with the phenotype (Dutta
et al., 2019b; Dutta et al., 2019a). The optimal strategy for grouping
or weighting genetic variants depends on the unknown genetic
architecture of each phenotype and each variant. TOW for
Testing the effect of an Optimal Weighted combination of
variants in a set is a powerful method to increase power by
assigning optimal weights to genetic variants (Sha et al., 2012).

Many complex phenotypes are influenced by multiple genetic
variants, each with a small effect size. Set-based tests that consider a
single phenotype might not capture the collective effects of these
variants, leading to reduced power. Alternatively, cross-phenotype
tests that aggregate associations in multiple phenotypes can
substantially improve power over single phenotype-based
methods (Dutta et al., 2019b; Dutta et al., 2019a). Meta-analysis
of multiple phenotypes, using GWAS summary statistics, is a
practical approach to increase power by increasing sample sizes
and aggregating variants with small effect sizes to detect more
significant pleiotropic genes (Cirulli et al., 2020; Panagiotou et al.,
2013). Detecting the pleiotropic genes can provide insights into
biological mechanisms influencing complex human phenotypes.
The challenge in meta-analysis is that there is no uniformly most
powerful (UMP) test. The power depends on signal directions and
between-phenotype correlation. To boost analysis power, several
methods have been proposed for GWAS multiple phenotype
analysis. For instance, Fisher’s method of combining independent
p-values has been extended to dependent univariate tests (Li et al.,
2014). However, the p-value approximations of these tests are not
accurate for small significance levels often required by GWASs. The
minimum of the p-values (MinP) of multiple phenotypes has been
proposed as a testing statistic (Conneely and Boehnke, 2007). And
this test is powerful when a gene affects only a very small number of
multiple phenotypes, but is less powerful in the presence of denser
signals (Liu and Lin, 2018). The aggregated Cauchy association test

(ACAT) is a flexible and computationally efficient p-value
combination method that boosts power under various genetic
architectures (Liu and Xie, 2019; Liu et al., 2019). Thus, in this
article, we applied this approach to combine p-values of set-based
tests from multiple cohort studies. Most importantly, the Cauchy
combination is an extremely fast omnibus testing procedure that
performs multiple testing adjustments analytically and applies to the
combination of any tests (Li et al., 2023; Li et al., 2022; Li et al., 2020).

Meta-analysis is a promising approach to detecting a series of
gene-phenotype associations that would have remained undetected
by a participating cohort alone. In addition, a meta-analysis based
on GWAS summary statistics simplifies data sharing, keeping
sensitive individual data at the cohort level and sharing only
non-sensitive summary data (Lin et al., 2022). For instance,
Meta-MultiSKAT performs a variance component test and uses
summary statistics to test for association between multiple
continuous phenotypes and variants in a region. However, the
p-value calculation of Meta-MultiSKAT relies on the normality
assumption of the score vector and this assumption may be
violated in the meta-analysis (Dutta et al., 2019b; Dutta et al.,
2019a). MetaUSAT is a novel unified association test of multiple
traits with only a single genetic variant, and the test statistic is
dominated by a predefined parameter weight (Ray and Boehnke,
2018). In the cross meta-analysis, the overlapping subjects can
induce a correlation between the summary statistics and inflate
the false discovery rate of meta-analyses. Method FOLD is proposed
to account for overlapping subjects at the summary statistics level
using a split prior which categorizes subjects based on their
contributions to the final statistic (Kim et al., 2017). However, it
is designed for qualitative phenotypes and is difficult to obtain
splitting prior if the numbers of cases and controls in any of the
GWAS cohorts are missing. Here we propose a new approach, Meta-
TOW-S, which conducts joint association tests between multiple
phenotypes and genetic variants within a gene, utilizing GWAS
summary statistics from diverse GWAS. Our approach applies set-
based tests using an optimal weighted combination of variants and
accounts for sample size differences across different GWAS by
employing the Cauchy combination method. Meta-TOW-S
combines the advantages of set-based tests and multi-phenotype
modeling, exhibiting computational efficiency and enabling analysis
across multiple phenotypes while accommodating overlapping
samples from different cohorts.

To evaluate the performance of Meta-TOW-S, we need to mimic
GWAS summary data from different cohorts. Thus, we also develop
a phenotype simulator package that encompasses a comprehensive
simulation scheme capable of modeling multiple phenotypes with
multiple underlying genetic loci, intricate noise structures, and
diverse correlation patterns among the phenotypes. The R
package for the phenotype simulator is available on GitHub
(https://github.com/Julia-lirong/PheGen). Furthermore, we
evaluate the performance of our method using simulation studies
and compare the power of our method with the power of three
existing methods which integrate Burden (Morris and Zeggini,
2010), SKAT (Wu et al., 2011), and VEGAS (Liu et al., 2010)
with Cauchy combination (Liu and Xie, 2019) to detect
pleiotropic effects. Our simulation studies validate that Meta-
TOW-S maintains a desirable Type I error rate and enhances
power across various simulation scenarios compared with other
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TABLE 1 Type I error estimates of the four tests. Each entry represents the Type I error rate estimated by the proportions of p-values less than α with 108

simulations. The phenotypic correlation between any pair of phenotypes is set to be either ρ � 0.5 or ρ � 1. The sample sizes of the three cohorts are
N1 : N2 : N3 � 1000 : 1000 : 1000 and N1 : N2 : N3 � 2000 : 1000 : 500.

Correlation
between
phenotypes

Sample size in
each cohort

Number of
overlapped
samples

Significance
level

Meta-
TOW-S

Meta-
Vegas

Meta-
SKAT

Meta-
burden

0.5 1,000:1,000:1,000 500 1.00E-04 1.03E-04 9.21E-05 8.81E-05 1.02E-04

1.00E-05 9.66E-06 9.53E-06 7.88E-06 1.03E-05

2.5E-06 2.27E-06 2.74E-06 2.21E-06 2.33E-06

0.5 2,000:1,000:500 500 1.00E-04 9.94E-05 9.15E-05 9.04E-05 9.80E-05

1.00E-05 9.45E-06 8.63E-06 8.47E-06 9.92E-06

2.5E-06 3.05E-06 2.42E-06 2.32E-06 2.67E-06

1 1,000:1,000:1,000 500 1.00E-04 1.11E-04 9.09E-05 8.72E-05 1.00E-04

1.00E-05 9.82E-06 8.31E-06 7.69E-06 1.02E-05

2.5E-06 2.40E-06 2.23E-06 1.74E-06 2.64E-06

1 2,000:1,000:500 500 1.00E-04 8.97E-05 9.10E-05 8.79E-05 1.02E-04

1.00E-05 8.17E-06 8.36E-06 7.92E-06 1.02E-05

2.5E-06 1.93E-06 2.45E-06 1.93E-06 2.61E-06

FIGURE 1
Power comparison of Meta-TOW-S, Meta-Vegas, Meta-SKAT, and Meta-Burden with single phenotype-based set-level tests at the significance
level α � 2.5 × 10−6. Three phenotypes are generated from different cohorts with different sample sizes 1000, 500, and 100, respectively. The heritability
for each phenotype is 0.01. The overlapping individuals in all cohorts were 50. Four simulated scenarios are created: in scenario (A), the phenotype
correlation between any pair of phenotypes is set at 0.1; in scenario (B), it is raised to 0.2; Scenario (C) features a phenotype correlation of 0.5; and in
scenario (D), the phenotype correlation is set at 1.
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existing meta-analysis methods. We also applyMeta-TOW-S to four
psychiatric disorders summary data which are available from the
Psychiatric Genomics Consortium (PGC) (Sullivan et al., 2018). The
real data analyses demonstrate that Meta-TOW-S outperforms
other comparison methods by detecting a greater number of
significant genes.

2 Materials and methods

Consider K phenotypes from K GWAS cohorts with sample

sizes n1, n2, . . . , nK that are subject toN � ∑K
k�1

nk. For the kth cohort,

suppose that the GWAS summary statistics Sk � (Z1
k, Z

2
k, . . . , Z

M
k )T

are the Z-scores of M genetic variants in a genomic region. We
assume all cohorts share the same genetic variants in the specific
region.Ns is the number of overlapping subjects among all cohorts,
where Ns ≤ min n1, n2, . . . , nK{ }.

2.1 Meta-TOW-S

For the kth cohort, we suppose that Gk is a nk × M matrix of
genotypes in the interested genomic region (gene or pathway), and
yk is a nk × 1 vector of phenotypes (either a quantitative or

qualitative phenotype). In TOW (Sha et al., 2012), the
generalized linear regression model with the fixed effect is used
to link the phenotype and genotypes. The statistic model is defined
as g(E(yk|Gk)) � βk0 + Gkwkβk, where wk is the vector of weights
for theM genetic variants; wk � (wk1, . . . , wkj, . . . , wkM)T, and wkj

is the weight assigned to the jth variant in the kth cohort. βk is the
effect size of the weighted combination of genetic variants Gkwk on
the phenotype yk. Under the null hypothesis of no association
between the variants in the region and the kth phenotype, we test
H0 : βk � 0. The score test statistic is given by

Tk � nk
wT
kG

T
kP0yky

T
kP0Gkwk

yT
k
P0ykw

T
k G

T

k
P0Gkwk

� uTkwkwT
k uk

wT
k
Σkwk

, where P0 � Ink − 1
nk
1nk1

T
nk

, uk �
GT

kP0yk/
���������
yTkP0yk/nk

√
, Σk � GT

kP0Gk, 1nk represents a nk × 1 vector

containing all ones, and Ink is a nk × nk identity matrix. Under
the null hypothesis, uk follows a multivariate normal distribution
with mean vector 0 and covariance matrix Σk. The TOW method
obtains the optimal weights wk* by maximizing the score
test statistic Tk using the Cauchy-Schwartz inequality.

Specifically, we have the form Tk � uTkwkwT
k uk

wT
k
Σkwk

� uTk E
−1/2E1/2wkwT

k E
−1/2E1/2uk

wT
k

Σkwk ≤ 〈E−12uk,E−12uk〉〈E
1
2wk,E

1
2wk〉

wT
k
Σkwk

� wT
k Ewk

wT
k
Σkwk

ukE−1uk � cukE−1uk, with

the equality when wk ∝ E−1uk , where E is any M × M positive
definite matrix, and c � wT

k Ewk

wT
k
Σkwk

is a constant. Based on Yan’s work
(Yan, 2022), Tk � cukE−1uk is a quadric term with the asymptotical
distribution of weighted sum of Chi-squares. We assume Σk is full

FIGURE 2
Power comparison of meta-analysis with different numbers of cohorts. 3, 5, and 10 phenotypes from different cohorts are generated, and the
genetic heritability is fixed at 0.01 and is equally distributed among all causal variants in a region. All cohorts have the same sample size 200. The
overlapping sample size is 100 for all cohorts and the correlations between any pair of phenotypes in (A–D) are 0.1,0.2,0.5, and 1, respectively.
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rank and let E � Σk. Then the optimal weight is obtained with the
form wk* � Σk

−1uk. Using the optimal weights, the test statistic of

TOW is given by T(TOW)
k � uTk∑−1

k uk � nk
yTkP0GkΣ−1

k GT
kP0yk

yT
k
P0yk

. Under the

null hypothesis, T(TOW)
k asymptotically follows a Chi-square

distribution with a degree of freedom M, that is T(TOW)
k ~ χ2M

(Yan, 2022; Sha et al., 2012).
Inspired by the idea proposed in this project (Svishcheva et al.,

2019), Yan (2022) rewrite the test statistic T(TOW)
k using GWAS

summary statistics. For the kth cohort, the Z score of the M genetic
variants in a region can be written as

Sk � (Z1
k, . . . , Z

M
k )T � V−1

k GT
kP0yk������

yT
k
P0yk/nk

√ , where Vk is an M × M diagonal

matrix of the square roots of genotypic variances of the M variants.
We assume that under the null hypothesis, Sk follows the
multivariate normal distribution N(0,U), where U is an M × M
matrix of correlations between the genotypes of these variant and
U � V−1

k GT
kP0GkV−1

nk
. Then the test statistic of TOW based on individual

data can be written as T(TOW)
k � nk

yTkP0GkΣ−1
k GT

kP0yk
yT
k
P0yk

� STkU
−1Sk. This

test statistic is called TTOW−S(Sk) and TTOW−S(Sk) ~ χ2M′
asymptotically, where M′ is the number of variants left after
correlation pruning (Svishcheva et al., 2019). We can estimate U
using a reference sample of genotypes from the same population,
such as 1,000 Genome phase 3 if individual genotype data are
not available.

Consider K phenotypes from different GWAS cohorts, we
denote pk as the p-value of TTOW−S for the kth GWAS cohort,
where k � 1, . . . , K. Then to detect the association between genetic
variants in this region and multiple phenotypes, we define the

Cauchy combination test statistic as TC � ∑K
k�1

]k tan (0.5 − pk)π{ },
where the weight is defined as ]k � nk

N and TC has a standard Cauchy

distribution under the null (Liu and Xie, 2019). Here we assigned
more weight to a large GWAS cohort because a GWAS cohort with a
large sample size carries more information than a smaller GWAS
cohort (Zhu et al., 2015).

2.2 Comparison with other set-based
association tests

Versatile set-based association study (VEGAS): For a specific
region withM genetic variants in the kth GWAS summary study, the
test statistic of VEGAS is the sum of all squared Z-scores which is
TVegas(Sk) � STkSk (Liu et al., 2010). Under the null hypothesis,
TVegas(Sk) asymptotically follows a mixture of chi-square
distribution. To obtain the p-value of VEGAS, several methods
have been proposed, such as numerical inversion of the
characteristic function (Liu et al., 2009), Davies method (Davies,
1980), or Saddlepoint approximation (Kuonen, 1999).

FIGURE 3
Power comparison of meta-analysis in the presence of weighting and unweighting scheme in Cauchy combination. Three phenotypes from three
cohorts are generated. The sample sizes of these three cohorts are 2000, 500, and 100, respectively. The heritability is fixed at 0.01 and is equally
distributed among all causal variants in a region. The overlapping sample size is 10 among all cohorts and the correlations between any pair of phenotypes
in (A–D) are 0.1,0.2,0.5, and 1, respectively.
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SKAT and Burden: For the kth cohort, we consider the
generalized linear model with the random effect, we have
g(E(yk|Gk)) � βk0 + Gkβk, where βk is a vector of effect size of
the M variants which is assumed to follow a normal distribution
N(0, τ2kI) under the null hypothesis, where τ2k is the variance
component of the phenotype explained by the M variants. To
test the association between the M genetic variants in a region
and the phenotype, Burden and SKAT test the null hypothesis H0 :

τ2k � 0 against Ha : τ2k > 0 (Svishcheva et al., 2019). For the kth

GWAS cohort, the burden test statistic using GWAS summary
statistics can be written as QBT(Sk) � (STkW1M)2 , where W is a

M × M diagonal matrix with Wjj � 1/
����������������
MAFj(1 −MAFj)

√
, and

MAFj is the minor allele frequency for the jth variant (Lee et al.,
2013). Under the null hypothesis, QBT follows a scaled Chi-square
distribution with one degree of freedom. In SKAT, the test statistic

FIGURE 4
Power comparison of meta-analysis in the presence of the same sample size in each cohort but different overlapping individuals. The sample size of
each cohort is 500 and the heritability for each phenotype is 0.01. The overlapping sample sizes are 0 and 500, and the correlations between any pair of
phenotypes in (A–D) are 0.1,0.2,0.5, and 1, respectively.

FIGURE 5
Upset plot showing the number of overlapping detected genes between Meta-TOW-S, Meta-Vegas, Meta-SKAT, and Meta-Burden.
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based on GWAS summary statistic is defined as
QSKAT(Sk) � STkWWTSk, where W is a M × M diagonal matrix
of weights with Wjj � Beta(MAFj; a1, a2). The beta distribution
density function has pre-specified parameters a1, a2 and MAFj. To
obtain the p-value of Burden and SKAT, several methods have been
proposed, such as numerical inversion of the characteristic function
(Liu et al., 2009), Davies method (Davies, 1980), or Saddlepoint
approximation (Kuonen, 1999).

Let pk be the p-value of the kth cohort study for k � 1, . . . , K
based on the three comparison methods Vegas, Burden, and
SKAT. We use the same strategy to detect the association
between multiple phenotypes in different GWAS cohorts and
genetic variants in a region by employing the Cauchy
combination (Liu and Xie, 2019). And we designate these
three methods as Meta-Vegas, Meta-Burden, and Meta-SKAT,
respectively.

FIGURE 6
KEGG analysis is performed using the DOSE package. The significant genes are detected by Meta-TOW-S. The size of the circles represents the
number of differential genes in a pathway. GeneRatio is the ratio of the number of differentially expressed genes annotated in a pathway to the number of
all genes annotated in these pathways.

FIGURE 7
Disease enrichment analysis is performed using DisGeNET. The significant genes are detected by Meta-TOW-S.
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3 Simulation studies

3.1 Phenotype simulator

Suppose we have K cohorts with sample sizes n1, n2, . . . , nK,
respectively. For the kth cohort, the phenotype is modeled by a linear
model yk � Gkβk + εk, where Gk are matrices of genotypes with
columns standardized to mean zero and variance 1, with dimension
nk × M. yk is a nk × 1 vector of standardized phenotypes with mean
zero and variance 1. βk is the vector of genotypes effect sizes in the
specific gene and εk is the vector of residuals representing
environmental effects and non-additive genetic effects for the kth

cohort. For each cohort, we assume that all genotype effect sizes are
drawn with equal variance for all causal variants in a gene (Lee et al.,
2014). Then for all K cohorts, we suppose that the matrix of effect
size (β1, β2, . . . , βK) has mean zero and covariance matrix

Var β1, β2, . . . , βK( )[ ] � 1
M

h21I ρg12I . . . ρg1KI
ρg12I
. . .
ρg1KI

h22I
. . .
ρg2K

I

. . .

. . .

. . .

ρg2KI
. . .
h2KI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, where ρgij

is the genetic covariance on two phenotypes i and j on
shared individuals, h2k is the heritability explained by the
variants in a region for the kth phenotype. The residuals
(ε1, ε2, . . . , εK)T has mean zero and covariance matrix

Var ε1, ε2, . . . , εK( )T[ ] �
1 − h21( )I ρe12I . . . ρe1KI

ρe12I
. . .
ρe1KI

1 − h22( )I
. . .
ρe2KI

. . .

. . .

. . .

ρe2KI
. . .

1 − h2K( )I
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where ρeij is the covariance of non-genetic effects on the ith and jth

phenotypes among shared individuals. Then, the phenotypic
correlation for cohort i and cohort j among the Ns overlapping
samples is ρij � ρgij + ρeij (Lemma). For these Ns overlapping
individuals, all cohorts share the same genotype data.

Next, to generate genotypes for individuals in a cohort, we employ
the calibration coalescentmodel (COSI) to generate 10,000 haplotypes for
a region of approximately 200 kbps,mimicking the LD structure found in
individuals of European ancestry (He et al., 2017). We randomly select
regions of 10 kbps in length, which encompass approximately 100 genetic
variants, and utilize the simulated haplotypes to create genotypes for the
variant sets. Among these genetic variants, we specifically designate 10%
as causal variants, comprising 60% rare variants and 40% common
variants, respectively. Subsequently, we generate the genetic component
(β1, β2, . . . , βK) andnon-genetic component (ε1, ε2, . . . , εK)T based on
the distribution described above. Specifically, we fix the phenotypic
correlation between each pair of phenotypes. The phenotype
correlation among the overlapping individuals is influenced by both
genetic and non-genetic covariance, as proven in Lemma in the
Supplementary Material. We allocate 80% of the phenotypic
correlation to genetic covariance and 20% to non-genetic covariance.
Finally, we generate K quantitative phenotypes in different cohorts using
the additive model yk � Gkβk + εk, k ∈ 1, 2, . . . ,K{ }.

3.2 Simulation

To set up a multi-cohort scenario, we generated individuals for
multiple cohorts with different sample sizes but the same

overlapping sample size for simplicity. To achieve a normally
distributed input for the association test between gene and
phenotype within each cohort, a rank-based inverse-normal
transformation to the residuals of each phenotype was
performed. In simulations, we access the performance of Meta-
TOW-S with compared methods Meta-Vegas, Meta-Burden, and
Meta-SKAT. We design different patterns of phenotypes by varying
the correlation of phenotypes, sample sizes, and
overlapping samples.

4 Results

4.1 Type I error rates

To evaluate the Type I error rates of Meta-TOW-S, we first
simulate 1, 000 regions, each encompassing approximately
100 genetic variants, reflecting the LD structure observed in
individuals of European ancestry. We then replicate 105 times to
generate the phenotypes under the null hypothesis of no genetic
contribution to any of the three traits, that is β � 0. Then we
simulate 108 datasets to estimate the Type I error rates at
nominal significance levels α � 2.5*10−6, 10−5, 10−4. We generate
three phenotypes with different sample sizes. In the first
situation, the sample sizes for the three phenotypes are equal,
with a ratio of 1000: 1000: 1000. In the second scenario, the
sample sizes are unequal, with a ratio of 2000: 1000: 500. For
simplicity, the number of overlapping individuals between any
two phenotypes is kept constant at 500. The phenotypic
correlation between any two phenotypes among the overlapping
individuals is set to be either ρ � 0.5 or ρ � 1. A correlation of
1 indicates simulation of mimicking one phenotype but form
different cohorts

For Type I error evaluations, we use the significance levels
α � 2.5*10−6, 10−5, 10−4. Table 1 summarizes the estimated Type I
error rates of the four tests based on different settings. We can see
from Table 1, that the Type I error rates of all tests are all within the
estimated 95% confidence intervals in most situations indicating
that the Type I error rates of the four tests are well controlled at the
nominal significance levels.

4.2 Power comparisons

We compare the empirical power of Meta-TOW-S with Meta-
Vegas, Meta-SKAT, and Meta-Burden. The power is defined as the
proportion of test statistics with p-values less than the nominal
significance level and we evaluate power at the nominal significance
level α � 2.5 × 10−6 after Bonferroni correction. For power
comparisons, we generate phenotypes under the alternative
hypothesis where the genetic effect is added correspondingly.
Under each simulation setting, we generate 10,000 datasets to
evaluate power at the nominal significance level α � 2.5 × 10−6.
For the overlapping individuals, the phenotypic correlation
between any pair of phenotypes across four scenarios:
0.1, 0.2, 0.5, and 1. A correlation of 1 indicates a simulation of
mimicking one phenotype but from different cohorts. The primary
simulations explore four distinct schemes. The first scheme
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compares the set-based association test for multiple phenotypes with
that for a single phenotype. The second scheme evaluates the set-
based association test for multiple phenotypes across varying
numbers of traits, which are K � 3, K � 5 and K � 10. The third
scheme tests the performance of a weighting scheme we designed
within the Cauchy combination. The final scheme evaluates the set-
based multiple phenotypes association test under different degrees
of sample overlap. For simplicity, we set the heritability for each
phenotype in the above scheme to be either h2k � 0.01 or h2k � 0.3 for
k � 1, . . . , K. The simulation results are depicted in Figures 1–4 for a
heritability of 0.01, while results for a heritability of 0.3 are presented
in the Supplementary Material.

We first compare the meta-analysis with single phenotype-based
set-level tests. It shows that the integration of different cohorts to
detect the genetic variants in a region associated with at least one
phenotype could boost power (Figure 1; Supplementary Figure S1).
Our proposed Meta-TOW-S has slightly better performance
compared with Meta-Vegas, and Meta-SKAT, and is better
performed than Meta-Burden since the Burden-based method
has poor performance if the effects of causal variants are in
different directions. We also found the increase in correlation
between pairs of phenotypes will boost power as well, indicating
that the integration of phenotypes will benefit to detect more
pleiotropic genes.

Next, we vary the number of cohorts where each cohort has
the same sample size 200 and genetic heritability h2 � 0.01.
Specifically, we create datasets with 3, 5, and 10 cohorts and
assess the effect of incorporating multiple cohorts in the meta-
analysis for the identification of pleiotropic genes. As illustrated
in Figure 2; Supplementary Figure S2, Meta-TOW-S outperforms
or performs equivalently well as the other three methods. It also
shows that the increase in the number of cohorts boosts the
power of all methods.

In Meta-TOW-S, Meta-Vegas, Meta-SKAT, and Meta-Burden,
more weight is assigned to a large study, and a small weight is
assigned to a small study in the Cauchy combination. We compare
those four methods with the unweighting scheme where the weight
is the same among all studies in the Cauchy combination. Figure 3;
Supplementary Figure S3 shows that the weighting scheme-based
meta-analysis has a higher power compared with an unweighting
scheme. Specifically, when the correlation between any pair of
phenotypes is low, the weighting scheme meta-analysis exhibits
significantly enhanced statistical power. Conversely, when the
correlation between any pair of phenotypes is high, there is only
a slight improvement in power. It indicates that the weighting
scheme has a slight improvement when the genetic effect
contributes to all three studies equivalently if the phenotype
correlation is 1, which represents homogeneity across cohorts for
the same phenotype.

Last, we consider the situation in which the sample sizes are the
same in each cohort but different proportions of overlapping
individuals are shared among all cohorts. As expected in
Figure 4; Supplementary Figure S4, Meta-TOW-S outperforms
the other three methods, and Meta-Vegas and Meta-SKAT have
comparable performance. It shows that the power is further
improved when there are larger overlapping samples between
studies if phenotypes are highly correlated, which could be
attributed to reduced heterogeneity across cohorts.

4.3 Real data analysis

We apply these four methods to GWAS summary statistics for
four psychiatric disorders available from the Psychiatric Genomics
Consortium (PGC) (Sullivan et al., 2018). These phenotypes are
attention-deficit/hyperactivity disorder (ADHD), autism spectrum
disorder (ASD), bipolar disorder (BD), and schizophrenia (SCZ)
(Zhang et al., 2021). The sample sizes for these four traits range from
46, 351 to 105, 318, with all individuals of European ancestry. We
utilize the LD structure data from the 1,000 Genome Project Phase
III European population as the reference in set-based multiple
phenotype association test. The details of these four GWAS
summary statistics are summarized in Supplementary Table S1.
The analysis of these four methods for the four psychiatric disorders
is summarized using the UpSet plot shown in Figure 5. We use the
gene-based GWAS significance level α � 2.5 × 10−6 in the analysis.
For Meta-Burden and Meta-SKAT, the weight in the gene-based
tests are defined in relation to the minor allele frequency (MAF) of
genetic varaints. Specifically, we use the default weight wj �
1/

����������������
MAFj(1 −MAFj)

√
for Meta-Burden and wj �

Beta(MAFj; a1, a2) for Meta-SKAT, where the beta distribution
density function has pre-specified parameters a1, a2, and MAFj of
the jth variant. As a result, there are 557 genes detected by Meta-
TOW-S, 517 genes detected by Meta-Vegas, 83 genes detected by
Meta-SKAT, and 62 genes detected by Meta-Burden. These results
indicate that Meta-TOW-S identifies more significant genes
compared to Meta-Vegas, Meta-SKAT, and Meta-Burden.

4.4 Enrichment analysis

We implement the Gene Set Enrichment Analysis (GSEA) to
analyze the significant genes identified by Meta-TOW-S that are
enriched toward the top list of genes that are associated with specific
biological pathways, processes, functions, or diseases (Subramanian
et al., 2005). Gene Ontology (GO) is a community-based
bioinformatics resource that employs ontologies to represent
biological knowledge and describes information about gene and
gene product information (Peng et al., 2017). Go is widely used to
infer functional information for gene products, such as gene
function enrichment, protein function prediction, and disease
association analysis. And Go contains three categories: cellular
component (CC), molecular function (MF: the biological function
of the gene), and biological process (BP: pathways or larger processes
that multiple gene products are involved in). KEGG (Kyoto
Encyclopedia of Genes and Genomes) is a database resource for
understanding high-level functions and utilities of the biological
system. KEGG is used to search for the pathways associated with the
identified genes. Detection of KEGG pathway database over-
representation against a universal Homo Sapien background is
assessed by hypergeometric tests (Solomon et al., 2022; Kanehisa
et al., 2016). DisGeNET is an integrative and comprehensive
resource of gene-disease associations from several public data
sources and the literature (Piñero et al., 2015; Yu et al., 2014). It
contains gene-disease associations and variant-gene-disease
associations. The disease enrichment analysis is used to assess
whether the genes associated with multiple phenotypes in meta-
analysis are overrepresented in specific gene sets. A Bonferroni
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corrected cutoff of 0.05 was used for the significance of the pathway
and disease. For genes annotation, we employed the org.Hs.e.g.,.db
package in R. This package offers an extensive set of annotations for
the human genome, including mappings between different gene
identifiers and detailed genomic features.

We use the 557 significant genes identified by Meta-TOW-S,
which are associated with four psychiatric disorders, for the
enrichment analysis. We perform enrichment analyses at two
different levels: pathways and diseases (Figures 6 and 7;
Supplementary Figure S5). The top 20 enriched KEGG pathways
are summarised in Figure 6 with results sorted from lowest to
highest p-values. Of the 280 KEGG pathways tested, 37 were
statistically significant after adjusting for multiple testing. The
top KEGG pathways predominantly belong to groups associated
with Human T-cell Leukemia virus 1 infection, Epstein-Barr virus
infection, Antigen processing and presentation, etc. In the disease
enrichment analysis, of the 5,496 disease tests, 455 had Bonferroni-
corrected enrichment p-values lower than 0.05. The implicated
genes are involved in Child Development Disorders Pervasive,
Myasthenia Gravis, Vitiligo, Sarcoidosis, etc. (Figure 7).

5 Discussion

Much research suggests that many genes are associated with
multiple correlated or even distinct phenotypes, and such
associations have been termed cross-phenotype associations,
which is relevant to pleiotropy in complex phenotypes (Li and
Zhu, 2017). We propose a new method, Meta-TOW-S, which
integrates association evidence of multiple phenotypes from
study-specific GWAS summary statistics and thus detects the
significant pleiotropic genes. This method Meta-TOW-S is
based on the set-based test which uses the weights that
maximize the score test statistic to increase power. To
combine the test statistics from multiple GWAS cohorts,
Meta-TOW-S uses the Cauchy combination by assigning
more weight to a large GWAS to account for more biological
information. In addition, Meta-TOW-S enables analysis across
multiple phenotypes by accommodating overlapping samples
from different cohorts.

To mimic real multiple comprehensive study-specific
phenotypes, we develop a phenotype simulator that
encompasses a simulation scheme capable of modeling
multiple phenotypes with multiple underlying genetic loci,
intricating noise structures, and different correlation patterns
among the phenotypes with overlapped samples across different
cohort studies. Our simulations show that the Type I error rates
of Meta-TOW-S are well maintained under different conditions
of phenotype correlation structures and overlapping samples and
are more powerful than the other three comparison methods
under most scenarios. We also find that the power of meta-
analysis is significantly increased compared to the single
phenotype set-based tests. A higher phenotype correlation,
larger overlapping samples across multiple cohort studies, and
more cohorts can increase power as well. We apply Meta-TOW-S
to the summary statistics of four psychiatric disorders provided
by the Psychiatric Genomics Consortium (PGC): attention-
deficit/hyperactivity disorder (ADHD), autism spectrum

disorder (ASD), bipolar disorder (BD), and schizophrenia
(SCZ). As a result, 557 significant cross-phenotype
associations are identified by Meta-TOW-S which is more
than the number of genes identified by the other three
methods. In the enrichment analysis, the gene sets of Child
Development Disorders Pervasive are more enriched for genes
associated with these four psychiatric disorders. In the KEGG
pathway analysis, the significant genes identified by Meta-TOW-
S showed notable enrichment in immune-related pathways rather
than neurological processes. However, it is important to
recognize that there is substantial evidence linking immune
system involvement to neurological disorders. For instance,
research has indicated that developmental disorders, such as
Autism Spectrum Disorders (ASDs), can involve significant
immune activity, including neuroinflammation, which plays a
crucial role in the pathophysiology of these conditions (Vargas
et al., 2005; Ashwood and Van de Water, 2004). Additionally,
studies have demonstrated that elevated levels of regulatory
T cells are associated with an increased risk of Attention-
Deficit/Hyperactivity Disorder (ADHD) (Çetin et al., 2022),
suggesting that immune dysregulation may contribute to the
manifestation of neurological symptoms in certain contexts.

Meta-TOW-S has multiple advantages for identifying cross-
phenotype associations. First of all, Meta-TOW-S can integrate
information from multiple cohort studies to increase power and
has the potential to detect more pleiotropic genes. Secondly, the
test statistic has a standard Cauchy distribution under the null
hypothesis and greatly reduces the computing time. Thirdly, this
method is based on GWAS summary statistics from different
cohort studies and GWAS summary statistics are more accessible
than individual-level phenotype and genotype data The last
point is that Meta-TOW-S gives more weight to the study
with a larger sample size. Meanwhile, the developed
phenotypes simulator can mimic complex structures in a
meta-analysis which can be applied in other cross-phenotype
analyses. However, Meta-TOW-S leverages information from
correlated phenotypes to enhance its statistical power.
Simulation results demonstrate that Meta-TOW-S surpasses
other methods in power performance when phenotypic
correlations are strong. However, when the correlation
between phenotypes is weak, Meta-TOW-S may not
outperform other methods, as it does not rely heavily on
borrowing information from other phenotypes in such scenarios.

Currently, the framework of Meta-TOW-S needs to estimate the
correlation matrix from a reference panel due to the unavailability of
individual genotype data. However, the choice of the reference panel
may influence the performance of Meta-TOW-S. The second
challenge is that we use a correlation pruning procedure to
ensure that the correlation matrix is fully ranked, which may
drop some correlated variants in a gene.

In summary, the Meta-TOW-S method is a very useful method
for detecting gene associations of multiple phenotypes from
different GWAS cohorts. Meta-TOW-S has robust power and
can handle different scenarios such as diverse phenotype
correlation, and intricating cohort studies. The computational
efficiency of Meta-TOW-S can also improve genetic discovery for
hundreds of phenotypes across multiple GWAS cohorts in
compliance with data privacy.
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