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Purpose: This study aims to assess the causal relationship between Obstructive
Sleep Apnea (OSA), dyslipidemia, and osteoporosis using Mendelian
Randomization (MR) techniques.

Methods: Utilizing a two-sample MR approach, the study examines the causal
relationship between dyslipidemia and osteoporosis. Multivariable MR analyses
were used to test the independence of the causal association of dyslipidemia with
OSA. Single nucleotide polymorphisms (SNPs) were selected as instrumental
variables based on genome-wide significance, independence, and linkage
disequilibrium criteria. The data were sourced from publicly available
Genome-Wide Association Studies (GWAS) of OSA (n = 375,657) from the
FinnGen Consortium, the Global Lipids Genetics Consortium of dyslipidemia
(n = 188,577) and the UK Biobank for osteoporosis (n = 456,348).

Results: The MR analysis identified a significant positive association between
genetically predicted OSA and triglyceride levels (OR: 1.15, 95% CI: 1.04–1.26, p =
0.006) and a negative correlationwith high-density lipoprotein cholesterol (HDL-
C) (OR: 0.84, 95% CI: 0.77–0.93, p = 0.0003). Conversely, no causal relationship
was found between dyslipidemia (total cholesterol, triglycerides, HDL-C, and
low-density lipoprotein cholesterol) and OSA or the relationship between OSA
and osteoporosis.

Conclusion: The study provides evidence of a causal relationship between OSA
and dyslipidemia, highlighting the need for targeted prevention andmanagement
strategies for OSA to address lipid abnormalities. The absence of a causal link with
osteoporosis and in the reverse direction emphasizes the need for further
research in this area.
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Introduction

According to conservative estimates, the prevalence of obstructive
sleep apnea (OSA) is 3% for women, 10% formen in the 30- to 49-year-
old age range, and 9% for women and 17% for men in the 50- to 70-
year-old age range (Peppard et al., 2013). The characteristic features of
OSA include episodic collapse of the upper airway dependent on the
sleep state (Gileles-Hillel et al., 2016). This leads to periodic decreases or
cessations in breathing, which can cause hypoxia, hypercapnia, or
arousal from sleep (Dempsey et al., 2010; Veasey and Rosen, 2019).
These derangements result in changes related to the heart and
metabolism, including dyslipidemia, osteoporosis, insulin resistance,
hypertension, and atherosclerosis, which eventually raise the risk of
cardiovascular morbidity and death (Barros and García-Río, 2019;
Mesarwi et al., 2019; Gleeson and McNicholas, 2022). Dyslipidaemia
is an independent risk factor for cardiovascular morbidity (Mach et al.,
2020). There exists some evidence that links OSA to altered lipid
profiles: patients with OSA frequently exhibit elevated
concentrations of triglycerides (TG), total cholesterol (TC), and low-
density lipoprotein cholesterol (LDL-C), along with a corresponding
decrease in high-density lipoprotein cholesterol (HDL-C) levels (Li
et al., 2007; Gündüz et al., 2018). Recent studies suggest a heightened
risk of osteoporosis in individuals diagnosed with OSA (Chen et al.,
2014; Daniel et al., 2022). OSA leads to chronic intermittent hypoxia,
which can disrupt bone remodeling by affecting the balance between
bone formation and resorption (Ananth and Schisterman, 2018). This
imbalance can result in decreased bone mineral density. Additionally,
the systemic inflammation associated withOSAmay contribute to bone
loss by promoting the activity of osteoclasts, the cells responsible for
bone resorption (Sekula et al., 2016).

However, the causal relationship between OSA, dyslipidemia,
and osteoporosis remains unknown. It is challenging to determine
the causative relationship between OSA, dyslipidemia, and
osteoporosis for the correlation seen in observational research
because of the possible confounding biases and reverse causation
present in these investigations (Ananth and Schisterman, 2018).

Utilizing genetic variants as instrumental variables for risk
factors, Mendelian randomization (MR) design assesses the
causal relationship between risk factors and disease (Sekula et al.,
2016). MR analysis can eliminate potential unmeasured
confounders and reverse causation, a significant limitation of
evidence from observational studies because the genetic variants
are assigned randomly at conception (Bowden and Holmes, 2019).
In this work, we usedMR techniques to assess the causal relationship
between OSA, dyslipidemia, and osteoporosis.

Methods

Study design and data sources

This study encompasses a comprehensive review of Supplementary
Material within the article.We employed a two-sampleMR approach to
investigate the causal relationship between OSA, dyslipidemia, and
osteoporosis (Figure 1). In our MR framework, genetic variations serve
as instrumental variables to ascertain if exposure significantly influences
disease development. This method offers robust causal inferences,
mitigating the impact of unmeasured confounders. Our MR design

adhered to three critical criteria for credible causal estimations: 1.
Instrumental variables must exhibit a substantial association with the
exposure; 2. The instrumental variables should be independent of
known confounders. The exposure is the sole pathway through
which the instrumental variables influence the outcomes; 3.
Genome-wide association studies (GWAS) have demonstrated
associations between Single nucleotide polymorphisms (SNPs) and
dyslipidemia. Only summary data were used in this article.
Appropriate ethical approval and patient informed consent were
obtained in the original studies. GWAS data for OSA were obtained
from the FinnGen Consortium (G6_SLEEPAPNO), comprising
38,998 cases and 336,659 controls. Genetic instruments for lipid
traits of 188,577 participants included serum triglycerides (TG),
serum total cholesterol (TC), serum low-density lipoprotein
cholesterol (LDL-C), and serum high-density lipoprotein cholesterol
(HDL-C) were sourced from the Global Lipids Genetics Consortium
(GLGC) (available at [http://www.lipidgenetics.org/]) (Willer et al.,
2013). GWAS data for osteoporosis were obtained from the UK
Biobank (n = 456,348) (Table 1).

Instrumental variable selection

OSA was diagnosed according to International Classification of
Diseases, 10th Revision (ICD-10) and Ninth Revision (ICD-9) codes
(ICD-10:G47.3, ICD-9:3472A), which is based on subjective
symptoms, clinical examination and sleep registration applying
apnea-hypopnea index ≥5/hour or respiratory event index ≥5/hour.
In this study, SNPs weremeticulously selected for each exposure factor
in accordance with the principal assumptions underpinning MR.
Initially, SNPs achieving genome-wide significance (p < 5 × 10̂−8)
were considered for inclusion. Subsequently, to identify independent
instrumental variables (IVs), we selected variants demonstrating the
lowest p-values, ensuring minimal linkage disequilibrium (LD) as
evidenced by an r̂2 threshold greater than 0.1, based on the European
1000 Genome reference panel. Finally, the robustness of these
instrumental variables was quantified using F-statistics (Burgess
et al., 2011), with an F-statistic value exceeding ten generally
deemed suitable for MR analysis.

Statistical analysis

In this investigation, for binary exposures, causal estimates were
articulated as odds ratios (ORs) with 95% confidence intervals (CIs) per

FIGURE 1
Mendelian randomization model of OSA, Dyslipidemia and
Osteoporosis. Abbreviation: OSA, obstructive sleep apnea.
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logarithmic odds increment in the genetically predisposed risk of the
exposures. Regarding continuous exposures, the causal estimate was
denoted as anOR accompanied by a 95%CI for each standard deviation
(SD) increase in exposure. MR analysis employed the primary analytic

approach of the random-effects inverse-variance weighted (IVW)
method. This was chosen to estimate the potential bidirectional
causal relationships between OSA and dyslipidemia, offering robust
causal estimations in scenarios devoid of directional pleiotropy.

TABLE 1 Details of the GWASs included in the Mendelian randomization.

Consortium Phenotype Participants Web source

Ncase ncontrl

FinnGen OSA 38,998 336,659 https://r9.finngen.fi/

Global Lipids Genetics Consortium Level of lipids 188,577 https://csg.sph.umich.edu/willer/public/lipids2013/

UK Biobank Osteoporosis 991 455,357 https://www.ebi.ac.uk/gwas/studies/GCST90044600

Abbreviation: OSA, obstructive sleep apnea.

TABLE 2 MR results for the relationship between OSA on level of lipids.

Exposures Outcomes No. of SNPs Method OR (95%CI) p Heterogeneity test Pleiotropy test

Cochran’s Q (I2) p p pintercept

OSA* TC# 22 IVW
MR Egger
Weighted median
Simple mode
Weighted mode

0.96 (0.89–1.04)
0.91 (0.59–1.41)
0.94 (0.87–1.02)
0.95 (0.83–1.09)
0.94 (0.86–1.03)

0.312
0.685
0.146
0.516
0.229

6.738 (25.79%)
6.625 (39.62%)

0.241
0.157

0.807

OSA* TG# 22 IVW 1.15 (1.04–1.26) 0.006 11.677 (57.18%) 0.039 0.085

MR Egger 1.71 (1.20–2.46) 0.041 5.095 (21.50%) 0.278

Weighted median 1.19 (1.09–1.29) 5.81e-05

Simple mode 1.14 (0.91–1.42) 0.305

Weighted mode 1.21 (1.11–1.32) 0.006

OSA* HDL# 22 IVW 0.84 (0.77–0.93) 0.0003 10.114 (50.56%) 0.072 0.151

MR Egger 0.60 (0.41–0.88) 0.060 5.665 (29.39%) 0.226

Weighted median 0.84 (0.78–0.92) 6.52e-05

Simple mode 0.88 (0.72–1.08) 0.271

Weighted mode 0.81 (0.74–0.88) 0.005

OSA* LDL# 22 IVW 1.01 (0.92–1.10) 0.883 7.915 (36.83%) 0.161 0.910

MR Egger 1.04 (0.64–1.69) 0.892 7.886 (49.28%) 0.096

Weighted median 1.00 (0.92–1.08) 0.946

Simple mode 0.92 (0.78–1.07) 0.330

Weighted mode 0.99 (0.92–1.08) 0.906

OSA* Osteoporosis& 21 IVW 0.83 (0.52–1.35) 0.461 23.459 (14.75%) 0.218 0.978

MR Egger 0.81 (0.10–6.78) 0.848 23.460 (19.01%) 0.267

Weighted median 0.74 (0.38–1.44) 0.380

Simple mode 0.68 (0.19–2.44) 0.561

Weighted mode 0.46 (0.15–1.38) 0.184

*Data form The FinnGen Consortium (G6_SLEEPAPNO).
#Data form Global Lipids Genetics Consortium.
&Data form UK, biobank.

Abbreviation: OSA, obstructive sleep apnea; SNPs, single-nucleotide polymorphisms; TG, triglycerides; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density

lipoprotein cholesterol; IVW, inverse-variance weighted.
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Complementary analyses incorporated methods such as the weighted
median, simple mode, weighted mode, and MR-Egger. Directional
horizontal pleiotropy was assessed using the MR-Egger intercept
test. Heterogeneity in MR-Egger regression and the IVW method
was evaluated through Cochran’s Q statistics and funnel plot
analyses. (Bowden et al., 2018). Additionally, sensitivity was
examined via leave-one-out analysis. Post hoc power assessments for
MR leveraged online resources (https://sb452.shinyapps.io/power/)
(Burgess, 2014). All statistical procedures were executed using the
TwoSampleMR packages within R (version 4.1.2, www.r-project.org/
). All p-values were two-tailed. A Bonferroni-adjusted p-value threshold
of<0.004 (0.05/12) was set for determining statistical significance inMR
analyses. In contrast, p-values <0.10 were deemed significant for MR-
Egger tests and heterogeneity assessments.

Results

Instrumental variable selection

In the initial phase of our analysis, we rigorously selected SNPs
that demonstrated a robust association with the exposure, applying
stringent criteria (p < 5 × 10̂−8, F-value >10) and ensuring
independence (r2 < 0.001 within a 10,000 kb physical window).
This process yielded 24 SNPs from the FinnGen Consortium (G6_
SLEEPAPNO) and respective 88, 70, 101, and 82 SNPs from the
GLGC for TC, TG, HDL-C, and LDL-C, preliminarily designated as
IVs. Further refinement was conducted using Phenoscanner V2 to
exclude SNPs associated with outcomes or confounders (p < 1 ×
10̂−5). This led to removing 2 SNPs from the FinnGen Consortium

FIGURE 2
The scatter plots of the association between genetically predicted OSA and dyslipidemia. Abbreviation: TG, serum triglycerides; TC, serum total
cholesterol; LDL-C, serum low-density lipoprotein cholesterol; HDL-C, serum high-density lipoprotein cholesterol.
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(G6_SLEEPAPNO) 5, 4, 7, and 5 SNPs from the GLGC for TC, TG,
HDL-C, and LDL-C, respectively. These exclusions were pivotal in
preparing the remaining SNPs for subsequent inclusion in the
Mendelian randomization analysis.

The causal effect of OSA on dyslipidemia

The results of the MR analyses are shown in Table 2, and the
scatter plots and forest plots are presented in Figure 2 and
Supplementary Figure S1, respectively. Genetically predicted OSA
was significantly positively associated with TG. The OR with 95% CI
of per log-odds increment in OSA liability was 1.15 (95% CI:
1.04–1.26; p = 0.006) in the IVW model, which was consistent
with the result of the MR Egger model, weighted median model, and
weighted model. The Cochran’s Q value suggested a moderate level
of heterogeneity (Q = 11.677, p < 0.05) obtained from individual
variants. Furthermore, the leave-one-out analysis suggested that the
observed association was not significantly changed after removing
any single variant (Supplementary Figure S2). Regarding HDL-C, a
negative correlation was noted with genetic predisposition to OSA.
The ORs per log-odds increase in genetically inferred OSA were 0.84

(95% CI: 0.77–0.93; p = 0.0003), consistent across the MR Egger,
weighted median, and weighted models. Cochran’s Q value
suggested an absence of heterogeneity (p > 0.05) across the
variants. Leave-one-out analysis further supported the stability of
this association, as detailed in Supplementary Figure S2.

The causal effect of dyslipidemia on OSA

As shown in Table 3, the scatter plots (Supplementary Figure
S4), and forest plots (Supplementary Figure S5), the MR results
showed TC, TG, HDL-C, and LDL-C were not causally related to
OSA, with ORs close to 1 (p > 0.05). Egger’s test showed that no
potential horizontal pleiotropy exists except for the relationship
between TG and the risk of OSA. Cochran’s Q test indicated obvious
heterogeneities. The leave-one-out analysis also revealed the stability
of the results (Supplementary Figure S6).

Considering the inherent interconnections amongTC, TG,HDL-C,
and LDL-C, we conducted a comprehensive multivariate MR to
elucidate the association between lipid profiles and OSA. Our
findings indicate that there is no causal link between TC, TG, HDL-
C, and LDL-C levels and the development of OSA (p > 0.05) (Figure 3).

TABLE 3 MR results for the relationship between dyslipidemia and Gout on OSA.

Exposures Outcomes No. of SNPs Method OR (95%CI) p Heterogeneity test Pleiotropy test

Cochran’s Q (I2) p p pintercept

TC# OSA* 83 IVW
MR Egger
Weighted median
Simple mode
Weighted mode

0.99 (0.95–1.04)
1.00 (0.92–1.08)
0.99 (0.94–1.06)
1.01 (0.91–1.13)
0.99 (0.94–1.05)

0.750
0.941
0.842
0.798
0.798

139.793 (41.34%)
139.761 (42.04%)

5.49e-05
7.29e-05

0.892

TG# OSA* 66 IVW 1.04 (0.95–1.14) 0.396 225.735 (71.21%) 9.40e-18 0.046

MR Egger 0.92 (0.80–1.07) 0.283 212.059 (69.82%) 1.30e-19

Weighted median 0.99 (0.92–1.06) 0.754

Simple mode 1.02 (0.89–1.16) 0.821

Weighted mode 0.99 (0.93–1.06) 0.810

HDL# OSA* 94 IVW 0.96 (0.91–1.01) 0.122 167.779 (44.57%) 3.28e-06 0.709

MR Egger 0.97 (0.88–1.08) 0.601 167.523 (45.08%) 2.54e-06

Weighted median 0.93 (0.87–0.99) 0.299

Simple mode 0.99 (0.87–1.13) 0.857

Weighted mode 0.94 (0.88–1.00) 0.608

LDL# OSA* 77 IVW 1.00 (0.97–1.04) 0.871 100.972 (24.73%) 0.029 0.974

MR Egger 1.00 (0.95–1.06) 0.892 100.971 (25.72%) 0.024

Weighted median 1.00 (0.95–1.05) 0.917

Simple mode 1.03 (0.94–1.13) 0.555

Weighted mode 1.00 (0.96–1.05) 0.896

#Data form Global Lipids Genetics Consortium

*Data form The FinnGen Consortium (G6_SLEEPAPNO)

Abbreviation: OSA, obstructive sleep apnea; SNPs, single-nucleotide polymorphisms; TG, triglycerides; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density

lipoprotein cholesterol; IVW, inverse-variance weighted.
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The causal effect of OSA on osteoporosis

The analysis revealed no causal link between OSA and
osteoporosis, as evidenced by p values exceeding 0.05 (Table 2).
The result in the IVW model was consistent with the result of the
MR Egger model, weighted median model, and weighted model.
Additionally, the limited number of SNPs precluded the feasibility of
conducting a reverse analysis.

Discussion

In this bidirectional two-sample MR study, we found that
genetically predicted OSA was significantly positively associated with
TG while negatively associated with HDL-C. Conversely, the reverse
MR analyses yielded no substantial evidence suggesting any association
of liability to TC, TG, HDL-C, and LDL-C with OSA. The findings
indicate a lack of causal connection between OSA and osteoporosis.

Epidemiologic data consistently suggest that OSA positively
correlates with dyslipidemia and osteoporosis (Phillips et al., 2011;
Chen et al., 2014; Nadeem et al., 2014; Mesarwi et al., 2019). Several
meta-analyses of cohort studies have indicated OSA as an independent
risk factor for this condition, aligning with our results (Xu et al., 2014;
Gündüz et al., 2018). However, observational studies examining the
impact of dyslipidemia on OSA risk remain inconclusive. Our
Mendelian Randomization (MR) analysis found no substantial
evidence to support a definitive causal effect of dyslipidemia on OSA.

While the precise mechanisms linking OSA and dyslipidemia
are not fully elucidated, several hypotheses have been proposed.
Firstly, individuals suffering from OSA tend to have lifestyles
characterized by minimal physical activity and diets that are
heavy in fats and carbohydrates, which might escalate the risk of
lipid metabolism dysfunction. (Jonassen et al., 2022). Second, studies
from rodent models indicate that the hypoxic burden associated
with OSA may play a major role in developing this impairment.

Chronic intermittent hypoxia in obese mice, for example, has been
shown to raise the content of liver triglycerides, upregulate hepatic
biosynthetic pathways, and increase total cholesterol and low-
density lipoprotein in lean mice (Li et al., 2005; Jun et al., 2010).
The study did not establish a causal link between OSA and
osteoporosis. While the MR study conducted did not find a
genetic causal relationship between OSA and osteoporosis, this
finding does not negate the possible clinical and biological
connections observed in epidemiological studies. It is important
to consider the limitations of MR studies, such as the possibility of
pleiotropic effects of genetic variants or insufficient power to detect a
true effect if the genetic instruments do not fully capture the
pathological pathways of OSA impacting bone health. More
detailed mechanistic studies are needed to explore how
intermittent hypoxia and other physiological changes associated
with OSA specifically affect bone metabolism. Further longitudinal
studies with larger cohorts and better controls for confounding
factors are required to clarify the relationship between OSA and
changes in bone density over time. Clinical trials investigating the
impact of effective OSA treatment (such as CPAP therapy) on bone
health outcomes could provide insights into whether mitigating
OSA could also benefit bone density and reduce the risk of
osteoporosis. Our findings demonstrate a significant causal
association between OSA and alterations in lipid profiles,
specifically elevated TC levels and reduced HDL-C. These results
support the recommendation for routine lipid screening in patients
diagnosed with OSA. Appropriate interventions, including lifestyle
modifications and pharmacological treatments targeting
dyslipidemia, could be beneficial. Such measures are likely to
mitigate the enhanced cardiovascular risk attributed to
dyslipidemic states in individuals with OSA. Although our study
did not establish a causal link between OSA and osteoporosis, it
highlights the necessity for additional research in this domain.
Investigating this potential association remains clinically
significant as identifying a causal relationship could inform more

FIGURE 3
Multivariate Mendelian randomization analysis of the causal effect of dyslipidemia on OSA. Abbreviation: TG, serum triglycerides; TC, serum total
cholesterol; LDL-C, serum low-density lipoprotein cholesterol; HDL-C, serum high-density lipoprotein cholesterol.
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integrated care approaches that concurrently address both
respiratory and skeletal health in patients with OSA.

A major strength of this MR study lies in its ability to circumvent
reverse causality and minimize residual confounding. Additionally, the
study boasts significant investigatory power and accuracy in estimating
effect magnitudes by employing the most comprehensive dataset for
exposures and the most extensive summary-level data for OSA,
dyslipidemia, and osteoporosis. Nonetheless, there are limitations.
Firstly, the functions of the genetic instruments and their impact on
risk factors are not completely understood. Secondly, potential
pleiotropic effects, possibly obscured by a limited number of genetic
instruments or small sample sizes, remain a concern, although the MR-
Egger intercept indicates minimal horizontal pleiotropy.

In conclusion, our bidirectional MR study suggests a causal
relationship between OSA and dyslipidemia, with no evidence of
causality in the reverse direction or the causal relationship between
OSA and osteoporosis. These findings underscore the importance of
enhancing prevention, management, and treatment strategies for
OSA to address dyslipidemia.
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