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Introduction: After the era of genome-wide association studies (GWAS),
thousands of genetic variants have been identified to exhibit main effects on
human phenotypes. The next critical issue would be to explore the interplay
between genes, the so-called “gene-gene interactions” (GxG) or epistasis. An
exhaustive search for all single-nucleotide polymorphism (SNP) pairs is not
recommended because this will induce a harsh penalty of multiple testing.
Limiting the search of epistasis on SNPs reported by previous GWAS may miss
essential interactions between SNPs without significant marginal effects.
Moreover, most methods are computationally intensive and can be
challenging to implement genome-wide.

Methods: I here searched for GxG through variance quantitative trait loci (vQTLs) of
29continuous TaiwanBiobank (TWB) phenotypes. A discovery cohort of 86,536 and
a replication cohort of 25,460 TWB individuals were analyzed, respectively.

Results: A total of 18 nearly independent vQTLswith linkage disequilibriummeasure
r2 < 0.01 were identified and replicated from nine phenotypes. 15 significant GxG
were found with p-values <1.1E-5 (in the discovery cohort) and false discovery
rates <2% (in the replication cohort). Among these 15 GxG, 11 were detected for
blood traits including red blood cells, hemoglobin, and hematocrit; 2 for total
bilirubin; 1 for fasting glucose; and 1 for total cholesterol (TCHO). All GxG were
observed for gene pairs on the same chromosome, except for the APOA5
(chromosome 11)—TOMM40 (chromosome 19) interaction for TCHO.

Discussion: This study provided a computationally feasible way to search for GxG
genome-wide and applied this approach to 29 phenotypes.
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1 Introduction

Over the past decade, thousands of genetic variants have been found to be responsible
for disease risk (Uffelmann et al., 2021). The next critical topic is to explore “gene-gene
interaction” (GxG), also known as “epistasis,” indicating that “the effect of a gene on a
phenotype is dependent on another gene.” The importance of GxG has widely been
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recognized (Van Steen, 2012). However, due to the curse of
multiplicity, GxG remains challenging to identify and replicate
(Moore and Williams, 2009).

Some statistical methods have been proposed for identifying
GxG (Ritchie et al., 2003; Lou et al., 2007). For example, by
prioritizing single-nucleotide polymorphisms (SNPs) with prior
biological knowledge, Ma et al. identified an interaction between
the LIPC (on chromosome 15) and HMGCR (on chromosome 5)
genes influencing high-density lipoprotein cholesterol (HDL-C)
levels (Ma et al., 2015). To alleviate the penalty of multiple
testing, Ma et al. only tested SNP pairs supported by prior
knowledge, including the quantitative trait loci (QTLs) identified
from genome-wide association studies (GWAS) of lipid traits.

The multifactor dimensionality reduction (MDR) approach is
well-known for detecting GxG for binary disease outcomes (Ritchie
et al., 2003). This method was later generalized for both binary and
continuous phenotypes (Lou et al., 2007). However, the permutation
testing to assess the statistical significance of GxG in MDR is
computationally intensive (Pattin et al., 2009). It is impractical to
analyze genome-wide pairwise SNPs through this MDR approach
(Abo Alchamlat and Farnir, 2017). Although some computationally
efficient methods were derived by extendingMDR, they were mainly
designed for case-control studies (Pattin et al., 2009; Abo Alchamlat
and Farnir, 2017). It remains a challenging task to identify GxG from
continuous traits on a genome-wide scale.

In addition to MDR, Machine learning (ML) approaches such as
“random forests” (Botta et al., 2014) and “neural networks”
(Motsinger et al., 2007) were also proposed to explore GxG.
However, training the ML models is computationally expensive,
and a genome-wide search for GxG is implausible. Therefore,
investigators usually perform a variable selection before searching
for GxG (Wu et al., 2018). Hence, critical SNPs can be missed during
the variable selection process (Chattopadhyay and Lu, 2019).

The above-mentioned sophisticated models are difficult to
implement on hundreds of thousands of SNPs. Another
computationally feasible method is prioritizing SNPs via variance
quantitative trait loci (vQTLs) (Marderstein et al., 2021; Westerman
et al., 2022). Leveraging phenotypic variability across the three
genotypes of an SNP can facilitate the discoveries of GxG or gene-
environment interactions (GxE). In this study, I searched for GxG
through vQTLs of 29 continuous Taiwan Biobank (TWB) phenotypes.

2 Materials and methods

2.1 Taiwan Biobank data

TWB was approved by the Institutional Review Board on
Biomedical Science Research/IRB-BM, Academia Sinica, and the
Ethics and Governance Council of Taiwan Biobank, Taiwan. TWB
approved my application to access the data on 18 February 2020
(application number: TWBR10810-07). The current work further
received approval from the Research Ethics Committee of the
National Taiwan University Hospital (NTUH-REC no.
201805050RINB).

Since October 2012, TWB has recruited Taiwan residents aged
30 to 70 and collected their genomic and lifestyle factors (Chen et al.,
2016). After signing informed consent, community-based

volunteers took physical examinations and provided blood and
urine samples. TWB health professionals collected lifestyle
information through a face-to-face interview with each participant.

As of March 2022, 27,719 and 103,332 individuals (aged
30–70 years) have been whole-genome genotyped by the TWB
1.0 and TWB 2.0 genotyping arrays, respectively. The TWB
1.0 array was designed for Taiwan’s Han Chinese, running on
the Axiom Genome-Wide Array Plate System (Affymetrix, Santa
Clara, CA). The TWB 2.0 array was developed according to the
experience of designing the TWB 1.0 array and the next-generation
sequencing of ~1,000 TWB individuals. These two arrays were
released in April 2013 and August 2018, respectively. Because the
sample size of “individuals genotyped by the TWB 2.0 array” (called
“the TWB2 cohort”) was larger than that genotyped by the TWB
1.0 array (called “the TWB1 cohort”), the TWB2 cohort was treated
as a discovery set. In contrast, the TWB1 cohort was used as a
replication set.

A total of 1,462 individuals were genotyped by both arrays. To
ensure that the replication set was independent of the discovery set, I
removed these 1,462 individuals from the TWB2 cohort. I also tried to
exclude individuals with more than 10%missing in their genotype calls,
where 10% is a commonly adopted cutoff in quality control (Band et al.,
2019). Nonetheless, no individuals were removed due to this criterion.

To remove cryptic relatedness, I calculated PI-HAT =
Probability (IBD = 2) + 0.5 × Probability (IBD = 1) by PLINK
1.9 (Purcell et al., 2007), where IBD is the genome-wide identity by
descent sharing coefficients between any two individuals. I excluded
one individual from each pair with PI-HAT ≥ 0.2, a cutoff value
chosen by some studies (Calabro et al., 2015; An et al., 2019; Lin
et al., 2020a; Lin, 2022a; Lin, 2022b). After this step, the TWB2
(discovery) and TWB1 (replication) cohorts included 86,536 and
25,460 individuals, respectively.

TWB 2.0 and TWB 1.0 arrays comprised 648,611 and
632,172 autosomal SNPs, respectively. I excluded 17,419 SNPs
with Hardy-Weinberg test p-values <5.7 × 10−7 (WTCCC, 2007)
and 22,614 SNPs with genotyping rates <95% from the
TWB2 cohort and removed 6,900 SNPs with Hardy-Weinberg
test p values <5.7 × 10−7 (WTCCC, 2007) and 27,628 SNPs with
genotyping rates <95% from the TWB1 cohort. The remaining
608,578 TWB2 SNPs and 597,644 TWB1 SNPs were used to
construct ancestry principal components (PCs).

The Michigan Imputation Server (https://imputationserver.sph.
umich.edu/index.html) was further used to impute genotypes. The
East Asian population from the 1,000 Genomes Phase 3 v5 was
chosen as the reference panel. I removed SNPs with low imputation
information scores (R-square <0.8), with imputation rates <95%, or
with Hardy-Weinberg test p-values <5.7 × 10−7 (WTCCC, 2007).
The TWB2 and TWB1 individuals were finally genotyped (or
imputed) on 6,546,183 and 7,433,014 autosomal SNPs, respectively.

With a larger sample size, TWB2 (n = 86,536) was treated as the
discovery cohort. A total of 4,807,430 TWB2 SNPs with minor allele
frequencies (MAFs) ≥ 5% were analyzed sequentially. I skipped the
epistasis analysis for SNPs with MAFs <5% due to the inferior
genotyping (or imputation) accuracy for low-frequency variants
(Mitt et al., 2017). Moreover, GxG studies usually focus on common
SNPs because of their better reproducibility (Wang et al., 2019). If
the sample size of any genotype combination (from an SNP pair) is
too small, this GxG evidence can hardly be replicated in another
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cohort. Significant SNPs would be further investigated using the
TWB1 (n = 25,460) again, which was regarded as the replication
cohort. Totally 29 traits in eight categories were
investigated, including

(A) Six lung function traits: vital capacity, tidal volume,
inspiratory reserve volume, expiratory reserve volume,
forced vital capacity, and forced expiratory volume in 1 s.

(B) Four lipid traits: HDL, low-density lipoprotein cholesterol
(LDL), total cholesterol (TCHO), and triglyceride (TG).

(C) Five obesity traits: BMI, body fat percentage (BFP), waist
circumference (WC), hip circumference (HC), and waist-hip
ratio (WHR).

(D) Five blood traits: red blood cells (RBC), white blood cells
(WBC), platelets, hemoglobin (HB), and hematocrit (HCT).

(E) Three kidney traits: Creatinine, uric acid (UA), blood
urea nitrogen.

(F) Two liver traits: total bilirubin (TB) and albumin.
(G) Two hypertension traits: diastolic and systolic blood

pressure levels.
(H) Two diabetes traits: fasting glucose (FG) and glycated

hemoglobin (HbA1c).

2.2 Variance quantitative trait loci (vQTLs)

The total number of pairwise interaction tests among
4,807,430 SNPs is very huge. Considering 29 phenotypes,

conventionally, investigators need to perform
4, 807, 430

2
( ) × 29 �

3.35 × 1014 GxG tests. The power to detect GxG will be largely
reduced due to the harsh penalty of multiple testing. In the
following, I introduce a vQTL method to prioritize SNPs
exhibiting GxG. Let G1 and G2 be the numbers of minor alleles at
two SNPs. Without loss of generality, modeling a phenotype (denoted
as “Y”) with the two SNPs (G1 and G2) can be expressed as follows,

Y � β0 + βG1
G1 + βG2

G2 + βINTG1 × G2 + ε, (1)

where ε is the random error term. Conditional on the genotype of
the first SNP, the variance of Y can be derived as

Var Y |G1 � g1( ) � Var β0 + βG1
G1 + βG2

G2 + βINTG1 × G2 + ε |G1 � g1( )
� Var β0( ) + Var βG1

G1

∣∣∣∣G1 � g1( ) + Var βG2
G2( )

+Var βINTG1 × G2

∣∣∣∣G1 � g1( )
+ 2Cov βG2

G2, βINTG1 × G2

∣∣∣∣G1 � g1( ) + Var ε( )
� 0 + 0 + β2G2

Var G2( ) + β2INTg
2
1Var G2( )

+ 2βG2
βINTg1Var G2( ) + Var ε( )

� βG2
+ βINTg1( )2Var G2( ) + Var ε( ) (2)

I obtained Var(Y |G1 � g1) � (βG2
+ βINTg1)2Var(G2)+

Var(ε). In the absence of GxG, βINT � 0 and Var(Y |G1 �
g1) � β2G2

Var(G2) + Var(ε), representing the variance of Y
remains constant across the three genotypes of the first SNP
(g1 = 0, 1, and 2). Therefore, I investigated GxG by testing equal
variance (homoscedasticity) of a phenotype across the three
genotype groups of each SNP.

2.3 Genome-wide vQTL search for 29 TWB
phenotypes

To provide results robust to outliers and the distributions of
traits, I performed the “rank-based inverse normal transformation”
(RINT) transformation (McCaw et al., 2020) on each trait before the
vQTL analysis. RINT-trait was transformed to be normally
distributed through this step. Subsequently, I obtained
“genotypes-and-covariates adjusted RINT-trait” via the residuals
of regressing RINT-trait on genotypes and covariates. Specifically,
for each SNP, I adjusted RINT-trait with genotype effects as two
dummy variables and covariates, including sex (male vs. female), age
(in years), body mass index (BMI, in kg/m2), performing regular
exercise (yes vs. no), educational attainment (an integer from 1 to 7),
smoking status (yes vs. no), drinking status (yes vs. no), and the first
10 ancestry PCs.

The abovementioned covariates are commonly adjusted for
continuous phenotypes, because each can influence the
phenotypes to some extent (Lin et al., 2020b; Lin, 2022c).
Current smoking indicated “having smoked cigarettes for at least
6 months and having not quit smoking when joining the TWB.
Drinking was defined as “having a weekly intake of more than
150 mL of alcoholic beverages for at least 6 months and having not
stopped drinking when joining the TWB.” Regular exercise was
defined as “performing exercise lasting for 30 min thrice a week.”
Educational attainment was an integer ranging from 1 to 7: 1
(illiterate), 2 (no formal education but literate), 3 (primary school
graduate), 4 (junior high school graduate), 5 (senior high school
graduate), 6 (college graduate), and 7 (Master’s or higher degree).
When analyzing the five obesity traits (BMI, BFP, WC, HC, and
WHR), BMI was excluded from the covariates.

Through the above step, I obtained the “genotypes-and-
covariates adjusted RINT-trait,” denoted as “ei” for the ith
individual (i = 1, 2, . . . , n). The dispersion of ei was then
calculated by Di � (ei − ~e)2, where ~e was the sample median of ei
across all n individuals. Because of the robustness, the sample
median is adopted instead of the sample mean. Subsequently, I
regressed Di on the two dummy variables for genotype coding to
check whether the dispersion of ei was dependent on different
genotypes. The significance of the F-statistic of this regression
model meant that the dispersion of “genotypes-and-covariates
adjusted RINT-trait” (ei) varied with different genotypes, which
was a clue of GxG according to the derivation of Equation 2. This is
called the “scale test” for detecting trait heteroscedasticity
across genotypes.

This scale test for vQTL identification is not novel. Several
studies have previously introduced it (Pare et al., 2010; Soave et al.,
2015; Soave and Sun, 2017; Staley et al., 2022; Westerman et al.,
2022). Some investigators used Levene’s statistics (Levene, 1960) to
test for equal variance (Pare et al., 2010; Westerman et al., 2022),
while others reformulated the concept to a regression framework
(Soave et al., 2015; Soave and Sun, 2017; Staley et al., 2022).
However, these two approaches are conceptually identical. The
workflow shown here is based on the regression framework with
the potential to allow for continuous exposures (Soave et al., 2015;
Soave and Sun, 2017; Staley et al., 2022). The R code to implement
this regression for vQTL testing can be downloaded from https://
github.com/WanYuLin/Univariate-scale-test-UST.
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I analyzed 4,807,430 SNPs with MAFs ≥ 5% in TWB2. p-values
of the scale test <0.05/(4,807,430 × 29) = 3.6E-10 were considered
significant. Significant SNPs identified from the TWB2 cohort were
further analyzed using the TWB1 cohort. SNPs with p-values of the
scale test <0.05/(the number of SNPs analyzed in TWB1) were
considered successfully replicated. These SNPs were called
the vQTLs.

Based on the replicated vQTLs, I then performed an over-
representation analysis on the Reactome pathway webpage
(Fabregat et al., 2017) (https://reactome.org/). Over-
representation analysis assesses whether some Reactome
pathways are enriched (over-represented) in the vQTLs identified
within the same trait category. It answers the question, “Do the
vQTLs from a trait category contain more proteins for a certain
pathway than that is expected by chance?” This over-representation
test generates a p-value based on the hypergeometric distribution,
which is then corrected by the Benjamini–Hochberg false discovery
rate (FDR) procedure (Benjamini and Hochberg, 1995) (https://
reactome.org/userguide/analysis).

2.4 Simulation studies

Although the scale test is not novel, I still conducted a simulation
study to assess its power of detecting GxG, given the sample sizes of
TWB2 and TWB1. Without loss of generality, four SNPs
(rs150856817 on chromosome 2, rs2075291 and rs662799 on
chromosome 11, and rs4144003 on chromosome 16) were, in
turn (one by one), regarded as SNP2. The TWB2 and
TWB1 SNPs on chromosome 1 were, in turn, treated as SNP1.
As derived by Equation 2, Var(Y |G1 � g1) � (βG2

+
βINTg1)2Var(G2) + Var(ε). I tested whether the phenotypic
variance depended on the three genotypes of SNP1. The trait
value was then generated as follows,

Yi � βG1
G1i + βG2

G2i + βINTG1i × G2i + εi,

i � 1,/, 86536 or 25460( ), (3)

where G1i, G2i � 0, 1, 2 represented the numbers of minor alleles at
SNP1 and SNP2, respectively. The random error term εi was

FIGURE 1
The quantile-quantile (QQ) plots and power curves of the vQTLmethod when n = 86,536. The figures in the top row are QQ plots in the absence of
epistasis, without SNPmain effects (A) andwith SNPmain effects (B). The bottom row shows the power curves (significance level = 3.6E-10), without SNP
main effects (C) and with SNP main effects (D). As expected, larger MAF at SNP1 or SNP2 boosted the statistical power.
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generated from a standard normal distribution with a mean of 0 and
a variance of 1. I considered two situations, as follows,

(I) Without SNP main effects: By specifying βG1
� βG2

�
βINT � 0 (scenario 1), I evaluated the type I error rates
given the significance level of 3.6E-10. To demonstrate
that this method is also capable of detecting “pure
epistasis” (no individual SNP main effects) (Russ et al.,
2022), power was assessed at βG1

� βG2
� 0 and βINT � 0.3.

Because the four SNPs were, in turn, regarded as SNP2, the
power was evaluated under scenarios 2–5. A total of 108

replications were conducted under this situation, and each
scenario was investigated with 2 × 107 simulation replicates.

(II) With SNP main effects: By specifying βG1
� βG2

� 0.3 and
βINT � 0 (scenario 1), I evaluated the type I error rates given the
significance level of 3.6E-10. To test for the validity of this
method given a nonnegligible SNP main effect, I deliberately
used rs4144003 (on chromosome 16) as SNP2, which had the
largest MAF (0.393 in TWB2, and 0.397 in TWB1) among the
four SNPs. Power was assessed at βG1

� βG2
� βINT � 0.3.

When evaluating power, the four SNPs were (in turn)
regarded as SNP2, constructing scenarios 2–5. A total of 108

replications were conducted under this situation, and each
scenario was investigated with 2 × 107 simulation replicates.

To sum up, a total of 4 × 108 simulation replicates were
performed. Each of the following four situations was evaluated
with 108 replications: TWB2 without SNP main effects;
TWB2 with SNP main effects; TWB1 without SNP main effects;
and TWB1 with SNP main effects. In each situation, scenario 1 (in
the absence of GxG) and scenarios 2–5 (in the presence of GxG)
were simulated to assess the type I error rates and power,
respectively. Each scenario (under each situation) was
investigated with 2 × 107 replicates.

2.5 GxG analysis for any two vQTL SNPs

For any two vQTL SNPs, RINT-trait was regressed on the
numbers of minor alleles (0, 1, or 2) of the two SNPs and their
product term (interaction term) while adjusting for the same
covariates: sex (male vs. female), age (in years), BMI (in kg/m2),
performing regular exercise (yes vs. no), educational attainment (an
integer from 1 to 7), smoking status (yes vs. no), drinking status (yes

FIGURE 2
The quantile-quantile (QQ) plots and power curves of the vQTLmethod when n = 25,460. The figures in the top row are QQ plots in the absence of
epistasis, without SNPmain effects (A) andwith SNPmain effects (B). The bottom row shows the power curves (significance level = 3.6E-10), without SNP
main effects (C) and with SNP main effects (D). As expected, larger MAF at SNP1 or SNP2 boosted the statistical power.
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TABLE 1 18 variance quantitative trait loci (vQTLs).

Phenotype Chr. Base
pair

SNP Gene Major
allele/
Minor allele

MAF
(TWB2/
TWB1)

vQTL (scale) test
p-value (TWB2/
TWB1)

QTL (location) test
p-value (TWB2/
TWB1)

LDL 2 21239866 rs150856817 APOB T/A 0.166/0.169 4.8E-12/2.6E-5 5.8E-76/1.4E-13

11 116661392 rs2075291 APOA5 C/A 0.067/0.068 3.1E-16/3.6E-8 0.989/0.015

19 45416741 rs438811 APOC1 C/T 0.175/0.171 5.5E-142/8.1E-41 1.8E-270/3.0E-88

TCHO 19 45400747 rs61679753 TOMM40 T/A 0.074/0.071 3.8E-65/5.3E-6 0/4.9E-94

TG 11 116663707 rs662799 APOA5 A/G 0.275/0.274 6.6E-26/7.3E-8 0/1.0E-276

RBC 16 268955 rs143660108 LUC7L G/C 0.112/0.114 0/4.4E-144 0/9.2E-140

16 359953 rs2301522 AXIN1 A/G 0.324/0.333 5.4E-45/3.2E-14 1.9E-41/8.1E-12

16 456841 rs7197553 DECR2 T/C 0.468/0.489 1.3E-49/1.7E-10 4.7E-40/1.4E-15

16 645968 rs4144003 RAB40C T/C 0.393/0.397 2.4E-29/1.6E-8 2.1E-18/5.6E-6

WBC 8 70739986 rs4738028 SLCO5A1 T/G 0.457/0.467 5.5E-38/4.0E-7 1.6E-156/7.8E-13

HB 16 279723 rs966965120 LUC7L G/A 0.111/0.113 1.3E-18/3.7E-7 3.1E-116/7.4E-53

UA 4 89046202 rs141471965 ABCG2 C/T 0.314/0.318 2.6E-44/2.3E-13 2.5E-257/1.2E-133

TB 2 234346660 rs2242102 DGKD G/A 0.390/0.389 7.7E-14/2.2E-7 7.8E-94/2.5E-34

2 234671462 rs28946889 UGT1A10 G/T 0.420/0.424 1.7E-218/5.3E-57 0/0

2 234724510 rs28948393 MROH2A T/G 0.157/0.171 6.8E-19/4.3E-9 3.6E-57/8.1E-23

FG 2 169743220 rs143848901 SPC25 G/A 0.430/0.442 1.2E-14/1.7E-7 2.1E-67/2.4E-24

2 169752640 rs76462791 SPC25 G/C 0.090/0.088 2.4E-21/9.7E-6 1.9E-54/8.6E-25

7 44232833 rs741037 GCK G/A 0.198/0.198 6.4E-18/1.9E-6 2.3E-124/9.4E-34

FIGURE 3
vQTL and QTL approaches to search for epistasis.
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vs. no), and the first 10 ancestry PCs. Similarly, when analyzing the
five obesity traits (BMI, BFP, WC, HC, and WHR), BMI was
excluded from the covariates. To avoid the multicollinearity
problem, I calculated the variance inflation factor (VIF) of each
regression model using the R package “car” (Fox and Weisberg,
2018). A VIF <5 was considered acceptable, which was commonly
used as the VIF cutoff value (Rogerson, 2001).

3 Results

3.1 Simulation results

Figures 1, 2 show the quantile-quantile (QQ) plots and power
curves of the vQTLmethod, where the power was evaluated at α = 3.6E-
10.With 4 × 2 × 107 simulation replicates for scenario 1 under the four
situations (TWB2 without SNP main effects; TWB2 with SNP main

effects; TWB1 without SNP main effects; and TWB1 with SNP main
effects), no type I errors were observed given α = 3.6E-10. The QQ plots
(Figures 1, 2A) showed that the observed p-valuesmatched the expected
p-values under the null hypothesis (no epistasis). The type I error rates
were well protected given no p-value <3.6E-10.

As shown by Figures 1, 2, the presence of SNPmain effects boosted
the statistical power (D compared with C) while preserving the validity
of the vQTL method (B). As expected, a larger MAF at SNP1 or
SNP2 also increased the power. Moreover, the vQTL method is also
capable of detecting “pure epistasis” (without individual SNP main
effects) (Russ et al., 2022), as demonstrated by Figures 1, 2C.

3.2 Scale test to identify vQTLs

I identified 1,668 vQTL SNPs from all 29 TWB2 phenotypes (p <
3.6E-10). I then performed the scale test on these 1,668 SNPs using

TABLE 2 15 GxG interactions identified from 6 phenotypes.

Phenotype SNP x SNP G x G r2 between the
two SNPs

(TWB2/TWB1)

G x G interaction
p-valuea (TWB2/

TWB1)

GxG interaction
coefficient (TWB2/

TWB1)

Variance inflation
factor (VIF)

(TWB2/TWB1)

TCHO rs662799-
rs61679753

APOA5-
TOMM40

7.1E-7/2.1E–6 3.3E-15/4.1E-3 0.11/0.08 1.32/1.34

FG rs143848901-
rs76462791

SPC25-
SPC25

2.3E-4/1.7E–4 7.1E-25/5.2E-9 0.11/0.11 1.32/1.34

TB rs2242102-
rs28946889

DGKD-
UGT1A10

2.7E-3/2.8E–3 2.9E-25/2.6E-12 −0.06/−0.08 1.32/1.34

rs28946889-
rs28948393

UGT1A10-
MROH2A

5.6E-3/8.1E-3 7.5E-17/5.5E-7 0.07/0.07 1.32/1.34

RBC rs143660108-
rs2301522

LUC7L-
AXIN1

2.8E-4/1.4E–4 4.4E-84/2.2E-26 −0.19/−0.18 1.32/1.34

rs143660108-
rs7197553

LUC7L-
DECR2

2.5E-9/1.1E–5 2.0E-150/1.9E-54 0.24/0.25 1.32/1.34

rs143660108-
rs4144003

LUC7L-
RAB40C

6.7E-4/5.4E–4 7.9E-45/2.0E-14 0.13/0.12 1.32/1.34

rs2301522-
rs7197553

AXIN1-
DECR2

1.4E-3/2.9E–3 5.6E-6/2.9E-4 −0.03/−0.04 1.32/1.34

rs2301522-
rs4144003

AXIN1-
RAB40C

3.7E-3/3.1E–3 2.6E-6/3.5E-3 −0.03/−0.03 1.32/1.34

rs7197553-
rs4144003

DECR2-
RAB40C

4.7E-3/2.0E–3 1.1E-7/2.8E-3 0.03/0.03 1.32/1.34

HB rs143660108-
rs2301522

LUC7L-
AXIN1

2.8E-4/1.4E–4 2.0E-23/2.6E-16 0.09/0.12 1.32/1.34

rs143660108-
rs7197553

LUC7L-
DECR2

2.5E-9/1.1E–5 4.3E-42/8.1E-8 −0.11/−0.08 1.32/1.34

rs143660108-
rs4144003

LUC7L-
RAB40C

6.7E-4/5.4E–4 6.3E-11/6.4E-4 −0.05/−0.05 1.32/1.34

HCT rs143660108-
rs2301522

LUC7L-
AXIN1

2.8E-4/1.4E–4 2.5E-6/1.3E-6 0.04/0.07 1.32/1.34

rs143660108-
rs7197553

LUC7L-
DECR2

2.5E-9/1.1E–5 1.0E-14/0.020 −0.07/−0.04 1.32/1.34

a
Because 18 vQTLs were detected, I performed

18
2

( ) × 29 � 4437 GxG tests for any two vQTLs. In the discovery cohort (TWB2), GxG interactions were considered significant with

p-values <0.05/4437 = 1.1E-5. The false discovery rates were all <2% in the replication cohort (TWB1).

Frontiers in Genetics frontiersin.org07

Lin 10.3389/fgene.2024.1357238

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1357238


the TWB1 cohort. If the p-value <0.05/1,668 = 3.0E-5, the SNP was
considered to be successfully replicated in the TWB1. I further used
the PLINK clumping command (Purcell et al., 2007) to find
18 nearly independent vQTL SNPs with linkage disequilibrium
measure r2 < 0.01 (Table 1). Only 9 out of the 29 phenotypes
demonstrated evidence of vQTLs, including three lipid traits: LDL
(3 vQTLs), TCHO (1 vQTL), and TG (1 vQTL); three blood traits:
RBC (4 vQTLs), WBC (1 vQTL), and HB (1 vQTL); a kidney trait:
UA (1 vQTL); a liver trait: TB (3 vQTLs); and a diabetes trait: FG
(3 vQTLs). Except for APOA5-rs2075291, all vQTLs were also QTLs
(the last column of Table 1).

Five vQTLs identified from lipid traits are located in the APOB,
APOA5, APOC1, and TOMM40 genes (Table 1). Many of these vQTL
SNPs have been reported to be associated with complex diseases or to
exhibit interactions with other SNPs. For example, APOA5-rs662799
presented a solid association with TG levels in various ethnicity
samples (Liu et al., 2012), and this SNP was identified as a TG-
vQTL and a TG-QTL through my analysis (Table 1). Korean data
showed that the two vQTL SNPs in the APOA5 gene, rs2075291 and
rs662799 (Table 1), were associated with increased arterial stiffness
and decreased adiponectin levels (Kim et al., 2018). 13 Alzheimer’s

disease (AD) GWAS cohorts demonstrated that the vQTL SNP in the
APOC1 gene, rs438811, significantly interacted with the APOE-ε4
allele. Carrying one minor allele T of rs438811 increased the AD risk
by 26.75% in APOE-ε4 carriers (Zhang et al., 2018). Data recruited
from China’s Second Affiliated Hospital of Xi’an Jiaotong University
showed that AXIN1-rs2301522 was significantly associated with the
risk of osteoporosis (Cui et al., 2022).

3.3 Location tests to identify QTLs

While vQTLs were searched through the scale test, QTLs were
identified by the location test (testing whether the phenotype mean was
dependent on the genotypes) (Staley et al., 2022). Some previous searches
for genome-wide epistasis were based on QTLs (Bocianowski, 2013;
Laurie et al., 2014; Yang et al., 2018). As a comparison, I also searched for
epistasis through the QTL approach as follows. Specifically, I regressed
RINT-trait on the number of minor alleles (0, 1, or 2) for each
SNP respectively (one SNP at a time) while adjusting for the same
17 covariates, including sex (male vs. female), age (in years), BMI
(in kg/m2), performing regular exercise (yes vs. no), educational

FIGURE 4
Six GxG interaction plots for total cholesterol (A), fasting glucose (B), total bilirubin (C, D), and red blood cells (E, F). (A) Represents rs662799-
rs61679753 interaction plot combining the TWB2 and TWB1 cohorts, where the x-axis denotes the three genotypes of rs61679753, and the y-axis
calibrates themean RINT-total cholesterol. The solid, dashed, and dotted lines mark the three genotypes of rs662799: AA (twomajor alleles), AG, and GG
(two minor alleles), respectively. The blue number shown around each point is the sample size of that genotype combination. Other plots were
made similarly.
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FIGURE 5
Six GxG interaction plots for red blood cells (A–D) and hemoglobin (E, F). (A) Represents rs143660108-rs4144003 interaction plot combining the
TWB2 and TWB1 cohorts, where the x-axis denotes the three genotypes of rs4144003, and the y-axis calibrates themean RINT-red blood cells. The solid,
dashed, and dotted linesmark the three genotypes of rs143660108: GG (twomajor alleles), CG, and CC (twominor alleles), respectively. The blue number
shown around each point is the sample size of that genotype combination. Other plots were made similarly.

FIGURE 6
Three GxG interaction plots for hemoglobin (A) and hematocrit (B, C). (A) Represents rs143660108-rs4144003 interaction plot combining the
TWB2 and TWB1 cohorts, where the x-axis denotes the three genotypes of rs4144003, and the y-axis calibrates the mean RINT-hemoglobin. The solid,
dashed, and dotted linesmark the three genotypes of rs143660108: GG (twomajor alleles), CG, and CC (twominor alleles), respectively. The blue number
shown around each point is the sample size of that genotype combination. Other plots were made similarly.
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attainment (an integer from 1 to 7), smoking status (yes vs. no),
drinking status (yes vs. no), and the first 10 ancestry PCs. The R
code for QTL testing can also be downloaded from https://github.
com/WanYuLin/Univariate-scale-test-UST.

I found 48,484 QTL SNPs (p < 0.05/(4,807,430 × 29) = 3.6E-10)
from the 4,807,430 TWB2 common variants (MAF ≥ 5%). I then
performed the location test on these 48,484 SNPs using the
TWB1 cohort. If the p-value <0.05/48,484 = 1.0E-6, the SNP was
successfully replicated in the TWB1. I further used the PLINK
clumping command (Purcell et al., 2007) to find 281 nearly
independent QTLs with linkage disequilibrium measure r2 < 0.01.
Figure 3 compares the vQTL and QTL approaches to search for
epistasis. When resorting to the QTL approach, I also found that the
SNPs exhibiting GxG were the vQTL SNPs in Table 1 (or located in
the same genes as the vQTL SNPs). Hence, the vQTL approach is

more efficient as only
18
2

( ) � 153 GxG tests were performed for

each phenotype, compared with
281
2

( ) � 39340 SNP pairs
analyzed for the QTL method.

3.4 Results of GxG analysis for any two
vQTL SNPs

According to the 18 vQTLs listed in Table 1, ( 18
2
) � 153 GxG

tests were performed for each phenotype, and 4,437 (=153 × 29)
GxG tests were implemented for 29 phenotypes. Among the
4,437 tests, 15 were significant at p < 0.05/4437 = 1.1E-5 in the
discovery (TWB2) cohort (Table 2). These 15 GxG interactions were
further analyzed using the replication (TWB1) cohort, and the GxG

interaction p-values were all less than 0.02 (Table 2). When resorting
to the false discovery rate control (FDR) procedure (Benjamini and
Hochberg, 1995), the FDRs were all less than 2%. Controlling FDR at
5% is commonly adopted in genomic studies (Sun et al., 2006).
Therefore, an FDR level of 2% was acceptable, and all 15 GxG were
replicated using the TWB1 cohort. Furthermore, the directions of
GxG interaction coefficients (synergistic or antagonistic interaction
effects) were consistent across the two cohorts. Because the 18 vQTL
SNPs were nearly independent with linkage disequilibrium measure
r2 < 0.01, putting any two and their interaction (product) term into
the model did not cause multicollinearity problems. The VIFs of all
regression models were controlled under 2 (Table 2).

Figures 4–6 show the GxG interaction plots for TCHO (1 GxG),
FG (1 GxG), TB (2 GxG), RBC (6 GxG), HB (3 GxG), and HCT
(2 GxG). The y-axis represents the averages of RINT-trait of nine
genotype combinations of two SNPs. Lines with different slopes suggest
that the effect of an SNP depends on the genotype of another SNP,
which is a clue of GxG. Nonetheless, these interaction plots may not
completely correspond to the GxG interaction p-values (Table 2).
Unlike the epistasis test results (Table 2), these plots are descriptive
summaries without adjusting for any covariate. For example, lines
converging at genotype GG of rs2301522 (Figure 4E) represented that
individuals with rs2301522-GGhad similar RBC, while individuals with
rs2301522-AA (or rs2301522-AG) had divergent RBC depending on
rs143660108’s genotypes. Lines showing crosscut (Figure 5E) indicated
“cross-over interaction,” meaning that rs143660108’s genotypes with
the larger mean HB switched over at rs2301522-GG.

All GxG were observed for gene pairs on the same
chromosome, except for the APOA5 (chromosome 11)—
TOMM40 (chromosome 19) interaction for TCHO. Both

TABLE 3 Reactome pathway analysis results on genes identified within the same trait category.

Trait category vQTLs Pathway namea FDRb

Lipid traits APOB Plasma lipoprotein assembly, remodeling, and clearance 1.3E-4

APOA5 VLDL clearance 2.4E-4

APOC1 Plasma lipoprotein remodeling 5.1E-4

TOMM40 VLDL assembly 2.7E-3

Blood traits LUC7L, AXIN1, DECR2, RAB40C,
SLCO5A1

Deletions in the AXIN1 gene destabilize the destruction complex 0.062

RUNX1 regulates transcription of genes involved in WNT signaling 0.062

Liver traits DGKD Glucuronidation [Glucuronidation is a major metabolic reaction that mainly occurs in the liver (Yang
et al., 2017)]

0.02

UGT1A10 Effects of PIP2 hydrolysis 0.02

MROH2A Paracetamol ADME (Absorption, Distribution, Metabolism, Excretion) [Paracetamol is extensively
metabolized in the liver (Forrest et al., 1982)]

0.02

Diabetes traits SPC25 Defective GCK causes maturity-onset diabetes of the young 2 (MODY2) 0.04

GCK Regulation of gene expression in beta cells (Beta cells produce insulin in response to blood glucose
levels)

0.04

Regulation of beta-cell development 0.04

FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes [FOXO proteins are
essential to maintain the differentiation of beta cells (Marchelek-Mysliwiec et al., 2022)]

0.04

aThe pathway names presented in the bold type were the names from Reactome. Some pathways were further explained in detail (unbold type).
bFDR: Benjamini–Hochberg false discovery rate (Benjamini and Hochberg, 1995). Many lipid-related pathways were enriched (FDR <0.05) in the vQTLs identified from lipid traits. The four

leading pathways were listed to save space. For other trait categories, the leading pathways having FDR with ties were presented.
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APOA5 and TOMM40 are involved in lipid metabolism (Hishida
et al., 2014). The GxG analysis showed that minor alleles of
APOA5-rs662799 and TOMM40-rs61679753 exhibited
significant synergistic interaction on TCHO (Figure 4A).

Because all phenotypes were RINT-transformed before the
analysis, the 15 GxG interaction coefficients (Table 2) could be
directly compared. Both cohorts suggested that LUC7L-rs143660108
and DECR2-rs7197553 presented the most substantial interaction
on RBC. The minor alleles of these two SNPs exhibited a notable
synergistic interaction on RBC (Figure 4F).

3.5 Reactome pathway analysis results

Table 3 shows the Reactome pathway analysis results on genes
identified within the same trait category. Many lipid-related pathways
were enriched (FDR <0.05) in the vQTLs identified from lipid traits
(APOB, APOA5, APOC1, and TOMM40). “Glucuronidation” and
“Paracetamol ADME” (Absorption, Distribution, Metabolism,
Excretion) pathways were over-represented in the vQTLs of liver
traits (DGKD, UGT1A10, and MROH2A). Glucuronidation is a major
metabolic reaction in the liver (Yang et al., 2017), while paracetamol is
also extensively metabolized in this organ (Forrest et al., 1982). Pathways
related to beta cells were enriched in diabetes’ vQTLs (SPC25 and GCK).
Beta cells are critical to diabetes by producing insulin to control blood
glucose levels (Cerf, 2013). These pathway analysis results showed that the
vQTLs found in this study were highly relevant to the traits.

4 Discussion

In this work, 11 GxG were detected for blood traits including RBC,
HB, and HCT; 2 for TB (liver trait); 1 for FG (diabetes trait); and 1 for
TCHO (lipid trait). Among the 15 significant GxG, 8 demonstrated
synergistic interaction effects, while the other 7 GxG exhibited
antagonistic interaction effects. The interaction directions for
15 GxG were consistent across the two TWB cohorts (Table 2).

A computationally feasible GxG approach will facilitate the
discovery of critical epistasis. This study provided a viable way to
search for epistasis genome-wide, and I have applied this approach to
29 phenotypes. With this vQTL method, SNPs presenting epistasis
will not be overlooked because of the lack of marginal effects.

The vQTL method can identify interactions with marginal effects
(Figures 1, 2D) and can also detect pure epistasis (Figures 1, 2C). As
derived by Equation 2, Var(Y |G1 � g1) � (βG2

+ βINTg1)2
Var(G2) + Var(ε). Nonetheless, a non-zero SNP2’s main effect
βG2

can enlarge the difference in trait variation across the three
genotypes of SNP1. That is why the power in Figures 1, 2D is
higher than in Figures 1, 2C.

Although the associations between diseases and low-frequency or
rare variants have been investigated over the past decade (Bomba
et al., 2017), I here only analyzed SNPs with MAFs ≥ 5%. The main
reason is that I aim to providemore solid evidence of epistasis that can
be replicated in an independent cohort (here, TWB1). GxG is a topic
that explores the impacts of joint distribution of SNP pairs on
phenotypes. If the sample size of any genotype combination (from
an SNP pair) is too small, this GxG signal is unreliable and can hardly
be replicated in another cohort. Therefore, GxG or GxE studies

usually focus on more common SNPs. For example, a systematic
GxE search through vQTLs of 13 continuous traits from the UK
Biobank also focused on SNPs with MAFs ≥ 5% (Wang et al., 2019),
the same MAF cutoff as this study. A robust GxG analysis method for
low-frequency or rare variants still requires further research.
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