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Recent technology breakthroughs in spatially resolved transcriptomics (SRT) have
enabled the comprehensive molecular characterization of cells whilst preserving
their spatial and gene expression contexts. One of the fundamental questions in
analyzing SRT data is the identification of spatially variable genes whose
expressions display spatially correlated patterns. Existing approaches are built
upon either the Gaussian process-based model, which relies on ad hoc kernels,
or the energy-based Isingmodel, which requires gene expression to bemeasured
on a lattice grid. To overcome these potential limitations, we developed a
generalized energy-based framework to model gene expression measured
from imaging-based SRT platforms, accommodating the irregular spatial
distribution of measured cells. Our Bayesian model applies a zero-inflated
negative binomial mixture model to dichotomize the raw count data, reducing
noise. Additionally, we incorporate a geostatistical mark interaction model with a
generalized energy function, where the interaction parameter is used to identify
the spatial pattern. Auxiliary variable MCMC algorithms were employed to sample
from the posterior distribution with an intractable normalizing constant. We
demonstrated the strength of our method on both simulated and real data.
Our simulation study showed that our method captured various spatial patterns
with high accuracy; moreover, analysis of a seqFISH dataset and a STARmap
dataset established that our proposedmethod is able to identify genes with novel
and strong spatial patterns.
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1 Introduction

Recent advancements in spatially resolved transcriptomics (SRT) technology have
fundamentally transformed our capacity to study cellular behavior at a molecular level,
while preserving their spatial and gene expression contexts. This technological leap has
opened new avenues for exploring complex biological systems at unprecedented levels of
detail and accuracy. Efremova et al. (2020) and Liao et al. (2021) found that the positional
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context of gene expression is important to understanding tissue
functionality and pathology changes, which highlights the pivotal
role of SRT techniques. Broadly, SRT technologies are categorized
into sequencing-based and imaging-based methods based on
differences in RNA profiling: sequencing-based and imaging-
based. Spatial transcriptomics, one of the next-generation
sequencing (NGS) technologies, resolves gene expression profiles
at a resolution of 100 μm. Spatial transcriptomics implemented by
the 10x Visium platform achieved 55 μm resolution, allowing for a
detailed study of spatial organization. On the other hand, imaging-
based technologies have revolutionized the field of transcriptomics
by achieving single-cell resolution, with prominent examples such as
sequential fluorescence in situ hybridization seqFISH (Ståhl et al.,
2016), seqFISH+ (Eng et al., 2019), and multiplexed error-robust
FISH (MERFISH) (Moffitt et al., 2018). Datasets profiled by SRT
technologies have inspired the exploration of the spatial
organization of gene expression within tissues. Cohorts with
single-cell resolution motivate more biological analysis, such as
cell-cell communication analysis via CellChat (Jin et al., 2021),
characterization of ligand-receptor interactions between different
cell types (Efremova et al., 2020) and so on. Hence, spatial
information provided by imaing-based SRT data makes it more
feasible to identify and quantify gene expression in specific regions
of a tissue.

One of the most interesting questions arising along the
development of SRT techniques is the identification of spatially
variable genes (SVGs) whose expressions display spatially correlated
patterns. Studies have found that SVGs demarcate clear spatial
substructure, and are relevant to disease progression (Svensson
et al., 2018; Hu et al., 2021). Various methods across different
fields have been developed to identify SVGs, each capitalizing on
distinct strengths. Trendsceek (Edsgärd et al., 2018) is built upon
marked point processes to rank and evaluate the spatial pattern of
each gene; however, it yields unsatisfactory performance (Sun et al.,
2020) and is inhibited from scaling to large-scale data due to the
expensive computational cost (Sun et al., 2020; Dries et al., 2021).
SpatialDE (Svensson et al., 2018), SPARK (Sun et al., 2020), and
BOOST-GP (Li et al., 2021) capture spatial correlation patterns by
utilizing the Gaussian process. Specifically, SpatialDE models
normalized gene expression levels via a multivariate Gaussian
model with a spatial covariance function characterizing linear
and periodic spatial patterns. SPARK models raw counts using a
generalized linear spatial model with different periodic and
Gaussian kernels. BOOST-GP models raw counts with a Bayesian
zero-inflated negative binomial (ZINB) model with a squared
exponential kernel covariance matrix. However, the performance
of these kernel-based methods relies heavily on the resemblance
between the underlying spatial expression patterns and the
predefined kernel functions (Jiang et al., 2022). BinSpect (Dries
et al., 2021), a non-model based method, identifies SVGs through
statistical enrichment analysis of spatial network neighbors with
binarized gene expression states. SpaGCN (Hu et al., 2021) defines
SVGs as genes as those exhibiting differential expression among
spatial domains and employs a deep learning model to identify these
domains. BOOST-MI (Jiang et al., 2022) utilizes an energy-based
modified Ising model to identify SVGs exclusively for sequencing-
based SRT data, with the limitation that the spatial position of
measured spots needs to be on the regular lattice grid. Compared to

kernel-based models, energy-based interaction characterization
enables the detection of broader types of gene spatial
expression patterns.

As mentioned, gene expressions resolved by imaging-based SRT
have single-cell resolution, which potentially unearths more
biological insights. We aimed to develop a model that can
identify SVGs with higher accuracy to be used on data from
imaging-based SRT platforms, and uncover more biological
mechanisms. Drawing inspiration from the success of energy-
based models over kernel-based approaches (Jiang et al., 2022),
we propose a novel joint Bayesian framework model, BOOST-HMI.
This model utilizes a recently proposed energy function for mark
interaction (Li et al., 2019). In particular, we adopt a ZINB mixture
model to handle the unique data characteristics of SRT, including
excess zeros and unknown mean-variance structures. Additionally,
our method introduces a latent binary gene expression indicator to
distinguish high and low expression states at the cellular level,
thereby enhancing the model’s robustness against noise. Unlike
BOOST-MI, our proposed BOOST-HMI is not constrained by the
spatial distribution requirements of sequencing-based SRT data,
making it versatile for imaging-based datasets where cells are
randomly distributed. Furthermore, BOOST-HMI directly models
raw counts within a joint Bayesian framework, addressing
uncertainties associated with dichotomization. Our
comprehensive simulation studies, covering various scenarios,
demonstrate the superior accuracy of BOOST-HMI in detecting
SVGs. We also applied our model to two real datasets: a mouse
hippocampus seqFISH dataset and a mouse visual cortex STARmap
dataset, where it successfully detected more spatial patterns and
layer-specific SVGs, potentially unveiling novel biological insights.

The rest of the paper is organized as follows: section 2 introduces
our ZINB mixture model for identifying SVGs from SRT count data
and discusses the extension of the Bayesian mark interaction model
to SRT data. In section 3, we describe theMarkov chainMonte Carlo
(MCMC) algorithms for posterior sampling and the resulting
posterior inference. Finally, section 4 presents our method’s
performance on simulated and real SRT datasets, compared with
five other methodologies.

2 Methods

In this section, we introduce a ZINB mixture model for directly
modeling the imaging-based SRT count data, and a hidden mark
interaction model to quantify the spatial dependency of latent binary
gene expression levels. The schematic diagram of BOOST-HMI is
shown in Figure 1, and the graphical and hierarchical
representations are presented in Supplementary Figure S5 and
Supplementary Table S1, respectively, in the Supplementary Material.

Before introducing the models, we summarize the SRT data
notations as follows. We denote the gene expression raw counts as a
n-by-p matrix Y with each entry yij ∈ N denoting the number of
read counts for gene j at cell i. Every column y·j in Y denotes the
expression counts across all measured cells for gene j, while each row
yi· denotes the counts of all genes on cell iwhere i = 1, . . . , n, j = 1, . . .
, p. As to geospatial profile, let a n-by-2 matrix T be the matrix for the
spatial location of cells, where each row ti· � (ti1, ti2) ∈ R2 records
the coordinates of cell i in the 2D Cartesian plane.
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2.1 A ZINBmixture model for modeling gene
expression count data

For the majority of SRT techniques, gene expression
measurements obtained are in the form of counts. In the context
of for imaging-based SRT platforms, gene expressions are collected
as the count of barcoded mRNA corresponding to a particular
transcript within a single cell (Zhao et al., 2022). Due to the
characteristics of these measurements, observed count data often
suffers from over-dispersion and zero-inflation. The negative
binomial distribution can effectively account for the mean-
variance relationship in the raw counts. Moveover, the gene
expression count matrix Y is characterized by an inflated number
of zeros, resulting from imaging sensitivity and hybridization
efficiency (Zhao et al., 2022); therefore, we generalized the
negative binomial (NB) model to the ZINB model to account for
both the over-dispersion and the high sparsity level, i.e.,

yij|πi, ]ij, ϕj ~ πiI yij � 0( )
+ 1 − πi( )NB si]ij, ϕj( ), or , yij|πi, ]ij, ϕj ~ ZINB πi, si]ij, ϕj( ),

(1)
where parameter πi ∈ [0, 1] represents the false zero proportion
measured on cell i. NB(], ϕ) denotes a negative binomial distribution
with mean ] and dispersion parameter ϕ. Consequently, the variance
is ] + ]2/ϕ. 1/ϕ controls the overdispersion scaled by the square of
mean ]2. The probability mass function is Γ(y+ϕ)

y!Γ(ϕ) ( ϕ
]+ϕ)ϕ( ]

]+ϕ)y. Given
our particular circumstances, the NB mean is decomposed into two
multiplicative effects, the size factor si and the expression level ]ij.
The collection of s � (s1, . . . , sn)⊤ reflects nuisance effects across
cells. We follow SPARK Sun et al. (2020), setting si proportional to
the summation of the total number of read counts across all genes
for cell i, and combine it with a constraint of∏isi = 1, which gives si =∑jyij/∏i ∑jyij. By setting the constraint for si’s, we avoid the
identifiability problem between si’s and ]ij’s.

To denoise the relative expression levels, we aim to partition ]ij
into two groups by introducing the ZINB mixture model.
Dichotomization has been widely applied as a step in the analysis
of SRT data. BinSpect (Dries et al., 2021) and BOOST-MI (Jiang
et al., 2022) discretize the normalized expression levels for each gene
into two groups for more robust SVG detection results. Here, we
introduce a latent binary gene expression level indicator vector ξ·j to
denote the dichotomized expression profiles of each gene j. If ξij = 1,
gene j is highly expressed at cell i, and if ξij = 0, gene j has low
expression at cell i. A mixture model is suggested to allow different
ZINB model parametrizations for high and low expression levels for
gene j, in which we assume the raw expression count yij is generated
one of two independent ZINB distributions with different means
given the underlying binary indicator ξij,

yij|ξij, πi, μ0j, ϕ0j, μ1j, ϕ1j ~ 1 − ξ ij( )ZINB πi, siμ0j,ϕ0j( )
+ ξ ijZINB πi, siμ1j,ϕ1j( ), (2)

where μ1j and μ0j, denote the group mean of read count for highly
and lowly expressed genes, respectively. To guarantee that the mean
expression level for a highly expressed gene is higher than a lowly
expressed gene, we set a constraint for NB distribution mean across
two expression levels: μ1j > μ0j. ϕ1j and ϕ0j represent the dispersion
parameters of the NBmodel for the highly and lowly expressed gene,
respectively.

To complete the model, we specify the following prior
distributions: μ0j, μ1j ~Ga (aμ, bμ), s.t. μ1j > μ0j > 0 and ϕ0j, ϕ1j
~Ga (aϕ, bϕ). For prior distribution setting, small values such as aμ =
aϕ = 0.01 and bμ = bϕ = 0.01 are recommended to impose minimal
information (Gelman, 2006). To create an environment conducive
to model fitting, we introduce a latent variable ηij to indicate whether
a zero count yij is from the zero or NB component in Eq. 1, and
impose a Bernoulli prior ηij ~Bern(πi), which can be further relaxed
by formulating a Beta(aπ, bπ) hyperprior on πi, leading to a Beta-
Bernoulli prior for ηij with expectation aπ/(aπ + bπ). For the

FIGURE 1
The schematic diagram of the proposed BOOST-HMI model.
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Bernoulli prior, we recommend the noninformative setting with πi =
0.5. Similarly, in Beta-Bernoulli prior, we recommend aπ = bπ = 1.

2.2 A brief review of the Bayesian mark
interaction model

Marked point interaction models are statistical models for
spatial point pattern analysis with applications across diverse
fields such as geostatistics, ecology, material physics, and so on
(Edsgärd et al., 2018; Li et al., 2019). These models are designed to
study the interactions among points with numerical or categorical
marks in a planar region. Marked point models are receiving greater
and greater focus in biology: for instance, Trendsceek applies the
marked point process to identify SVGs (Edsgärd et al., 2018). The
Bayesian mark interaction model, proposed by Li et al. (2019), is a
full Bayesianmodel that characterizes spatial correlations among cell
types from tumor pathology images.

Let (ti1, ti2) ∈ R2, i � 1, . . . , n be the x- and y-coordinates of
point i. Let G = (V, E) denote an interaction network with a finite set
of points V and a set of direct interactions E. In the introduced
Bayesian mark interaction model, we assume points have categorical
marks. Here, we denote ξ � (ξ1, . . . , ξn)⊤ as the categorical marks of
n points on the plane. ξi ∈ (1, . . . , Q), Q ≥ 2 are the marks of point i.

The Bayesian mark interaction model formulates the pattern of
marks ξ via the energy function, which is first introduced in
statistical mechanics. The energy function has terms to account
for both first- and second-order properties of the marked point data.
Specifically, to model the interaction energy between two points, an
exponential decay function with respect to the distance between the
two points is used. Moreover, the Bayesian mark interaction model
neglects interaction terms of point pairs from E when the
corresponding distance is beyond a threshold c. Consequently,
the model focuses on a sparse network G′ = (V, E′), where E′
includes edges joining pairs of points i and i′ with distance dii’ < c.
The setting of the distance threshold is added to avoid the high
computation cost incurred when summing over n data points and
(n − 1)n/2 interacting pairs of points with large n. Then, the
potential energy of G′ is measured by two addictive terms,

V ξ|ω,Θ, λ( ) �∑
q

ωq ∑
i

I ξ i � q( )⎛⎝ ⎞⎠ +∑
q

∑
q′

θqq′ ∑
i~i′( )∈E′

exp −λdii′( )I ξ i � q, ξ i′ � q′( )⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(3)
where q, q′ ∈ {1, . . . , Q} are the categories of marks. ω �
(ω1, . . . ,ωQ)⊤ and Θ � [θqq′]Q×Q are defined as first- and second-
order intensities. (i ~ i′) denotes the collection of interacting pairs of
cells in G′. dii′ �

��������������������
(ti1 − ti′1)2 + (ti2 − ti′2)2

√
denotes the Euclidean

distance between point i and i′. λ is the decay parameter of the
distance between two points in the exponential decay function,
where a larger λ makes energy diminish quickly with respect to the
increase in point pair distance.

By restricting the interaction effect within radius cd, the Bayesian
mark interaction model defines a local energy. According to the
fundamental Hammersley-Clifford theorem (Clifford, 1990), a

probability measure with a Markov property exists if we have a
locally defined energy, called a Gibbs measure. This measure gives the
probability of observing categorical marks associated with their locations
in a particular state. We can write the joint probability on marks ξ as,

π ξ|ω,Θ, λ( ) � exp −V ξ|ω,Θ, λ( )( )∑ξ′∈Ξ exp −V ξ′|ω,Θ, λ( )( ) (4)

which is proportional to the exponential of the negative energy of
marks ξ calculated by Eq. 3. The denominator is a normalizing
constant that needs to sum over the entire space Ξ of marks
combination consisting of Qn states, which is intractable even for
a small size model.

The joint probability (Eq. 4) can be considered as the full data
likelihood. To interpret the parameters clearly, we write the
probability of observing point i having mark category q
conditional on its neighborhood configuration,

π ξi � q|ξ−i,ω,Θ, λ( )
∝ exp −ωq −∑

q′
θqq′ ∑

i′: i~i′( )∈E′{ }
exp −λdii′( )I ξi′ � q′( )⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(5)
where ξ−i denotes the collection of all marks, except the ith one. Eq. 5
shows that the probability of point iwithmark q depends on parameter
ωq, θqq′, and the decay parameter λ. Parameters in Eq. 5 are interpreted
below. Suppose there is no interaction between any two points in the
space, i.e., θqq′ = 0; then, the conditional probability of point iwith ξi = q
is π(ξi = q|·)∝ exp (−ωq). Therefore, the model parameter ωq is related
to the abundance of points with mark q. Fixing ω as equal values, we
obtain the conditional probability of point i with ξi = q is π(ξi = q|·) ∝
exp (−∑q′[∑{i′:(i~i′)∈E′} exp (−λdii′)I (ξi′ = q′)]). The second-order
intensity θqq′ quantifies the dependency of mark q with the nearby
points, with mark q′ scaling by the distance decay function. A detailed
parameter interpretation is provided by Li et al. (2019).

2.3 A hidden mark interaction model for
identifying SVGs

In Section 2.1, we describe how our ZINB mixture model is used
to convert read counts y·j for each gene j into their corresponding
hidden binary states ξ·j. This dichotomization process allows us to
represent gene expression in a binary format. We then treat the
spatial distribution of cells as a two-dimensional point process, with
the binary gene expressions ξ·j serving as the markers of these points.
This setup enables us to effectively use themark interaction model to
assess the spatial correlations among these markers. In the context of
SVG detection via the energy-based approach such as outlined by
Jiang et al. (2022), the core concept involves quantifying the
interactions between spots or cells of high and low expression
levels for a given gene j, designated by q = 1 and 0, respectively.
To streamline the energy function presented in Eq. 5, we only focus
on the second-order intensity, θ12, hereafter referred to as θj, while
omitting self-interaction terms, θ11 and θ22. In other words,
interactions between the neighboring points with the same marks
are excluded. This adjustment notably simplifies model complexity,
rendering the negative energy function used in BOOST-MI a special
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case of the proposed BOOST-HMI, assuming λ = 0 and cd is chosen
to match the distance between adjacent spots or cells. For simplicity,
as outlined in Section 2.2, we treat the decay parameter λ as a pre-
defined hyperparameter λ0. Within this framework, the energy
function can be expressed as follows:

V ξ ·j|ω0j,ω1j, θj( ) � ω0j ∑
i

I ξij � 0( ) + ω1j ∑
i

I ξ ij � 1( )
+∑

i~i′
I dii′ < cd( )θj exp −λ0dii′( )I ξ ij ≠ ξ i′j( )

(6)
To interpret the model parameters, we provide the conditional

probability of observing a high-expression level ξij = 1 of gene j at cell
i, given the expression levels of other cells for gene j:

π ξ ij � 1|ξ−i,j,ωj, θj( )
∝ exp −ω1j − θj ∑

i~i′
I dii′ < cd( )exp −λ0dii′( )I ξi′j � 0( )⎛⎝ ⎞⎠

(7)
As introduced in Section 2.2, the model parameters ωj � (ω0j,ω1j)⊤
represent the first-order property, and θj reflects the second-order
property of the spatial distribution of marks. Specifically, model
parameters ω0j and ω1j are related to the abundance of cells with low
and high expression levels of gene j, respectively. From Eq. 7, when θj = 0,
it follows that π(ξij = 1|·)∝ exp (−ω1j) and π(ξij = 0|·)∝ exp (−ω0j). This
means the conditional distribution of ξij for any given cell is independent
of the states of all other cells, thereby generating a completely random
expression pattern indicative of a non-SVG. If the interaction parameter
θj between highly and lowly expressed cells is positive, then Eq. 7 becomes
a decreasing function with respect to the number of lowly expressed
neighbors∑i~i′I (ξi′j = 0). This implies that a cell i is more likely to be in
the highly expressed groupwhen there are fewer low expressed cells in the
surrounding area. In other words, a positive θj suggests that the gene
expression level at cell i tends to be the same with the majority of its
neighboring cells, leading to a repulsion pattern. Conversely, a negative θj
indicates an attraction pattern, where cells of differing expression levels
are more likely to be adjacent. Both the attraction and repulsion patterns
are characteristic of SVGs. It is important to recognize that the energy
functions used inBOOST-HMI andBOOST-MI differ in their signs. As a
result, θj assumes opposite meanings between these two models.
Parameter λ0 controls the change of interaction strength between a
pair of points with respect to their distance. A larger λ0 causes the
interaction between 2 cells to diminish faster, resulting in a smaller
interactive neighborhood for each cell. As a hyperparameter, λ0 needs
to be set appropriately to reflect the interaction neighborhood for cells.

An identifiability problem arises when adding a nonzero constant to
ω0j and ω1j, as it causes the joint probability π(ξ·j|·) to remain invariant.
Therefore, we constrain ω1j = 1 and establish prior distributions for ω0j

and θj to complete the parameter model settings for the hidden mark
interaction model: ω0j ~ N(μω, τ2ω) and θj ~ N(μθ , τ2θ). The
recommended hyperparameter setting is discussed in Section 4.1.

3 Model fitting

In this section, we introduce the MCMC algorithm for model
fitting and posterior inference. Our model space consists of (M, Φ,

H, Ξ, ω0, θ) with the underlying grouped gene expression levels
M � [μkj]2×p, the dispersion parametersΦ � [ϕkj]2×p, the extra zero
indicators H � [ηij]n×p, the binary expression level indicators
Ξ � [ξij]n×p, the first-order intensity parameter ω0 �
(ω01, . . . ,ω0p)⊤ and the interaction parameter θ � (θ1, . . . , θp)⊤
in the mark interaction model. Each gene is examined
independently by BOOST-HMI. We give the full posterior
distribution for gene j as,

π μ·j,ϕj, η·j, ξ ·j,ω0j, θj|y·j( )∝ ∏
i

yij|ξ ij, ηij, μ·j,ϕj( )⎡⎣ ⎤⎦
× π ξ ·j|ω0j,ω1j � 1, θj( )
× π μ0j( ) × π μ1j( ) × π ϕ0j( ) × π ϕ1j( )
× ∏n

i�1
π ηij( )⎡⎣ ⎤⎦ × π ω0j( ) × π θj( ) . (8)

Our primary aim was to infer ω0j, θj and ξ·j, which define the
Gibbs probability measure based on the local energy function. We
provide estimation and inference on first-order intensity ω0j, which
represents the abundance of lowly expressed levels of gene j, and the
second-order intensity θj, which captures the spatial correlation
between two expression levels. The estimated latent gene expression
level indicator provides a robust estimation of the spatial
organization of marks.

3.1 MCMC algorithms

We estimate μ0j, μ1j, ϕ0j and ϕ1j using the random walk
Metropolis-Hastings (RWMH) algorithm. η·j and ξ·j are estimated
with a Gibbs sampler. The Gibbs probability measure for the
distribution of latent gene expression indicator ξ·j in Eq. 7 omits
an intractable normalizing constant
C(ω0j,ω1j, θj) � ∑ξ ·j′ exp(−H(ξ ·j′ |ω0j,ω1j, θj)), which makes the
Metropolis-Hastings algorithm infeasible. For instance, to model
a gene expression profile with n = 257 cells, we need to traverse 2257 ≈
2.3 × 1077 different arrangements of ξ for every gene, which is a
heavy computational burden. To overcome this issue, we use the
double Metropolis-Hastings (DMH) algorithm proposed by Liang
et al. Liang (2010) to estimate ω0j and θj by canceling the intractable
normalizing constant. The DMH is an efficient auxiliary variable
MCMC algorithm. In contrast to other auxiliary MCMC algorithms,
it does not require drawing the auxiliary variables from a perfect
sampler, which usually increases computational cost (Møller et al.,
2006). The full details of MCMC algorithms is described in Section
S1 of the Supplementary Material.

3.2 Posterior inference

Posterior inference of parameters μ0j, μ1j, ϕ0j, ϕ1j, ω0j, and θj is
obtained by averaging the MCMC posterior samples after burn-in.
We are interested in identifying the SVGs by summarizing the
interaction parameter θ. As stated in Section 2.3, investigating
whether θj is positive or negative is of great importance to
inferring the spatial expression pattern of gene j. To test if gene j
demonstrates an attraction pattern, we applied hypothesis testing
M0: θj ≥ 0 versus M1: θj < 0. To test repulsion pattern, the
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hypothesis testing isM0: θj ≤ 0 versusM1: θj > 0. If there is strong
evidence to reject the null hypothesisM0, we conclude that gene j is
an SVG. The Bayes factor (BF) is computed to infer whether θj is
positive or negative with statistical significance from the MCMC
algorithm results. The Bayes factor measures the favorability of
M1 as

BFj �
π y·j|M1( )
π y·j|M0( )

� π M1|y·j( )
π M0|y·j( ) π M0( )

π M1( ) ≈

∑uI θ u( )
j < 0|·( )

∑uI θ u( )
j ≥ 0|·( ), for attraction,

∑uI θ u( )
j > 0|·( )

∑uI θ u( )
j ≤ 0|·( ), for repulsion,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(9)

where u indexes the iteration and U is the total number of iterations
after burn-in. The larger the BFj, the more likely gene j is an SVG
with an attraction pattern. The smaller the BFj, the more likely gene j
is an SVG with a repulsion pattern.

Another important parameter in our model is the latent gene
expression level indicator ξ·j. We summarize the posterior
distribution of ξ·j via maximum-a-posteriori (MAP) estimates,
which is the mode of the posterior distribution. A more
comprehensive summary of ξ·j’s is based on their marginal
posterior probabilities of inclusion (PPI), where
PPIij � ∑U

u�1ξ
(u)
ij /U. Then, the latent expression indicator

indicates a high expression spot when PPIs are greater than a
threshold cp:

ξPPI·j � I PPI1j ≥ cp( ), . . . , I PPInj ≥ cp( )( )⊤.

4 Results

4.1 Simulation study

We generated simulated data to evaluate the ability of BOOST-
HMI to identify SVGs and provided a comparison with five
competing methods: SpatialDE (Svensson et al., 2018), SPARK
(Sun et al., 2020), SPARK-X (Zhu et al., 2021), BinSpect (Dries
et al., 2021), and BOOST-GP (Li et al., 2021).

Spatial locations of simulated data were from the geospatial
profile of the mouse hippocampus dataset field 43 (Shah et al., 2016)
with n = 257 cells, which we present in Section 4.2. To generate the
expression counts for gene j, the latent gene expression level
indicators ξ·j’s were first generated based on Eq. 7 with three
different values of ω0j ∈ {1.4, 1, 0.6} and the fixed value of ω1j =
1. These three values of ωj correspond to approximately 60%, 50%,
and 40% lowly-expressed cells in ξ·j. Additionally, we set four
different values of θj ∈ {−2.5, −1.2, 1.9, 3.2} to generate SVGs
with various patterns of attraction or repulsion. These values
correspond to strong attraction, weak attraction, weak repulsion,
and strong repulsion patterns, respectively. For the non-SVG, θj = 0
which indicates complete randomness and no spatial correlation.
The distance threshold cd and decay parameter λ0 were set as
0.15 and 20, respectively. We then simulated gene expression

data from a ZINB model with three different group-mean ratios
R ∈ {2, 5, 10} between high and low expression:

yij|ξij , ηij , μ0j, μ1j, ϕ0j, ϕ1j ~
NB yij; siβ0r,ϕ1j( )ξijNB yij; siβ0 , ϕ0j( )1−ξij , ηij � 0

I yij � 0( ) ηij � 1

⎧⎨⎩ ,

where the underlying baseline expression levels β0 = 10. In the
simulation study, size factors s � (s1, . . . , sn)⊤ were generated from
log-N (0, 0.22), and dispersion parameters ϕ0j, ϕ1j in the NB model
are generated from an exponential distribution Exp (1/10). Further,
to imitate high sparsity and account for medium sparsity in real SRT
data, we created three sets of sparsity levels, 0%–10%, 10%–20%, and
30%–40%, and generated extra zero parameters η·j’s
correspondingly. Extra zeros were randomly selected and
imputed into the generated gene expression count data. Thus, we
considered three group-mean ratios and three sparsity levels, which
is 3 × 3 = 9 scenarios in total. For each scenario, we simulated
30 replicates with p = 100 genes in each replicate, 10 out of
which were SVGs.

Before estimating the parameters using BOOST-HMI, we
specified the prior distributions. Non-informative gamma priors
were specified for μ0j, μ1j, ϕ0j and ϕ1j, i.e., μ0j ~Ga (aμ, bμ) and ϕ0j ~Ga
(aϕ, bϕ). We set aμ, bμ, aϕ, and bϕ to 0.01, which produced a gamma
distribution with mean one and variance 100. Priors for ω0j and θj
were set to control the gene expression abundance and gene
expression pattern, ω0j ~ N(1, τ2ω) and θj ~ N(0, τ2θ). In the
simulation study and real data analysis, we set τω = 0.5, where
the prior distribution of ω0j indicates that the latent proportion of
low expression cells ranges from 1% to 100% with a probability of
95%. τθ was set to 3.5 such that the prior for θj guarantees that θj falls
within −6 to 6 with a probability of 92%. For hyperparameters in the
energy function, we set the distance threshold cd = 0.15 and expected
the relationship of decay parameter λ0 and cd to be exp (−λ0cd) =
0.05, which specifies the range of exponential decay function exp
(−λ0dii′) to be [0.05, 1] as cd ≥ dii’ ≥ 0; therefore, we set λ0 as
20 correspondingly. As for the setting of the MCMC algorithm, we
implemented BOOST-HMI in a gene-wise fashion. For each gene,
we initialized model parameters by randomly drawing from their
prior distributions. The MCMC algorithm is iterated U = 10, 000
times after 10,000-iteration burn-in. The algorithm was
implemented in R and Rcpp. As mentioned in Section 3.2,
BOOST-HMI identifies SVGs based on Bayes Factors (BFs). In
our study, we select a BF threshold of 10, which indicates strong
evidence in favor of the M1 (Kass and Raftery, 1995).

We implemented the other five competing methods with their
default settings. BOOST-GP selects SVGs using Bayes factors.
SpatialDE, BinSpect, SPARK, and SPARK-X, use p-values to
select SVGs. To control type-I error rate, the
Benjamini–Hochberg (BH) (Benjamini and Hochberg, 1995)
procedure was used to adjust p-values from SpatialDE and
BinSpect. We specifically avoided adjusting p-values from SPARK
and SPARK-X since its raw p-values are calibrated by the Cauchy
combination rule (Liu et al., 2019; Sun et al., 2020). For p-values, the
threshold was set to 0.05.

Our task is to evaluate the ability of each method to correctly
identify underlying SVGs from the simulated dataset, which can be
defined as a binary classification problem; therefore, to evaluate the
performance of the five methods, we employed two performance
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metrics for binary classification problems: First, we used the area
under the curve (AUC) (Bradley, 1997) of the receiver operating
characteristic (ROC) (Fukunaga, 2013). The ROC is a plot of the true
positive rate against the false positive rate for different classification
thresholds. The AUC is a single value ranging from 0 to 1, with a
higher value indicating better classification performance.

Figure 2 displays a boxplot of AUCs calculated by the
aforementioned seven methods over 30 replicates across nine
scenarios. It clearly suggests that BOOST-HMI achieves superior
performance compared to the other methods, especially when there
was high sparsity. BinSpect-kmeans and BinSpect-rank showed
competitive performance when there was no zero-inflation,
i.e., when the sparsity level was between 0% and 10%, regardless
of the different group ratios; however, these methods showed
decreasing AUCs as sparsity level increased. SPARK and
SpatialDE suffered from a limited ability to detect SVGs from
low expression variability or high zero-inflation scenarios.
Between SPARK and SpatialDE, the simulation study showed
that SPARK has better SVG detection power over SpatialDE,
which is consistent with the conclusion drawn by Sun et al.
(2020) and Jiang et al. (2022). In summary, BOOST-HMI
achieved satisfactory performance and is robust against different
group expression level ratios and sparsity levels.

The second metric we used is the Matthews correlation
coefficient (MCC). MCC is a summary value that examines the
binary classification performance under a specific cutoff, i.e., BF or
p-value thresholds for our study. It has values ranging from −1 to 1,
incorporating true positives, true negatives, false positives and false

negatives. A largerMCC value, such as 1, corresponds to an excellent
classifier, while a negative MCC indicates a strong disagreement
between prediction and observation. Table 1 summarizes the
average MCCs obtained in the simulation study across the five
methods. The result is consistent with our conclusion from our
analysis of the AUC: BOOST-HMI achieved the highest power
under high zero-inflation, while all other six methods suffered
from the high number of false zeros. In the scenario without zero
inflation, BinSpect-kmeans stood out, and BinSpect-rank, SPARK,
and BOOST-HMI showed competitive performance in
identifying SVGs.

We further expanded our evaluation of BOOST-HMI’s
effectiveness through comprehensive analyses using simulated
data. These investigations, detailed in the Supplementary
Material, encompass a scalability test (Section S2), a sensitivity
analysis (Section S3), an examination of performance under
model mis-specification (Section S4), and an assessment of
statistical power and false discovery control (Section S5).

4.2 Application to the mouse hippocampus
seqFISH data

The mouse hippocampus dataset is a public seqFISH dataset
with 21 field replicates collected on a third coronal section (Shah
et al., 2016). Following SpatialDE and SPARK protocols, we
analyzed the field 43 dataset, which contains p = 249 genes
measured on 257 cells with spatial location preserved. Out of

FIGURE 2
Simulation study: The boxplots of AUCs achieved by BOOST-HMI, SPARK, SPARK-X, SpatialDE, BinSpect-kmeans, BinSpect-rank, and BOOST-GP
across nine scenarios.
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249 genes, 214 were selected from a list of transcription factors and
signaling pathway components, and the remaining 35 were selected
from cell identity markers. Quality control was performed following
SPARK protocol (Sun et al., 2020) and the original study. We filtered
out cells with x- or y-axis values exceeding 203–822 pixels to tackle
border artifacts. After filtering, n = 131 cells were included for the
following analysis. We excluded SpatialDE due to its unsatisfactory
performance in SVG detection in the simulation study. Prior
settings, MCMC algorithm implementation, and significance
criteria were identical to what was described in Section 4.1. Five
independent MCMC chains were sampled and diagnosed for
algorithm convergence. Algorithm convergence was checked
based on the BF vector. BFs from five chains were highly
correlated with Pearson correlation coefficients ranging from

0.90 to 0.99. We further checked algorithm convergence using
the potential scale reduction factor (PSRF) (Gelman and Rubin,
1992; Brooks and Gelman, 1998) on posterior samples of θj’s and
ω0j’s. If multiple chains converge to the target posterior distribution,
the PSRF will be close to one. In our analysis, the PSRFs were below
1.2, suggesting convergence of the MCMC algorithms. Posterior
samples obtained from the quintuplet of MCMC chains were
amalgamated for subsequent analysis. Concerning efficiency, we
report the execution times of our method compared to others in
Supplementary Table S2 of the Supplementary Material.

As detailed in Section 2.1, the variance of a NB distribution is
given by ] + ]2/ϕ, with ] and ϕ representing the mean and dispersion
parameters, respectively. A low ϕ value suggests significant over-
dispersion, whereas ϕ → ∞ implies that the mean and variance are
equal. This relationship allows us to deduce over-dispersion from
the posterior distribution of ϕj. Furthermore, we introduced a latent
binary variable ηij to distinguish whether a zero count yij originates
from the zero or NB component. The posterior probability of ηij
enables us to identify zero-inflation. In our analysis, we found that
the average posterior mean for ϕjwas 14.237, with the ϕj’s for 95% of
the genes ranging from 1.577 to 89.164. This evidence strongly
supports the existence of over-dispersion. Moreover, the average
posterior mean of ηij for zero counts was 0.9425. This indicates that
approximately 94.25% of the zeros are attributable to the zero
component, thereby underscoring the presence of zero-inflation.
Among the p = 249 genes analyzed in the mouse hippocampus
dataset, SPARK identified 17 SVGs, while BOOST-HMI detected
22 SVGs. Notably, BOOST-HMI successfully detected 16 cell
identity markers previously presented by Shah et al. (2016),
whereas SPARK identified 14 markers. In comparison, BinSpect-
kmeans and BinSpect-rank were more aggressive, respectively
identifying 38 and 44 SVGs. A Venn diagram in Figure 3D
showcases the overlap of SVGs identified by the four methods.
Among them, BOOST-HMI and SPARK shared 12 SVGs in
common. Only one SVG detected by BinSpect-kmeans
overlapped with that from BOOST-HMI, and none overlapped
with that from SPARK. None of the SVGs detected by BinSpect-
rank were detected by either SPARK or BOOST-HMI. We further
visualized the spatial pattern for each SVG using the marginal PPI of
the posterior samples of the hidden gene expression indicator ξ·j.
Supplementary Figure S12 visualizes the posterior distributions of θj
of those identified SVGs by BOOST-HMI or SPARK.
Supplementary Figure S13 displays the relative gene expression
levels for each SVG. Figure 3A displays the spatial patterns of
SVGs detected by SPARK and BOOST-HMI, while
Supplementary Figures S6, S7 in the Supplementary Material
depict the spatial patterns for SVGs detected by BinSpect-kmeans
and BinSpect-rank, respectively. Among the 12 common SVGs
identified by SPARK and BOOST-HMI, strong spatial repulsion
patterns between high- and low expression genes are evident across
131 cells. Notably, a larger Bayes factor (shown in parentheses)
indicates a stronger spatial pattern; genes Foxo1, sst,mog,myl14, and
ndnf exhibited clear spatial patterns between polarized estimated
hidden indicators. SPARK detected five unique SVGs, as Figure 3B
shows, for which the PPIs of the estimated hidden expression
indicators are close to 0.5. BOOST-HMI identified ten unique
SVGs, as displayed in Figure 3C. Among these, seven genes, such
as gene Zfp423, slc5a7 and palvb, demonstrated either high or low

TABLE 1 Simulation study: The averaged MCCs, with standard deviations in
parentheses, achieved by BOOST-HMI, BinSpect-kmeans, BinSpect-rank,
SPARK, and SpatialDE across nine scenarios.

0%–10% zeros

R = 2 R = 5 R = 10

BinSpect-kmeans 0.182 (0.159) 0.653 (0.118) 0.714 (0.085)

BinSpect-rank 0.199 (0.193) 0.476 (0.123) 0.488 (0.139)

SPARK 0.255 (0.162) 0.502 (0.164) 0.524 (0.153)

SPARK-X 0.324 (0.153) 0.279 (0.152) 0.324 (0.153)

SpatialDE 0.009 (0.111) −0.009 (0.063) 0.027 (0.109)

BOOST-GP 0.012 (0.060) 0.012 (0.060) 0.000 (0.000)

BOOST-HMI 0.231 (0.141) 0.449 (0.084) 0.510 (0.063)

10%–20% zeros

R = 2 R = 5 R = 10

BinSpect-kmeans 0.007 (0.092) 0.121 (0.134) 0.601 (0.142)

BinSpect-rank 0.173 (0.166) 0.482 (0.120) 0.537 (0.153)

SPARK 0.113 (0.146) 0.271 (0.153) 0.373 (0.123)

SPARK-X 0.284 (0.144) 0.224 (0.137) 0.284 (0.144)

SpatialDE −0.039 (0.043) 0.005 (0.093) 0.031 (0.120)

BOOST-GP 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

BOOST-HMI 0.160 (0.176) 0.433 (0.091) 0.473 (0.065)

30%–40% zeros

R = 2 R = 5 R = 10

BinSpect-kmeans 0.002 (0.086) 0.005 (0.083) −0.006 (0.105)

BinSpect-rank 0.060 (0.139) 0.243 (0.157) 0.226 (0.142)

SPARK 0.014 (0.103) 0.133 (0.150) 0.144 (0.155)

SPARK-X 0.114 (0.134) 0.182 (0.136) 0.186 (0.131)

SpatialDE −0.016 (0.071) −0.001 (0.097) 0.016 (0.110)

BOOST-GP −0.001 (0.007) 0.012 (0.060) 0.000 (0.000)

BOOST-HMI 0.098 (0.158) 0.406 (0.088) 0.427 (0.088)
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expression in the majority of cells. The remaining three unique
SVGs, Zic3, Mnat1, and slc17a7 delineated three distinct patterns,
which may be related to novel biological mechanisms. Lim et al.
(2007) previously highlighted the crucial role of Zic3 in preserving
pluripotency in embryonic stem cells, while Herman and El-Hodiri
(2002) demonstrated that mutations in Zic3 are linked to
developmental abnormalities such as laterality defects, congenital
heart disease, and neural tube defects.

In addition to visualizing spatial patterns, we quantified the
degree of spatial attraction or repulsion pattern in gene
expression across different cells using the spatial
autocorrelation tests Moran’s I and Geary’s C. Moran’s I

quantifies the spatial clustering or dispersion by standardizing
the spatial autocovariance, yielding a correlation coefficient
ranging from −1 to 1. A positive Moran’s I value corresponds
to a spatial clustering pattern where the variable tends to have
similar values to its neighboring cells. A Moran’s I value close to
0 suggests a random spatial distribution of the data, while a
negative value corresponds to a dispersion pattern, where the
variable value tends to be dissimilar from its neighbors. To assess
the spatial patterns exhibited by the SVGs, Moran’s I and Geary’s
C values were calculated for each SVG identified by at least one of
the four methods. Moran’s I for each gene j was calculated by the
following formula:

FIGURE 3
Mouse hippocampus seqFISH data: (A) Spatial distribution of hidden gene expressions ξMAP of the 12 SVGs detected by both SPARK and BOOST-HMI.
(B) Spatial distribution of hidden gene expressions ξMAP of the five SVGs detected by SPARK only. (C) Spatial distribution of hidden gene expressions ξMAP of
the ten SVGs detected by BOOST-HMI only. (D) Venn diagram of the overlap across SVGs identified by all fourmethods. (E) Enriched GO terms associated
with SVGs detected by BOOST-HMI. (F) Boxplot of Moran’s I and Geary’s C values for SVGs across the four methods.
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Moran′s I � n∑i∑hwih

∑i∑hwih yij − �yj( ) yhj − �yj( )
∑i yij − �yj( )2 ,

where wij � A/(dih)m is the connectivity spatial weight
between cell i and h. Spatial weight is a decay factor of
the distance between 2 cells; in our study, we set A = 1, m =

FIGURE 4
Mouse visual cortex STARmap data: (A) Voronoi diagrams of layer structures and cell type distribution. (B) Spatial distribution of the average hidden
gene expressions ξMAP of the six SVG patterns detected by SPARK. (C) Spatial distribution of the average hidden gene expressions ξMAP of the five SVG
patterns detected by BOOST-HMI. (D) Venn diagram of the overlap across SVGs identified by all four methods. (E) Enriched GO terms associated with
SVGs detected by BOOST-HMI. (F) Boxplot of Moran’s I and Geary’s C values for SVGs across the four methods.
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1. yij and yhj are the gene expression count of cell i and cell h,
and �yj is the mean expression of gene j. Similar to Moran’s I,
Geary’s C measures the spatial similarity or dissimilarity
between neighboring cells, and is calculated with the
following formula:

Geary′s C � n − 1
2∑i∑hwih

∑i∑hwih yij − yhj( )2
∑i yij − �yj( )2 .

Geary’s C ranges from 0 to 2, where a value close to 0 indicates a
spatial attraction pattern, one corresponds to complete randomness,
and two implies a spatial repulsion pattern. To ensure uniform
interpretation of Moran’s I and Geary’s C, following Hu et al. (2021),
we scaled Geary’s C to the range [−1, 1]. The distributions of these
values are depicted in Figure 3F. Remarkably, over 75% of Moran’s I
and Geary’s C values were positive, compellingly indicating the
presence of spatial patterns associated with the SVGs across the four
methods implemented. Moreover, SVGs from BOOST-HMI and
SPARK exhibited the highest Moran’s I values, while SVGs from
SPARK demonstrated the highest Geary’s C values.

To explore the relevant biological functions of identified SVGs,
we conducted gene ontology (GO) enrichment analysis using the R
package clusterProfiler (Yu et al., 2012). As mentioned,
214 genes were selected from a list of transcription factors and
signaling pathway components. As a result, genes in the background
set enriched 4,622 GO terms and 10,285 relations. Figure 3E depicts
the biological processes enriched by SVGs that were detected by
BOOST-HMI, such as a smoothened signaling pathway (GO:
0007224), regulation of neural precursor cell proliferation (GO:
20000177), and cellular response to stress (GO: 0033554).
Moreover, gene Foxo1 enriched three significant GO terms,
which may inspire further research work on Foxo1 regulation in
the mouse hippocampus.Mnat1, one of the SVGs, enriched cellular
response to stress. Several studies have found that Mnat1 is
associated with various disease progression and regulation. Qiu
et al. (2020) found that Mnat1, which was detected only by
BOOST-HMI, contributes to the progression of osteosarcoma,
and Zou et al. (2020) reported that decreased Mnat1 expression
induces degradation of an important regulator of necroptosis in
endothelial cells from samples with Alzheimer’s disease.

4.3 Application to the mouse visual cortex
STARmap data

The second real dataset we analyzed is a STARmap dataset,
which profiles the mouse visual cortex from the hippocampus to the
corpus callosum, spanning six neocortical layers at single-cell
resolution (Wang et al., 2018). The STARmap dataset measures
the expression of 1,020 genes in 1,549 cells, including non-neuron
cells such as endothelial, oligodendrocytes, astrocytes, and neuron
cells, i.e., parvalbumin-expressing, vasoactive intestinal peptide-
expressing, and somatostatin-expressing interneurons. Figure 4A
depicts the layer structure and distribution of cell types within the
tissue section as presented in the original study (Wang et al., 2018).
Moreover, the STARmap dataset is highly sparse with nearly 79%
zero counts. To address potential sources of variability, we
performed three quality control steps: 1) cells with fewer than

100 read counts detected were filtered out; 2) genes with more
than 90% zero counts were filtered out; 3) genes whose maximum
count is smaller than ten were removed. After quality control, the
gene expression profile measured the expression of p = 107 genes in
n = 1, 523 cells.

SPARK, BinSpect-kmeans, and BinSpect-rank were implemented
with the same parameter settings as the simulation study. As for BOOST-
HMI,we set the distance threshold cd=0.05 and the decay parameter λ0 =
60 to satisfy the dependency exp (−λ0cd) = 0.05.We ran four independent
MCMC chains with the same prior specifications and parameter settings
as the simulation study, and made posterior inferences after integrating
the posterior samples across the four chains. Concerning efficiency, we
report the execution times of our method compared to others in
Supplementary Table S2 of the Supplementary Material.

As Figure 4D shows, SPARK detected 99 SVGs, while BOOST-
HMI detected 64 SVGs. Both BinSpect-kmeans and BinSpect-rank
detected 101 SVGs. SPARK, BinSpect-kmeans, and BinSpect-rank
detected 94 SVGs in common. Compared to other methods,
BOOST-HMI was conservative, detecting 59 common SVGs with
the other three methods. To further investigate the spatial patterns
of detected SVGs, we visualized the estimated hidden gene
expression indicator for each SVG, annotated with the
corresponding Bayes factor, in Supplementary Figures S8–S11 of
the Supplementary Material. Supplementary Figure S14 displays the
average relative gene expression levels across SPARK and BOOST-
HMI-identified SVGs in each cluster. Analysis of the detected genes
reveals a noteworthy observation: all four methods identify SVGs
associated with layer structures, such asApod,Apoe, and Egr1, which
exhibit high expression in layer L6 and HPC. In contrast, SVGs
exclusively detected by the other three methods either lack a clear
layer structure or are estimated to be lowly expressed across the
entire tissue section, which suggests that BOOST-HMI can detect
SVGs with clear spatial patterns and address potential falsification.
This conclusion is strongly supported by corroborating evidence
from both calculations of Moran’s I and Geary’s C. Figure 4F
demonstrates that SVGs detected by BOOST-HMI show stronger
spatial autocorrelation than those identified by the other three
methods. To delve deeper into the identified spatial patterns, we
performed agglomerative hierarchical clustering on the SVGs
detected by SPARK and BOOST-HMI, as shown in Figure 4C.
SVGs detected by SPARK were grouped into six clustered, while
those detected by BOOST-HMI formed five clusters. Pattern I, II, III
and IV from SPARK and BOOST-HMI demonstrate a similar spatial
pattern. Spatial pattern V from BOOST-HMI delineates layers L1,
L2/3, and L4, while pattern V from SPARK is associated with layer
L6. Pattern VI from SPARK highlights a fraction of cells in layer L1.

To gain insights into biological processes, molecular function, and
cellular components, GO enrichment analysis was performed on SVGs
identified by BOOST-HMI. Figure 4E shows that SVGs detected by
BOOST-HMI are implicated in biological processes such as the cellular
developmental process and anatomical structure development.
Additionally, these SVGs are associated with cellular components
such as protein-containing complexes as well as molecular functions
such as DNA binding. Notably, the gene Bcl6 significantly enriched the
cellular developmental process. Nurieva et al. (2009) found that Bcl6
functions as a regulator of T follicular helper cell differentiation and B
cell-mediated immunity. Our findings have the potential to inspire
further novel biological insights.
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5 Conclusion

This paper introduces BOOST-HMI, a novel method for
identifying SVGs in imaging-based SRT datasets. By integrating
gene expression data with spatial location, BOOST-HMI employs a
ZINB mixture model to effectively handle the excessive zeros typical
in SRT data. Additionally, it uses a hidden Bayesianmark interaction
model to accurately quantify spatial dependencies in gene
expressions.

Our approach is adaptable for analyzing sequencing-based SRT
data. We validated BOOST-HMI through a simulation study and
analysis of two real datasets, demonstrating its effectiveness across
various SRT technologies and tissue sections. The simulation results
showed that BOOST-HMI is particularly adept at identifying SVGs
in data with high sparsity levels, between 30% and 40%. When
analyzing the mouse hippocampus seqFISH data, BOOST-HMI
achieved comparable results to SPARK, with the identified SVGs
exhibiting stronger spatial patterns as quantified by Moran′sI and
Geary′sC. Moreover, the SVGs identified were enriched in
biologically relevant GO terms, such as smoothened signaling
pathways and regulation of neural precursor cell proliferation,
offering avenues for further biological investigation.

Further analysis of the mouse visual cortex STARmap dataset
revealed that BOOST-HMI can identify SVGs with spatial patterns
aligning with the underlying cell structure of the tissue. Additionally,
GO enrichment analysis indicated that these SVGs are linked to
cellular developmental processes, underscoring the potential for
novel biological insights.

While our method assumes homogeneity in spatial patterns
across tissue sections, this may not hold true for all cases. Future
work will aim to generalize BOOST-HMI to accommodate
heterogeneous spatial patterns, enhancing its practicality. Another
focus will be on scaling the model to accommodate the growing size
of SRT datasets, such as those generated by advanced technologies
like Slide-seqV2, which can resolve over 19,600 genes from around
23,000 cells (Stickels et al., 2021). Enhanced scalability will enable
BOOST-HMI to analyze datasets from various technologies like
HDST, Slide-seqV2, and others, potentially leading to more
groundbreaking biological discoveries.
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