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Background: Metabolic dysregulation represents a defining characteristic of
Type 2 diabetes (T2DM). Nevertheless, there remains an absence of substantial
evidence establishing a direct causal link between circulating blood metabolites
and the promotion or prevention of T2DM. In addressing this gap, we employed
Mendelian randomization (MR) analysis to investigate the potential causal
association between 1,091 blood metabolites, 309 metabolite ratios, and the
occurrence of T2DM.

Methods: Data encompassing single-nucleotide polymorphisms (SNPs) for
1,091 blood metabolites and 309 metabolite ratios were extracted from a
Canadian Genome-wide association study (GWAS) involving
8,299 participants. To evaluate the causal link between these metabolites and
Type 2 diabetes (T2DM), multiple methods including Inverse Variance Weighted
(IVW), Weighted Median, MR Egger, Weighted Mode, and Simple Mode were
employed. p-values underwent correction utilizing False Discovery Rates (FDR).
Sensitivity analyses incorporated Cochran’s Q test, MR-Egger intercept test, MR-
PRESSO, Steiger test, leave-one-out analysis, and single SNP analysis. The causal
effects were visualized via Circos plot, forest plot, and scatter plot. Furthermore,
for noteworthy, an independent T2DMGWAS dataset (GCST006867) was utilized
for replication analysis. Metabolic pathway analysis of closely correlated
metabolites was conducted using MetaboAnalyst 5.0.

Results: The IVW analysis method utilized in this study revealed 88 blood
metabolites and 37 metabolite ratios demonstrating a significant causal
relationship with T2DM (p < 0.05). Notably, strong causal associations with
T2DM were observed for specific metabolites: 1-linoleoyl-GPE (18:2) (IVW:
OR:0.930, 95% CI: 0.899–0.962, p = 2.16 × 10−5), 1,2-dilinoleoyl-GPE (18:2/
18:2) (IVW: OR:0.942, 95% CI: 0.917–0.968, p = 1.64 × 10−5), Mannose (IVW: OR:
1.133, 95% CI: 1.072–1.197, p = 1.02 × 10−5), X-21829 (IVW: OR:1.036, 95% CI:
1.036–1.122, p = 9.44 × 10−5), and Phosphate to mannose ratio (IVW: OR:0.870,
95% CI: 0.818–0.926, p = 1.29 × 10−5, FDR = 0.008). Additionally, metabolic
pathway analysis highlighted six significant pathways associated with T2DM
development: Valine, leucine and isoleucine biosynthesis, Phenylalanine
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metabolism, Glycerophospholipid metabolism, Alpha-Linolenic acid metabolism,
Sphingolipid metabolism, and Alanine, aspartate, and glutamate metabolism.

Conclusion: This study identifies both protective and risk-associated metabolites
that play a causal role in the development of T2DM. By integrating genomics and
metabolomics, it presents novel insights into the pathogenesis of T2DM. These
findings hold potential implications for early screening, preventive measures, and
treatment strategies for T2DM.

KEYWORDS

T2DM, blood metabolites, metabolite ratios, Mendelian randomization, genomewide
association study

1 Introduction

New data released by the International Diabetes Federation
(IDF) in 2021 indicates a global prevalence of 537 million adults
diagnosed with diabetes mellitus (DM). This represents a 16%
increase from the 2019 forecast. Projections suggest a further rise
to 643 million by 2030 and a staggering 783 million by 2045
(Ogurtsova et al., 2022). Type 2 diabetes (T2DM) manifests as a
metabolic disorder typified by both insulin resistance and
insufficient insulin secretion (Keller-Pinter et al., 2023). Insulin
resistance represents an initial stage in the progression of T2DM.
It affects approximately 40% of young adults in the United States
(Parcha et al., 2022). The World Health Organization predicts that
the global number of T2DM patients will double, reaching
350 million by 2030 (Collins et al., 2011). Type 2 diabetes
mellitus (T2DM) is associated with complications like renal
disease, coronary heart disease, peripheral vascular disease, and
other systemic issues, causing a mortality rate twice as high as
that of the healthy population as the disease progresses (Mulnier
et al., 2006). In recent years, T2DM has shown a trend towards
affecting individuals at a younger age, exhibiting prolonged disease
duration, multiple complications, and significant risks (Magliano
et al., 2020). It imposes a substantial economic burden globally and
stands as a critical public health concern. Identifying risk factors for
T2DM and proactively managing high-risk individuals holds
immense significance in preventing and treating this condition.

Insulin resistance stands prominently as a pivotal factor in the
pathogenesis of T2DM, driven not solely by the compromised
transmission of the insulin signaling pathway but also entailing a
myriad of intricate metabolic determinants (Yang et al., 2018). For
instance, saturated fatty acids exhibit the potential to impair insulin
sensitivity in murine models (Holland et al., 2011). Conversely,
judicious intake of unsaturated fatty acids holds promise in
ameliorating insulin sensitivity and mitigating the risk of T2DM
(Imamura et al., 2016). Moreover, more than 4 decades ago, it was
discerned that heightened serum levels of certain amino acids strongly
correlate with obesity and insulin resistance (Felig et al., 1969).
Metabolites serve as the foundation of biological expression,
providing crucial insights into metabolic processes and disease
pathogenesis (Bauermeister et al., 2022; Johnson et al., 2016).
Metabolomics allows for the exploration of metabolic pathways or
networks through qualitative and quantitative analysis of metabolites,
unveiling the metabolic and reaction mechanisms of various diseases,
drugs, and chemicals across different organisms (Johnson et al., 2016).
Metabolomics enables a thorough characterization of serummetabolite

alterations in patients with T2DM both pre- and post-onset, as well as
following treatment initiation. Lee (Newgard et al., 2009), through
untargeted metabolomics, identified the plasma metabolite Branched
Chain Amino Acid (BCAA), showing a negative correlation with
insulin sensitivity and insulin metabolic clearance. Similarly, Marina
(Mora-Ortiz et al., 2022) identified 12 metabolites predictive of T2DM
remission over a 5-year dietary intervention in 190 T2DM patients.
This highlights howmetabolomics technology facilitates understanding
the mechanisms underlying diabetes development. While numerous
studies have explored the correlation between metabolites and
T2DM(Bloomgarden, 2018; Long et al., 2020; Mora-Ortiz et al.,
2022; Newgard et al., 2009; Palmer et al., 2015; Curtin and Schulz,
1998; Wang et al., 2017), the coverage of metabolites remains
incomplete. None have comprehensively accounted for the influence
of confounding factors, potentially leading to biased results.

Genomics and metabolomics are closely intertwined. Their
integration enables the identification of key mechanisms
underlying the development of T2DM and facilitates the
exploration of disease markers and drug targets. Mendelian
randomization (MR) serves as an epidemiological and genetically
grounded method, exploring causal links between exposures and
outcomes. Adhering to Mendel’s second law, MR studies are not
influenced by confounding factors due to the random assignment of
alleles during gamete formation. This study integrates genomics and
metabolomics, leveraging the latest comprehensive genome-wide
association study (GWAS) on blood metabolites (Chen et al.,
2023). It employs Mendelian randomization (MR) analysis to
investigate the causal associations of 1,091 blood metabolites and
309metabolite ratios with T2DM. The objective is to comprehensively
dissect the pathogenesis of T2DM and itsmetabolic pathways, thereby
providing insights into prediction, diagnosis, and treatment.

2 Materials and methods

2.1 Reporting guidelines

This study was reported in strict adherence to STROBE-MR
guidelines (Skrivankova et al., 2021).

2.2 Research design

In this investigation, we utilized 1,091 blood metabolites and
309 metabolite ratios as ‘exposures’ while considering T2DM as the
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outcome. Instrumental variables (IVs) were meticulously screened
for MR analysis. The study’s consistency underwent evaluation
using the Cochran Q test. Sensitivity analyses encompassed
horizontal multiplicity analysis and a ‘leave-one-out’ approach,
reinforcing the reliability of our findings. Mendelian
randomization (MR) studies require adherence to three
fundamental assumptions: (1) establishing a robust correlation
between IVs and exposure, (2) ensuring IVs’ independence from
any confounding factors associated with exposure and outcome, and
(3) affirming that IVs solely impact outcomes through exposure
pathways. In our investigation, MR analysis was employed to
ascertain the causal relationship between 1,091 blood metabolites,
309 metabolite ratios, and T2DM. Figure 1 illustrates the study’s
workflow (Figure 1).

2.3 Data sources

The instrumental variables for this study were sourced from
Chen’s Canadian Longitudinal Study of Aging (CLSA),
encompassing a sample size of 8,299 (Chen et al., 2023). CLSA
recruited 51,338 Canadians aged 45–85 years, incorporating
concurrent statistical data on their physiology, lifestyle, and
economic status. A metabolomics investigation was conducted on
8,299 unrelated subjects within the CLSA cohort, measuring their
plasma metabolites and conducting genome-wide association
analyses. This study represents the most recent and
comprehensive genome-wide association study of metabolites,

encompassing data on 1,091 plasma metabolites and 309 plasma
metabolite ratios. For further details on the GWAS, please refer to
the original publication (Chen et al., 2023). The instrumental
variables for T2DM were acquired through the IEU Open GWAS
database (ID: ebi-a-GCST90018926). The dataset utilized in this
study originated from Sakaue’s meta-analysis, incorporating data
from the United Kingdom Biobank and FinnGen (Sakaue et al.,
2021). GWAS data for T2DM were extracted from this meta-
analysis, which included a total of 24,167,560 SNPs identified
across 4,90089 individuals of European ancestry. To the best of
our knowledge, there is no sample overlap between exposures and
outcomes in the current study, rendering the data relatively reliable.

2.4 Screening of instrumental variables

To identify qualified single-nucleotide polymorphisms (SNPs),
we established a screening threshold. In this study, we adopted a
relaxed association threshold of p < 1 × 10−5 (Xiao et al., 2022) to
identify SNPs strongly associated with 1,400 exposures.
Additionally, to mitigate the influence of linkage disequilibrium
(LD), we implemented criteria of r2 < 0.001 and a kilobase pair (kb)
value of 10,000. To diminish the impact of weak instrumental
variables (IVs) on the study’s outcomes, we assessed completed
SNPs using the F-statistic (Palmer et al., 2012). A threshold of
F-statistic >10 indicated a low likelihood of the IV being weak (von
Zglinicki, 2002). Furthermore, to mitigate the influence of additional
potential confounders on the study outcome variables, we employed

FIGURE 1
Research flowchart.
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the Phenotype Scanner V2.0 database (Kamat et al., 2019) to exclude
SNPs correlated with factors such as smoking, alcohol consumption,
physical activity, and education level.

2.5 Statistical analysis

We utilized the TwoSampleMR software package of R4.2.3 to
analyze 1,091 bloodmetabolites and 309 metabolite ratios in relation
to T2DM through MR. This study employed five commonly used
analytical methods, namely, Inverse variance weighted (IVW),
Weighted median, MR Egger, Weighted mode, and Simple mode,
to determine their causal associations with T2DM.The IVW
method, the primary approach in MR analysis, assumes the
validity of each SNP, enabling a reliable assessment of exposure’s
causal effect on the outcome (Hartwig et al., 2017). MR Egger
regression analysis accommodates potential pleiotropy or a
substantial number of invalid instrumental variables for causal
inference (Bowden et al., 2015). The Weighted median approach
is utilized when at least 50% of valid instrumental variables are
presumed to be present (Slob and Burgess, 2020). Weighted mode
and Simple mode are alternate methods that relax assumptions,
albeit with lower test efficacy compared to the previous three
methods (Hartwig et al., 2017). These methods serve as
supplementary tools for MR analysis. Additionally, to address
multiple comparisons, False Discovery Rates (FDR) proposed by
Benjamini and Hochberg were applied to correct p-values in the
IVW results (Curtin and Schulz, 1998). A significance threshold of
p < 0.05 after FDR correction was utilized.

2.6 Sensitivity analysis

To ensure result quality, a comprehensive sensitivity analysis
was conducted using TwoSampleMR and MR-PRESSO software
packages within R 4.2.3. Cochran’s Q test assessed SNP
heterogeneity (Greco et al., 2015). The MR-Egger intercept test
and MR-PRESSO Global examined pleiotropy. Horizontal
pleiotropy suggests a non-causal association pathway between
IVs and outcomes, potentially causing false positives (Hemani
et al., 2018). MR-PRESSO identified and excluded significant
outliers, if present, followed by a reiteration of the MR analysis.
Additionally, the Steiger test was applied to mitigate bias arising
from reverse causality (Hemani et al., 2017). Individual SNP effect
analyses and leave-one-out sensitivity analyses were performed to
identify SNPs susceptible to significant heterogeneity.

2.7 Replication analysis

To further validate the associations identified in the primary
analysis, we conducted replication analyses of metabolites and
metabolite ratios initially found to exhibit significant causal
associations (FDR <0.05) using independent GWAS data for blood
metabolites. For this purpose, we utilized the IEU Open GWAS
database (ID: ebi-a-GCST006867), which provided the largest
sample size GWAS data available for T2DM, comprising
659,316 individuals of European ancestry. This dataset, derived

from a meta-analysis conducted by Xue et al. (2018), incorporated
raw data primarily sourced from datasets such as the DIAbetes
Genetics Replication And Meta-analysis (DIAGRAM) and Genetic
Epidemiology Research on Adult Health and Aging (GERA), totaling
62,892 T2DM cases and 596,424 controls of European ancestry, and
encompassing over five million genetic variants. For additional details
regarding the GWAS, please refer to the original publication (Xue
et al., 2018). The Mendelian randomization (MR) analysis methods
employed in the replication analyses were consistent with those
utilized in the main analyses and comprised the IVW, weighted
median, MR Egger, weighted mode, and simple mode approaches,
with the IVW results serving as the primary outcomes. Furthermore, a
comprehensive sensitivity analysis was conducted to assess the
robustness of the findings. Replication analyses were conducted to
validate the reliability of our results.

2.8 Metabolic pathway analysis

Metabolic pathway analysis was conducted via MetaboAnalyst
5.0 for the metabolites exhibiting significant causal associations with
T2DM identified through the IVW method in this study (https://
www.metaboanalyst.ca/) (Chong et al., 2018). MetaboAnalyst 5.
0 serves as a comprehensive web-based data analysis tool
designed to aid users in metabolomics data analysis and
visualization. Utilizing this platform enables the identification of
potential metabolite pathways associated with the underlying
biological mechanisms of T2DM.

3 Results

3.1 Instrumental variables

After a meticulous series of screening steps, a final set of
1,091 blood metabolites and 309 metabolite ratios were obtained,
featuring a range of 12–93 IVs. Among the 1,091 blood metabolites,
IVs varied from 12 to 93, with X-15523 yielding the highest number
of IVs and X-12462 the lowest. Similarly, the 309 metabolite ratios
exhibited IVs ranging from 13 to 39, with the glutamine to alanine
ratio presenting the highest number and the adenosine 5′-
diphosphate to uridine ratio the fewest IVs. The F-statistic of the
SNPs analyzed in this study ranged from 19.50 to 5,308.35,
indicating a minimal likelihood of weak instrumental variables.
These findings support the validity of all IVs for conducting
Mendelian randomization analyses involving the 1,091 blood
metabolites and 309 metabolite ratios (Supplementary Table S1).

3.2 Causal association of 1,091 blood
metabolites and 309 metabolite ratios
on T2DM

Causal associations of 1,091 blood metabolites and
309 metabolite ratios for T2DM were determined by 5 MR
analysis methods (IVW, Weighted median, MR Egger, Weighted
mode and Simple mode). We identified a total of 185 blood
metabolites and 70 metabolite ratios (p < 0.05 for the presence of
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at least 1 MR analysis method) with a significant causal association
with T2DM (Supplementary Table S2). Visualize this result with a
circos plot (Figure 2). The figure comprises 1,275 color blocks, each
representing an individual MR analysis result for one of the
exposures. Different colors denote various p-values, with shades
closer to dark blue indicating larger p-values and those closer to red
indicating smaller p-values. The IVW analysis identified 88 blood
metabolites and 37 metabolite ratios as having a significant causal
relationship with T2DM (p < 0.05) (Supplementary Table S3). It
contains 74 known metabolites. After correction based on the FDR
method, a total of three known blood metabolites, one unknown
bloodmetabolite, and onemetabolite ratios were identified as having

a significant causal relationship with T2DM (p < 0.05)
(Supplementary Table S4). They are respectively: 1-linoleoyl-GPE
(18:2) (IVW: OR:0.930, 95%CI: 0.899–0.962, p = 2.16 × 10−5, FDR =
0.008), 1,2-dilinoleoyl-GPE (18:2/18:2) (IVW: OR:0.942, 95%CI:
0.917–0.968, p = 1.64 × 10−5, FDR = 0.008), Mannose (IVW: OR:
1.133, 95%CI: 1.072–1.197, p = 1.02 × 10−5, FDR = 0.014), X-21829
(IVW: OR:1.036, 95%CI: 1.036–1.122, p = 9.44 × 10−5, FDR = 0.026),
Phosphate to mannose ratio (IVW: OR:0.870, 95%CI: 0.818–0.926,
p = 1.29 × 10−5, FDR = 0.008). This result is visualized through a
forest plot (Figure 3). The bolded p-values in the figure indicate
statistical significance, while the five colored nodes represent five
distinct MR analysis methods. Among them 1-linoleoyl-GPE (18:2),

FIGURE 2
Circos plot of MR analysis results for 185 blood metabolites and 70 metabolite ratios.
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1,2-dilinoleoyl-GPE (18:2/18:2) and Phosphate to mannose ratio
were protective factors for T2DM and X-21829 and Mannose were
risk factors for T2DM. This result is further visualized by means of a
scatterplot (Figure 4). The graph displays five distinct colored line
segments, each corresponding to a different method of MR analysis.
The slope of the lines indicates the direction of the causal
association, whether positive or negative.

3.3 Sensitive analysis

We conducted a sensitivity analysis to evaluate the stability of
the five exposures that exhibited IVW results consistent with
FDR<0.05 correction. The Cochran Q test indicated no
significant heterogeneity between the SNPs of the IVW method
and the MR-Egger method (p > 0.05) (Supplementary Table S5).
Both the MR-Egger intercept test and the MR-PRESSO Global test
results suggested the absence of horizontal pleiotropy in our study
(p > 0.05) (Supplementary Table S6). Additionally, the MR-PRESSO
outlier test did not detect significant outlier SNPs. Our leave-one-out
sensitivity analyses and the MR analyses of individual SNPs
(Supplementary Figures S1–S10) demonstrated the robustness of

our MR analyses, with no instances of individual SNPs significantly
influencing the outcomes. Moreover, the Steiger test for
directionality resulted in TRUE (p < 0.05) in our study. Notably,
the funnel plot illustrated a generally symmetrical distribution of
IVW results in this study without notable bias (Supplementary
Figures S11–S15). These findings collectively contribute to the
increased reliability of the results obtained in this study.

3.4 Replication analysis

To bolster the credibility of our study’s findings, we conducted a
replication analysis on the five exposures meeting the
FDR<0.05 correction criteria using an alternative GWAS dataset
for T2DM (Xue et al., 2018). Encouragingly, our observations within
this GWAS outcome data aligned with similar trends for these five
exposures. However, the unknown metabolite X-21829 did not
exhibit a significant difference concerning T2DM. Among these,
three metabolites: 1-linoleoyl-GPE (18:2) (IVW: OR:0.945, 95%CI:
0.904–0.989, p = 0.015), 1,2-dilinoleoyl-GPE (18:2/18:2) (IVW: OR:
0.925, 95%CI: 0.870–0.984, p = 0.014), Mannose (IVW: OR:1.143,
95%CI: 1.053–1.241, p = 0.001), and Phosphate to mannose ratio

FIGURE 3
Forest plot of FDR-corrected significant results.
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(IVW: OR:0.822, 95%CI: 0.747–0.905, p = 6.64 × 10−5) maintained
their significant causal associations with T2DM (Figure 5). The
bolded p-values in the figure indicate statistical significance, while

the five colored nodes represent five distinct MR analysis methods.
The confidence in these four metabolites and their ratios
remains high.

FIGURE 4
Scatterplot of causal associations between coremetabolites and Phosphate tomannose on T2DMNote: (A) 1-linoleoyl-GPE (18:2) on T2DM. (B) 1,2-
dilinoleoyl-GPE (18:2/18:2) on T2DM. (C) Mannose on T2DM. (D) X-21829 on T2DM. (E) Phosphate to mannose on T2DM.
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3.5 Metabolic pathway analysis

Pathway analysis of 74 known metabolites with statistically
significant (p < 0.05) IVW results unveiled six metabolic
pathways with considerable significance (p < 0.05): Valine,
leucine, and isoleucine biosynthesis (p = 0.004), Phenylalanine
metabolism (p = 0.007), Glycerophospholipid metabolism (p =
0.010), Alpha-Linolenic acid metabolism (p = 0.011),
Sphingolipid metabolism (p = 0.029), and Alanine, aspartate, and
glutamate metabolism (p = 0.049) (Supplementary Table S7)
(Figure 6). The nodes in the graph depict metabolic pathways,
wherein nodes that are higher and darker indicate smaller
p-values associated with the respective metabolic pathway.

4 Discussion

The substantial global burden of high morbidity and mortality
rates associated with T2DM has underscored the urgent need for
early screening and prevention measures (Collins et al., 2011;
Mulnier et al., 2006; Ogurtsova et al., 2022). Achieving high-
quality medical care necessitates tailored and precise treatments,

crucial for foreseeing individual health indicators and preventing the
onset of T2DM(Hampel et al., 2021). Biomarkers serve as pivotal
tools in disease management and prevention. Personalized and
multidimensional biomarkers significantly contribute to
predicting, diagnosing, and prognosing T2DM, offering
invaluable insights for drug development, clinical diagnosis, and
individualized treatment strategies. The advancement of histological
technology facilitates understanding the molecular mechanisms
underlying T2DM and evaluating biomarkers, thereby
significantly advancing the realm of precision medicine for T2DM.

This study represents an extensive investigation into T2DM,
integrating genomics and metabolomics. We utilized GWAS data
from two large-scale T2DM cohorts to examine the causal
relationship between 1,091 blood metabolites and 309 metabolite
ratios with T2DM. Initially, employing IVW,WeightedMedian, MR
Egger, Weighted Mode, and Simple Mode methods, we identified
185 metabolites and 70 metabolite ratios with at least one method
showing significant results (p < 0.05). Specifically, the IVW analysis
revealed 88 blood metabolites and 37 metabolite ratios displaying a
significant causal association with T2DM (p < 0.05), encompassing
74 known metabolites. From these 74 metabolites, six metabolic
pathways potentially involved in T2DM pathogenesis were

FIGURE 5
Forest plot of Replication analysis results.
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identified: Valine, leucine, and isoleucine biosynthesis (p = 0.004),
Phenylalanine metabolism (p = 0.007), Glycerophospholipid
metabolism (p = 0.010), Alpha-Linolenic acid metabolism (p =
0.011), Sphingolipid metabolism (p = 0.029), and Alanine,
aspartate, and glutamate metabolism (p = 0.049). Additionally,
through FDR multiple test correction, we identified three known
metabolites and one metabolite ratio: 1-linoleoyl-GPE (18:2), 1,2-
dilinoleoyl-GPE (18:2/18:2), Mannose, and the Phosphate to
Mannose ratio. Subsequently, we validated these findings using
another GWAS dataset for T2DM with a substantially larger
sample size (Xue et al., 2018), and fortunately, these three known
metabolites and one metabolite ratio remained significantly
associated in this independent dataset.

The exposure data used in this study originated from Chen’s
GWAS investigation (Chen et al., 2023), which stands as the most
recent and comprehensive study incorporating metabolites.
Consequently, the metabolites under examination are relatively
novel, with many of their connections to T2DM yet to be
explored. Among our findings, the most significant causal link
identified was between 1-linoleoyl-GPE (18:2) and T2DM. Elevated
levels of 1-linoleoyl-GPE (18:2) were notably associated with a
reduced risk of developing T2DM. However, it is important to
note that 1-linoleoyl-GPE (18:2) lacks prior studies exploring its
correlation with T2DM. Nevertheless, research has highlighted the
significance of linoleoylethanolamide in ameliorating weight gain,
dyslipidemia, and inflammation induced by a high-fat diet (Tovar
et al., 2023). Considering the established association between obesity,
fat accumulation, insulin resistance, and T2DM, it is plausible that 1-
linoleoyl-GPE (18:2) may act as a protective factor. Another
significant protective metabolite identified in our study is 1,2-
dilinoleoyl-GPE (18:2/18:2), yet there is a lack of studies exploring
its relevance to T2DM. Jansen’s team (Jansen et al., 2023) observed
that 1,2-Dilinoleoyl-sn-glycero-3-phosphocholine enhances
adipocyte catabolism and apoptosis through a TNF-α-dependent

pathway, thereby alleviating insulin resistance via PPARα-mediated
inhibition of myocyte inflammation. Furthermore, our study has
identified Mannose as a risk factor for the development of T2DM.
Mannose, a crucial hexose for glycoprotein synthesis, consistently
demonstrates a significant association with elevated blood glucose
levels and T2DM development in prospective studies (Carter et al.,
2016; Floegel et al., 2013; Menni et al., 2013; Sone et al., 2003). This
relationship might elucidate the Phosphate to Mannose ratio, where
Mannose, as the denominator, potentially serves as a protective factor
against T2DM. Among the results obtained from metabolic pathway
analysis, the Valine, leucine, and isoleucine biosynthesis pathways
exhibited the highest significance (p = 0.004). Valine, leucine, and
isoleucine within thismetabolic pathway act as vital nutritional signals
influencing protein synthesis, glucose regulation, and anti-obesity
mechanisms (Nie et al., 2018). Specifically, isoleucine stimulates
glucose uptake in skeletal muscle, thereby preventing spikes in
plasma glucose concentrations, while also exhibiting a preventive
effect against visceral obesity and hyperinsulinemia (Doi et al., 2005;
Nishimura et al., 2010).

Our study exhibits several strengths. Firstly, we leveraged the
most advanced and comprehensive GWAS data encompassing
1,091 blood metabolites and 309 metabolite ratios. Consequently,
our study stands as the most cutting-edge exploration of causal
associations between metabolites and T2DM to date. Moreover, we
implemented a rigorous MR study methodology to mitigate
confounding factors commonly present in observational studies.
To ensure the robustness of our findings, we conducted a series of
sensitivity analyses, enhancing the reliability of our results.
Additionally, we validated our findings using an alternate, larger
sample set from a separate GWAS dataset for T2DM, obtaining
consistently aligned results with our original study. Lastly, our
utilization of metabolic pathway analyses offers insights into the
metabolic mechanisms associated with the onset of T2DM,
providing valuable reference points for further investigation.

Nevertheless, this study bears certain limitations. Initially, our
inclusion covered a relatively restricted subset of the 1,400 exposed
SNPs, thereby necessitating a more permissive threshold during the
screening of instrumental variables for MR analysis, akin to other
studies of a similar nature. Additionally, a limited number of
metabolites were inevitably omitted from pathway analysis due to
lacking nomenclature or annotations in the metabolic pathway
database. To address these limitations, future investigations
should prioritize further experimentation on less explored
metabolites, offering a more comprehensive understanding of
their association with T2DM. Moreover, expanding the sample
size of the original dataset and conducting high-quality
randomized controlled trials alongside fundamental studies will
be pivotal for validating our findings in subsequent research.

5 Conclusion

To summarize, this MR analysis unveiled 88 blood metabolites
and 37 metabolite ratios exhibiting significant causal links to T2DM.
Furthermore, through FDR validation, three established metabolites
and one metabolite ratio emerged as displaying the most robust
causal association with T2DM. Additionally, our investigation
identified six metabolic pathways potentially linked to T2DM

FIGURE 6
Metabolic pathway analysis bubble diagram.
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development. These discerned serum metabolites establish a
foundation for early screening, preventive strategies, and
treatment protocols for T2DM, while also guiding the blueprint
for future clinical studies. The amalgamation of genomics and
metabolomics in MR analysis serves as a pivotal pathway for
delving into the etiology and pathogenesis of T2DM.
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