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Introduction: Long non-coding RNAs (lncRNAs) have been in the clinical use as
potential prognostic biomarkers of various types of cancer. Identifying
associations between lncRNAs and diseases helps capture the potential
biomarkers and design efficient therapeutic options for diseases. Wet
experiments for identifying these associations are costly and laborious.

Methods: We developed LDA-SABC, a novel boosting-based framework for
lncRNA–disease association (LDA) prediction. LDA-SABC extracts LDA features
based on singular value decomposition (SVD) and classifies lncRNA–disease pairs
(LDPs) by incorporating LightGBM and AdaBoost into the convolutional
neural network.

Results: The LDA-SABC performance was evaluated under five-fold cross
validations (CVs) on lncRNAs, diseases, and LDPs. It obviously outperformed
four other classical LDA inference methods (SDLDA, LDNFSGB, LDASR, and
IPCAF) through precision, recall, accuracy, F1 score, AUC, and AUPR. Based
on the accurate LDA prediction performance of LDA-SABC, we used it to find
potential lncRNA biomarkers for lung cancer. The results elucidated that 7SK and
HULC could have a relationship with non-small-cell lung cancer (NSCLC) and
lung adenocarcinoma (LUAD), respectively.

Conclusion: We hope that our proposed LDA-SABC method can help improve
the LDA identification.
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1 Introduction

Long non-coding RNAs (lncRNAs) are important RNAmolecules comprising more than
200 nucleotides (Jiang et al., 2015; Liu et al., 2021; Chen et al., 2023). lncRNAs have been in the
clinical use as prognostic biomarkers ofmany complex diseases, including cancers (Tang et al.,
2022; 2021; Huo et al., 2021). For example, liver-specific lncRNA FAM99A plays a cancer-
inhibiting role in hepatocellular carcinoma and might serve as its prognostic biomarker (Mo
et al., 2022). Exosomal RP5-977B1 might be a diagnostic biomarker of non-small-cell lung
cancer (NSCLC) (Min et al., 2022). MALAT1 has been broadly applied for its oncogenic
properties in lung cancer (Xin et al., 2023), bladder cancer (Li et al., 2017), breast cancer
(Adewunmi et al., 2023), and ovarian cancer (Mao et al., 2021). Identifying possible
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relationships between lncRNAs and diseases helps capture potential
biomarkers for various cancers and provide clues for their diagnosis
and treatment (Wang et al., 2021). Traditional wet experiments for
detecting new lncRNA–disease associations (LDAs) are costly and
have low success rates; computational techniques have been
increasingly developed to discover new LDAs (Chen et al., 2021;
Zhao et al., 2023).Meanwhile, various lncRNA-related databases, such
as MNDR v2.0 (Cui et al., 2018), Lnc2Cancer (Ning et al., 2016),
LncRNADisease 3.0 (Lin et al., 2023b), and NRED (Dinger et al.,
2009), provide diverse LDA data resources. Based on these resources,
many computational methods, especially network-based andmachine
learning methods, have been applied to LDA prediction (Chen et al.,
2017; Chen and Huang, 2022; Sheng et al., 2023).

Network-based methods predict new LDAs through label
propagation and multi-information fusion on the heterogeneous
lncRNA–disease networks (Jiang et al., 2010; Zou et al., 2016; Hu
et al., 2017;Wang et al., 2019; Yu et al., 2020; Qiu et al., 2023b). Chen
et al. conducted many research studies and significantly promoted
LDA prediction (Chen and Yan, 2013; Chen et al., 2015; Chen,
2015a; Chen, 2015b). Based on these studies, they comprehensively
concluded the current computational methods for non-coding RNA
analysis and unfolded existing challenges and corresponding
solutions (Chen and Huang, 2022; 2023). Xie et al. used the
unbalanced bi-random walk algorithm (Xie et al., 2020b; a) and
bidirectional linear neighborhood label propagation (Xie et al., 2023)
for LDA identification. In addition, a random walk with a restart
algorithm (Wang et al., 2022) has been still applied to find new
LDAs. Network-based methods found many possible LDAs, but
they did not analyze the topological features of LDA networks.

Machine learning methods have been applied to various
association discovery tasks (Zou et al., 2018; Peng et al., 2019;
2022b; Shen et al., 2022; Wu et al., 2022; Yu et al., 2022; Lin et al.,
2023a; Peng et al., 2023a; Peng et al., 2023b; Peng et al., 2024b; Han
et al., 2023; Liu and Zhang, 2023; Qi and Zou, 2023; Xiong et al., 2023;
Xu et al., 2024; Zhang et al., 2024). Consequently, machine learning
algorithms have been broadly applied in LDA prediction, for example,
collaborative filtering (Yu et al., 2019), graph regularization (Liu et al.,
2020; Wang et al., 2021), matrix factorization (Fu et al., 2018; Wang
et al., 2020; Xi et al., 2022), heterogeneous graph learning framework,
(Cao et al., 2023), and ensemble learning models (Peng et al., 2022a).
Notably, deep learning has been broadly applied due to its powerful
classification performance (Sun et al., 2022; Wang et al., 2023; Wang
et al., 2023b; Hu et al., 2023; Jiang et al., 2023; Zhang et al., 2023;
Zhang and Wu, 2023; Zhou et al., 2024a), such as in the graph
convolution network (Wang W. et al., 2022), node2vec (Li et al.,
2021), collaborative deep learning (Lan et al., 2020), deep neural
network (Wei et al., 2020), deep multi-network embedding (Ma,
2022), graph autoencoder (Liang et al., 2023; Zhou et al., 2024b), and a
capsule network with the attentionmechanism (Zhang et al., 2023). In
particular, to identify new LDAs, a few models first extracted LDA
features and classified unknown lncRNA–disease pairs (LDPs) by
combining machine leaning models. SDLDA (Zeng et al., 2020)
effectively integrated deep learning and singular value
decomposition (SVD), LDASR (Guo et al., 2019) combined
autoencoder and rotating forest, LDNFSGB (Zhang et al., 2020)
used autoencoder and the gradient boosting model, IPCARF (Zhu
et al., 2021) applied the incremental principal component analysis and
random forest, CapsNet-LDA (Zhang et al., 2023) utilized stacked

autoencoder and attention mechanism, and LDAEXC (Lu and Xie,
2023) integrated deep autoencoder and XGBoost. Machine learning-
based methods boosted LDA prediction, but they neglect noisy and
irrelevant data.

To boost the LDA prediction performance, here, we developed
LDA-SABC, a novel boosting-based framework for LDA prediction.
LDA-SABC extracts LDA features based on SVD and classifies LDPs
by integrating LightGBM (Wang et al., 2023) and AdaBoost
combined with the convolutional neural network (AdaBoost-
CNN) (Taherkhani et al., 2020; Peng et al., 2023c). The LDA-
SABC performance was evaluated under fivefold cross validations
(CVs) on lncRNAs, diseases, and LDPs. This approach accurately
found a few potential lncRNAs for lung cancer. LDA-SABC is
publicly available at https://github.com/plhhnu/LDA-SABC.

2 Materials and methods

2.1 Overview of LDA-SABC

LDA-SABC contains two main steps: 1) LDA feature extraction:
the LDP linear features are extracted through SVD. 2) LDA
classification: the association probability of each LDP is
computed by integrating AdaBoost-CNN and LightGBM. The
details are shown in Figure 1.

2.2 Data preparation

LDA-SABC was evaluated on two human LDA datasets (Peng
et al., 2024a), namely, LncRNADisease (Chen et al., 2012) and
MNDR (Cui et al., 2018). After deleting diseases without regular
names or MeSH data and lncRNAs without sequence data, the
number of lncRNAs, one of the diseases, and one of the LDAs in
two LDA datasets are listed in Table 1. Subsequently, an LDA
network containing n lncRNAs and m diseases is denoted as
Y ∈ Rn×m, where yij = 1 if lncRNA li is associated with disease dj,
otherwise yij = 0.

2.3 LDA feature extraction

SVD (Abdi, 2007) can effectively extract features by eigen
decomposition. By selecting larger singular values, SVD can
reduce the dimensionality of the data and remove features that
contribute less to data variability, thereby reducing the storage and
calculation costs of the data. In addition, the feature vectors
corresponding to smaller singular values represent noise or
redundant parts in the data. By selecting larger singular values,
SVD can retain the main linear features, thereby removing noise and
redundant information. Furthermore, the size of singular values
represents important features in the data, and SVD helps us
understand the structure and variation patterns of the data by
observing the size of singular values and their corresponding
feature vectors. Thus, SVD is used to extract lncRNA and disease
features: the LDA matrix Y ∈ Rn×m is factorized using Eq. 1:

Y � U ∑VT, (1)
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where VT represents the transpose of V, U ∈ Rn×n and V ∈ Rm×m are
two real matrices, and Σ denotes a diagonal matrix composed of n
singular values.

Subsequently, the e largest singular values are selected to build
an approximation representation using Eq. 2:

R ≈ U i∑e
Vj( )T. (2)

Consequently, Ui and Vj
T denote the features of the ith lncRNA li

and the jth disease dj, respectively.
As a result, the features of each lncRNA can be represented as an

a-dimensional vector, and the features of each disease can be

represented as a b-dimensional vector. The two features are
concatenated as a d (d = a + b)-dimensional vector for
characterizing each LDP.

2.4 LDA prediction

For an LDA dataset D � (X, Ŷ), with p (p = n × m) samples
(i.e., p LDPs), let xi ∈ X denote the ith LDP with d-dimensional
features, and yi ∈ Ŷ denotes its label.

2.4.1 LDA-AdaBoost-CNN
Inspired by AdaBoost-CNN proposed by Hastie et al. (2009) and

Taherkhani et al. (2020), we exploit an LDA identification algorithm
LDA-AdaBoost-CNN by integrating AdaBoost and CNNs based on
transfer learning. Given Q CNNs, LDA-AdaBoost-CNN uses CNNs
as base estimators for predicting LDAs. During training, we use a
vector D with initial values 1

p to measure the importance of each
sample. Next, the weights of all training samples are updated and
normalized. Finally, LDA-AdaBoost-CNN outputs a binary vector

FIGURE 1
Flowchart of the LDA prediction model LDA-SABC: (i) LDA feature extraction. (ii) LDA classification.

TABLE 1 Introduction of two LDA datasets.

Dataset lncRNA Disease LDA

LncRNADisease 82 157 605

MNDR 89 190 1,529
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okl (xi)with the last CNN to identify one LDP as LDA (k = 1) or non-
LDA (k = 2).

For the ith feature map in the lth layer yl
i, its activity is computed

using Eq. 3:

yli � ∑
j

f wl
i,j*y

l−1
j + bli( ), (3)

where wl
i,j represents the weight of a convolutional kernel, which

maps the jth feature at the (l − 1)th CNN layer to the ith feature at
the lth CNN layer, and bli is the bias of the ith feature in the lth layer.
Finally, the output Fl at the lth hidden layer is computed using Eq. 4:

F l � f W l F l−1( )T + bl( ), (4)

where f(·) denotes a non-linear function. Consequently, the
probability distribution matrix Z of all LDPs is computed via a
softmax function using Eq. 5:

Z � sof tmax Wo FL( )T + bo( ), (5)

whereWo denotes a weight matrix linking the last hidden layer with
the output layer, bo indicates the bias, and FL represents the output at
the last hidden layer.

For the ith sample xi, after trainingQCNNs, its output is computed
based on its output okq(xi) (k � 1, 2) in the qth CNN using Eq. 6:

C xi( ) � argmax
k

∑Q
q�1

cqk xi( ), (6)

TABLE 2 Performance of five LDA inference methods under CVl.

Dataset SDLDA LDNFSGB IPCARF LDASR LDA-SABC

Precision LncRNADisease 0.8514 ± 0.0509 0.7004 ± 0.0639 0.4878 ± 0.1309 0.6726 ± 0.1200 0.8980 ± 0.0306

MNDR 0.9399 ± 0.0154 0.8552 ± 0.0393 0.6615 ± 0.0966 0.8405 ± 0.0300 0.9494 ± 0.0172

Recall LncRNADisease 0.6521 ± 0.0732 0.6092 ± 0.0790 0.5721 ± 0.1580 0.5129 ± 0.0946 0.7709 ± 0.0622

MNDR 0.8239 ± 0.0437 0.8021 ± 0.0498 0.6434 ± 0.1545 0.7358 ± 0.0562 0.8436 ± 0.0513

Accuracy LncRNADisease 0.7799 ± 0.0341 0.6769 ± 0.0423 0.4906 ± 0.0951 0.6417 ± 0.0597 0.8444 ± 0.0445

MNDR 0.8857 ± 0.0283 0.8323 ± 0.0230 0.6526 ± 0.0775 0.7972 ± 0.0268 0.8989 ± 0.0317

F1 score LncRNADisease 0.7365 ± 0.0563 0.6462 ± 0.0451 0.5125 ± 0.1100 0.5668 ± 0.0536 0.8278 ± 0.0363

MNDR 0.8775 ± 0.0278 0.8260 ± 0.0230 0.6401 ± 0.1017 0.7827 ± 0.0260 0.8925 ± 0.0307

AUC LncRNADisease 0.8023 ± 0.0477 0.7346 ± 0.0465 0.5096 ± 0.1432 0.7057 ± 0.0420 0.9328 ± 0.0243

MNDR 0.9366 ± 0.0195 0.8839 ± 0.0270 0.7104 ± 0.0997 0.8641 ± 0.0256 0.9675 ± 0.0147

AUPR LncRNADisease 0.8461 ± 0.0553 0.7239 ± 0.0626 0.5336 ± 0.1423 0.6775 ± 0.0971 0.9304 ± 0.0252

MNDR 0.9533 ± 0.0129 0.8832 ± 0.0307 0.7128 ± 0.1012 0.8671 ± 0.0252 0.9709 ± 0.0106

TABLE 3 Performance of five LDA inference methods under CVd.

Dataset SDLDA LDNFSGB IPCARF LDASR LDA-SABC

Precision LncRNADisease 0.8854 ± 0.0377 0.7548 ± 0.0639 0.5583 ± 0.0910 0.7462 ± 0.0613 0.9218 ± 0.0242

MNDR 0.9232 ± 0.0331 0.8005 ± 0.0625 0.5557 ± 0.1473 0.7625 ± 0.0749 0.9573 ± 0.0217

Recall LncRNADisease 0.7182 ± 0.0694 0.7309 ± 0.0646 0.7538 ± 0.1067 0.6431 ± 0.0757 0.8745 ± 0.0353

MNDR 0.8579 ± 0.0655 0.6936 ± 0.0794 0.5279 ± 0.1969 0.5758 ± 0.0894 0.9231 ± 0.0400

Accuracy LncRNADisease 0.8187 ± 0.0282 0.7552 ± 0.0291 0.5766 ± 0.0740 0.7165 ± 0.0339 0.9008 ± 0.0232

MNDR 0.9043 ± 0.0174 0.7670 ± 0.0432 0.5593 ± 0.1159 0.7010 ± 0.0463 0.9455 ± 0.0146

F1 score LncRNADisease 0.7917 ± 0.0519 0.7407 ± 0.0526 0.6339 ± 0.0715 0.6873 ± 0.0512 0.8970 ± 0.0218

MNDR 0.8886 ± 0.0475 0.7402 ± 0.0577 0.5190 ± 0.1434 0.6485 ± 0.0555 0.9394 ± 0.0260

AUC LncRNADisease 0.8788 ± 0.0274 0.8329 ± 0.0273 0.6402 ± 0.1004 0.7951 ± 0.0317 0.9630 ± 0.0122

MNDR 0.9559 ± 0.0160 0.8603 ± 0.0363 0.5992 ± 0.1601 0.8045 ± 0.0362 0.9860 ± 0.0057

AUPR LncRNADisease 0.8934 ± 0.0387 0.8163 ± 0.0537 0.6355 ± 0.1217 0.7914 ± 0.0542 0.9605 ± 0.0130

MNDR 0.9561 ± 0.0354 0.8292 ± 0.0680 0.6040 ± 0.1476 0.7630 ± 0.0717 0.9836 ± 0.0101
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where

cqk xi( ) � log oqk xi( )( ) − 1
2
∑2
k′�1

log oqk′ xi( )( ). (7)

2.4.2 LDA-LightGBM
LightGBM is a gradient-based model. It uses two powerful

techniques to acquire the optimal split node and accurately
classify unknown samples: one-side sampling and exclusive

TABLE 4 Performance of five LDA inference methods under CVld.

Dataset SDLDA LDNFSGB IPCARF LDASR LDA-SABC

Precision LncRNADisease 0.8782 ± 0.0306 0.7782 ± 0.0270 0.7069 ± 0.0478 0.7695 ± 0.0393 0.9052 ± 0.0241

MNDR 0.9178 ± 0.0154 0.8548 ± 0.0156 0.7693 ± 0.0850 0.8553 ± 0.0189 0.9525 ± 0.0153

Recall LncRNADisease 0.7256 ± 0.0376 0.8169 ± 0.0408 0.6155 ± 0.0652 0.6836 ± 0.0342 0.9074 ± 0.0329

MNDR 0.8824 ± 0.0198 0.8818 ± 0.0204 0.5034 ± 0.1469 0.8204 ± 0.0238 0.9459 ± 0.0131

Accuracy LncRNADisease 0.8120 ± 0.0216 0.7916 ± 0.0256 0.6793 ± 0.0403 0.7385 ± 0.0283 0.9058 ± 0.0183

MNDR 0.9015 ± 0.0114 0.8658 ± 0.0127 0.6793 ± 0.0753 0.8405 ± 0.0129 0.9493 ± 0.0109

F1 score LncRNADisease 0.7939 ± 0.0260 0.7965 ± 0.0262 0.6563 ± 0.0492 0.7233 ± 0.0289 0.9058 ± 0.0190

MNDR 0.8996 ± 0.0119 0.8679 ± 0.0129 0.5995 ± 0.1312 0.8371 ± 0.0137 0.9491 ± 0.0108

AUC LncRNADisease 0.8774 ± 0.0200 0.8578 ± 0.0234 0.7384 ± 0.0466 0.8133 ± 0.0218 0.9628 ± 0.0132

MNDR 0.9560 ± 0.0081 0.9346 ± 0.0074 0.7680 ± 0.0882 0.9143 ± 0.0112 0.9878 ± 0.0046

AUPR LncRNADisease 0.8952 ± 0.0177 0.8489 ± 0.0289 0.7409 ± 0.0515 0.8131 ± 0.0277 0.9606 ± 0.0150

MNDR 0.9639 ± 0.0063 0.9273 ± 0.0098 0.7689 ± 0.0924 0.9100 ± 0.0136 0.9881 ± 0.0055

FIGURE 2
ROC and PR curves of LDA-SABC and four other methods: (A,B) ROC and PR curves on the LncRNADisease and MNDR databases under CVl,
respectively. (C,D) Curves under CVd. (E,F) Curves under CVld.

Frontiers in Genetics frontiersin.org05

Zhou et al. 10.3389/fgene.2024.1356205

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1356205


feature bundling. Here, inspired by LightGBM (Ke et al., 2017), we
propose a LightGBM-based LDA inference algorithm LDA-
LightGBM. First, gradients of all LDPs in the training set are
computed, and the a% LDPs with the smallest gradients are
taken as A. Next, a sample set B is constructed by randomly
selecting b ×|Ar| samples from the remaining LDPs Ar. Finally,
all LDPs are split on the node pd according to information gain Ij (pd)
on A ∪ B using Eq. 8:

Ij pd( ) � 1
p

∑xi ∈ Al
gi + 1−a

b ∑xi ∈ Bl
gi( )2

pj
r d( )

⎛⎝ ⎞⎠

+ 1
p

∑xi ∈ Ar
gi + 1−a

b ∑xi ∈ Br
gi( )2

njr d( )
⎛⎝ ⎞⎠, (8)

whereAl = {xi ∈A: xij ≤ pd},Ar = {xi ∈A: xij > pd}, Bl = {xi ∈ B: xij ≤ pd},
Br = {xi ∈ B: xij > pd}, and gi represents the negative gradient.

FIGURE 3
Effects of the parameters α and β on the LDA prediction performance: (A) performance of LDA-SABC based on α and β on LncRNADisease underCVl,
CVd, and CVld, respectively. (B) Performance of LDA-SABC based on different α and β values on MNDR under CVl, CVd, and CVld, respectively.

TABLE 5 Performance of four boosting methods under CVl.

Dataset AdaBoost-CNN AdaBoost LightGBM LDA-SABC

Precision LncRNADisease 0.8412 ± 0.0584 0.7641 ± 0.0536 0.8836 ± 0.0354 0.8980 ± 0.0306

MNDR 0.9486 ± 0.0217 0.8826 ± 0.0331 0.9510 ± 0.0175 0.9494 ± 0.0172

Recall LncRNADisease 0.7815 ± 0.0844 0.7151 ± 0.0805 0.7494 ± 0.0765 0.7709 ± 0.0622

MNDR 0.8295 ± 0.0728 0.8483 ± 0.0374 0.8561 ± 0.0506 0.8436 ± 0.0513

Accuracy LncRNADisease 0.8307 ± 0.0309 0.7571 ± 0.0320 0.8261 ± 0.0523 0.8444 ± 0.0445

MNDR 0.8916 ± 0.0419 0.8685 ± 0.0307 0.9059 ± 0.0284 0.8989 ± 0.0317

F1 score LncRNADisease 0.8079 ± 0.0606 0.7359 ± 0.0525 0.8079 ± 0.0419 0.8278 ± 0.0363

MNDR 0.8833 ± 0.0447 0.8644 ± 0.0265 0.9002 ± 0.0293 0.8925 ± 0.0307

AUC LncRNADisease 0.9107 ± 0.0262 0.8252 ± 0.0308 0.9139 ± 0.0406 0.9328 ± 0.0243

MNDR 0.9384 ± 0.0441 0.9314 ± 0.0216 0.9664 ± 0.0190 0.9675 ± 0.0147

AUPR LncRNADisease 0.8997 ± 0.0575 0.8283 ± 0.0559 0.9209 ± 0.0262 0.9304 ± 0.0252

MNDR 0.9526 ± 0.0250 0.9371 ± 0.0241 0.9715 ± 0.0134 0.9709 ± 0.0106
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However, LDA features have high dimensions and multiple zero
values, that is, the features cannot simultaneously have nonzero
values. To solve this problem, LRI-LightGBM first uses weights to
characterize the whole conflict between all LDA features and
construct a weighted graph. Subsequently, all LDA features are
sorted and are set to a defined bundle or create a new bundle.
Finally, all LDPs are classified using Eq. 9:

FIq xi( ) � ∑Iq
q�1

γqhq xi( ), (9)

where Tq is the maximum iteration number and hq(xi) is the qth
basic decision tree.

2.4.3 Ensemble learning
Ensemble learning exhibits strong classification performance

compared to individual classifiers. Thus, we combined LDA-
AdaBoost-CNN and LDA-LightGBM for LDA identification. For
one LDP xi, let C(xi) and F(xi) represent its association scores
computed by LDA-AdaBoost-CNN and LDA-LightGBM,
respectively; its final association probability p(xi) is obtained
Eq. 10:

P xi( ) � αC xi( ) + βF xi( ), (10)
where α and β(β = 1 − α) are used to evaluate the importance of
LDA-AdaBoost-CNN and LDA-LightGBM with respect to the LDA
inference performance, respectively.

TABLE 6 Performance of four boosting methods under CVd.

Dataset AdaBoost-CNN AdaBoost LightGBM LDA-SABC

Precision LncRNADisease 0.8581 ± 0.0502 0.7788 ± 0.0560 0.9134 ± 0.0321 0.9218 ± 0.0242

MNDR 0.9467 ± 0.0224 0.8750 ± 0.0380 0.9358 ± 0.0257 0.9573 ± 0.0217

Recall LncRNADisease 0.8208 ± 0.0514 0.7746 ± 0.0576 0.8669 ± 0.0423 0.8745 ± 0.0353

MNDR 0.9006 ± 0.0458 0.8521 ± 0.0665 0.9156 ± 0.0360 0.9231 ± 0.0400

Accuracy LncRNADisease 0.8476 ± 0.0336 0.7832 ± 0.0288 0.8928 ± 0.0217 0.9008 ± 0.0232

MNDR 0.9280 ± 0.0234 0.8769 ± 0.0177 0.9321 ± 0.0185 0.9455 ± 0.0146

F1 score LncRNADisease 0.8376 ± 0.0378 0.7748 ± 0.0449 0.8884 ± 0.0218 0.8970 ± 0.0218

MNDR 0.9223 ± 0.0260 0.8627 ± 0.0508 0.9254 ± 0.0288 0.9394 ± 0.0260

AUC LncRNADisease 0.9263 ± 0.0226 0.8548 ± 0.0246 0.9615 ± 0.0124 0.9630 ± 0.0122

MNDR 0.9758 ± 0.0107 0.9395 ± 0.0154 0.9825 ± 0.0068 0.9860 ± 0.0057

AUPR LncRNADisease 0.9215 ± 0.0290 0.8453 ± 0.0581 0.9596 ± 0.0147 0.9605 ± 0.0130

MNDR 0.9746 ± 0.0131 0.9290 ± 0.0367 0.9793 ± 0.0144 0.9836 ± 0.0101

TABLE 7 Performance of four boosting methods under CVld.

Dataset AdaBoost-CNN AdaBoost LightGBM LDA-SABC

Precision LncRNADisease 0.8810 ± 0.0285 0.7989 ± 0.0262 0.9012 ± 0.0263 0.9052 ± 0.0241

MNDR 0.9455 ± 0.0115 0.8755 ± 0.0157 0.9426 ± 0.0140 0.9525 ± 0.0153

Recall LncRNADisease 0.9031 ± 0.0242 0.8040 ± 0.0323 0.8893 ± 0.0335 0.9074 ± 0.0329

MNDR 0.9507 ± 0.0119 0.8691 ± 0.0230 0.9350 ± 0.0131 0.9459 ± 0.0131

Accuracy LncRNADisease 0.8901 ± 0.0203 0.8003 ± 0.0214 0.8955 ± 0.0227 0.9058 ± 0.0183

MNDR 0.9479 ± 0.0087 0.8726 ± 0.0129 0.9389 ± 0.0097 0.9493 ± 0.0109

F1 score LncRNADisease 0.8916 ± 0.0194 0.8009 ± 0.0220 0.8948 ± 0.0232 0.9058 ± 0.0190

MNDR 0.9480 ± 0.0087 0.8721 ± 0.0135 0.9387 ± 0.0096 0.9491 ± 0.0108

AUC LncRNADisease 0.9532 ± 0.0144 0.8657 ± 0.0177 0.9575 ± 0.0122 0.9628 ± 0.0132

MNDR 0.9850 ± 0.0043 0.9447 ± 0.0090 0.9839 ± 0.0042 0.9878 ± 0.0046

AUPR LncRNADisease 0.9482 ± 0.0194 0.8610 ± 0.0189 0.9561 ± 0.0119 0.9606 ± 0.0150

MNDR 0.9840 ± 0.0058 0.9454 ± 0.0106 0.9839 ± 0.0041 0.9881 ± 0.0055
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TABLE 8 Predicted top 15 lncRNAs associated with NSCLC on LncRNADisease and MNDR.

LncRNADisease MNDR

Rank LncRNA Evidence Rank LncRNA Evidence

1 HULC Lnc2Cancer 3.0, RNADisease, and LncRNADisease v3.0 1 PTENP1 Unknown

2 MIAT Lnc2Cancer 3.0, RNADisease, and LncRNADisease v3.0 2 WRAP53 RNADisease and Lnc2Cancer 3.0

3 MINA Unknown 3 PRINS Unknown

4 CCDC26 Unknown 4 MINA Unknown

5 CRNDE Lnc2Cancer 3.0, RNADisease, and LncRNADisease v3.0 5 RRP1B Unknown

6 PCAT1 Lnc2Cancer 3.0, RNADisease, and LncRNADisease v3.0 6 MYCNOS Unknown

7 HNF1A-AS1 Lnc2Cancer 3.0, RNADisease, and LncRNADisease v3.0 7 DLEU1 LncRNADisease v3.0

8 7SK Unknown 8 LINC00032 Unknown

9 WT1-AS LncRNADisease v3.0 9 SNHG16 Lnc2Cancer 3.0, RNADisease, and LncRNADisease v3.0

10 GHET1 RNADisease and LncRNADisease v3.0 10 SRA1 Unknown

11 SOX2-OT RNADisease, and LncRNADisease v3.0 11 7SK Unknown

12 PTENP1 Unknown 12 MKRN3-AS1 Unknown

13 CASC2 Lnc2Cancer 3.0, RNADisease, and LncRNADisease v3.0 13 DISC2 Unknown

14 HIF1A-AS2 LncRNADisease v3.0 14 NRON Unknown

15 LSINCT5 Lnc2Cancer 3.0, RNADisease, and LncRNADisease v3.0 15 MESTIT1 Unknown

TABLE 9 Predicted top 15 lncRNAs associated with LUAD on LncRNADisease and MNDR.

LncRNADisease MNDR

Rank LncRNA Evidence Rank LncRNA Evidence

1 CDKN2B-
AS1

RNADisease and Lnc2Cancer 3.0 1 TUG1 RNADisease and LncRNADisease v3.0

2 PVT1 Lnc2Cancer 3.0, RNADisease, and LncRNADisease v3.0 2 CDKN2B-
AS1

RNADisease and Lnc2Cancer 3.0

3 H19 Lnc2Cancer 3.0 and LncRNADisease v3.0 3 PVT1 Lnc2Cancer 3.0, RNADisease, and LncRNADisease v3.0

4 TUG1 RNADisease and LncRNADisease v3.0 4 UCA1 Lnc2Cancer 3.0, RNADisease, and LncRNADisease v3.0

5 CCAT2 Lnc2Cancer 3.0 and LncRNADisease v3.0 5 KCNQ1OT1 RNADisease and Lnc2Cancer 3.0

6 XIST RNADisease and Lnc2Cancer 3.0 6 CBR3-AS1 LncRNADisease v3.0

7 HULC Unknown 7 SNHG4 Unknown

8 DANCR Lnc2Cancer 3.0, RNADisease, and LncRNADisease v3.0 8 WT1-AS LncRNADisease v3.0

9 MINA Unknown 9 SPRY4-IT1 RNADisease and Lnc2Cancer 3.0

10 BCYRN1 Unknown 10 BCYRN1 Unknown

11 BANCR Unknown 11 HULC Unknown

12 PANDAR Unknown 12 PTENP1 Unknown

13 CASC2 Lnc2Cancer 3.0, RNADisease, and LncRNADisease v3.0 13 HIF1A-AS1 RNADisease

14 LSINCT5 Unknown 14 CCAT2 Lnc2Cancer 3.0, and LncRNADisease v3.0

15 CCDC26 Unknown 15 HIF1A-AS2 LncRNADisease v3.0
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3 Results

3.1 Experimental settings

To assess the LDA inference performance of LDA-SABC, we
implemented three fivefold CVs to compare it with four
representative LDA prediction approaches, namely, SDLDA
(Zeng et al., 2020), LDNFSGB (Zhang et al., 2020), IPCARF
(Zhu et al., 2021), and LDASR (Guo et al., 2019). The
parameters in the above four methods were derived from their
corresponding literatures. For the LDA-SABC model, we set n_
estimators, learning rate, and epochs to 100, 0.1, and 10, respectively,
in LDA-AdaBoost-CNN and n_estimators and learning rate to
100 and 0.1, respectively, in LRI-LightGBM. The dimension d of
an LDA feature vector was set to 64.

3.2 Comparison with four classical LDA
prediction methods

We used six evaluation metrics (precision, recall, accuracy,
F1 score, AUC, and AUPR (Shen et al., 2022; Liu et al., 2023;
Qiu et al., 2023a)) to assess the performance of LDA-SABC and four
other LDA prediction algorithms (SDLDA, LDNFSGB, IPCARF,
and LDASR) under three different fivefold cross validations. The
three CVs are fivefold CV on lncRNAs (CVl), five-fold CV on
diseases (CVd), and fivefold CV on LDPs (CVld). The details refer to

Peng et al. (2024a). Tables 2–4 depict the performance of LDA-
SABC and four other methods on two databases
(i.e., LncRNADisease and MNDR) under the three CVs. Figure 2
characterizes the corresponding ROC and precision–recall
(PR) curves.

CVl was used to compare the performance of LDA-SABC with
SDLDA, LDNFSGB, LDASR, and IPCAF when identifying diseases
linking to a new lncRNA. Under CVl, all five methods randomly
selected 80% of lncRNAs as the training set and used the remaining
as the test set. The results are listed in Table 2 and Figure 2. We
found that LDA-SABC outperformed in terms of precision, recall,
accuracy, F1 score, AUC, and AUPR compared with the four
classical LDA prediction algorithms. For example, LDA-SABC
obtained the highest AUC values of 0.9328 and 0.9675,
outperforming by 13.05% and 3.09% compared to those of the
second best algorithm, on the LncRNADisease and MNDR
databases, respectively. It also calculated the highest AUPR values
of 0.9304 and 0.9703, outperforming by 8.43% and 1.76% compared
to those of the second best algorithm, respectively. These results
imply that LDA-SABC could accurately capture the underlying
diseases linking to a new lncRNA.

CVd was applied to compare the performance of LDA-SABC
with SDLDA, LDNFSGB, LDASR, and IPCAF when identifying
lncRNAs linking to a new disease. Under CVd, all five methods
randomly selected 80% of diseases as the training set and used the
remaining as the test set. As demonstrated in Table 3 and Figure 2,
LDA-SABC significantly surpassed four other algorithms on the two

FIGURE 4
(A) Inferred top 15 lncRNAs associated with NSCLC on LncRNADisease and MNDR databases. (B) Inferred top 15 lncRNAs associated with LUAD on
LncRNADisease and MNDR databases.
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datasets. For example, LDA-SABC obtained the highest AUC values
of 0.9630 and 0.9860, outperforming by 8.42% and 3.01% compared
to those of the second best algorithm (i.e., SDLDA), on the
LncRNADisease and MNDR databases, respectively. It also
calculated the highest AUPR values of 0.9605 and 0.9836,
outperforming by 6.71% and 2.75% compared to those of the
second best algorithm (i.e., SDLDA), on the LncRNADisease and
MNDR databases, respectively. These results suggest that LDA-
SABC could accurately infer potential lncRNAs linking to a
new disease.

CVld is used to compare the performance of all five LDA
inference methods when identifying new LDAs from unknown
LDPs. Under CVld, all five methods randomly selected 80% of
LDPs as the training set and used the remaining as the test set.
As demonstrated in Table 4 and Figure 2, LDA-SABC significantly
improved LDA prediction in comparison with the four other
methods. For example, LDA-SABC achieved the highest AUC
values of 0.9628 and 0.9878, outperforming by 8.54% and 3.18%
compared to those of the second best algorithm (i.e., SDLDA), on
the LncRNADisease and MNDR databases, respectively. It also
calculated the highest AUPR values of 0.9606 and 0.9881,
outperforming by 6.54% and 2.42% compared to those of the
second best algorithm (i.e., SDLDA), on the LncRNADisease and
MNDR databases, respectively. Thus, LDA-SABC could more
accurately infer the underlying LDAs through known LDAs.

3.3 Ablation study

LDA-SABC combined AdaBoost-CNN and LightGBM for LDA
prediction. In model Ensemble, α and β were used to evaluate the
effects of LDA-AdaBoost-CNN and LDA-LightGBM on the LDA
inference performance, respectively. As shown in Figure 3, when α

was set to 0, 0.2, 0.4, 0.6, 0.8, and 1, respectively, LDA-SABC
achieved the best performance on the LncRNADisease and
MNDR databases under fivefold CVs on lncRNAs, diseases, and
LDPs. Supplementary Tables S1–S3 show the detailed performance
of LDA-SABC when α was set to the above six values, respectively.
Thus, we set α and β to 0.4 and 0.6, respectively.

To better understand the performance of ensemble learning, we
compared LDA-SABC with other boosting algorithms,
i.e., AdaBoost-CNN, AdaBoost, and LightGBM, under three
different CVs. The boosting algorithms used the same feature
extraction procedures as LDA-SABC except for using different
boosting models for classifying unknown LDPs. Tables 5–7 show
their LDA prediction performance under fivefold CVs on lncRNAs,
diseases, and LDPs, respectively. The results demonstrate that LDA-
SABC computed the best LDA inference accuracy on the two LDA
databases under the three CVs in most cases, thereby elucidating the
powerful LDP classification performance of our proposed ensemble
learning model with LightGBM and AdaBoost-CNN.

3.4 Case study

Lung cancer is one of the most frequent malignant tumors and
has a very high incidence and mortality rate. More importantly, its
5-year survival rate is much lower compared to other leading cancers

(Huang et al., 2023). Non-small-cell lung cancer and lung
adenocarcinoma (LUAD) are two prevalent lung cancers, wherein
NSCLC accounts for approximately 85% of lung cancers (Tan et al.,
2023) and LUAD is the most predominant subtype (Li et al., 2023).
lncRNAs have close associations with various complex diseases and
are potential biomarkers of many types of cancers. Therefore, it is
very important to discover potential lncRNAs and further provide
therapeutic options for lung cancer.

Through performance comparison, we validated the accurate
LDA classification performance of LDA-SABC. Subsequently, we
utilized LDA-SABC to discover the potential lncRNAs for NSCLC
and LUAD. We computed the association probabilities between all
lncRNAs and NSCLC and LUAD. Tables 8 and 9 demonstrate the
top 15 lncRNAs with the highest association probability with
NSCLC and LUAD among all lncRNAs which have no observed
association with NSCLC and LUAD on the LncRNADisease and
MNDR databases, respectively. Figure 4 elucidates two predicted
LDA networks for NSCLC and LUAD.

Among the inferred top 15 lncRNAs associated with NSCLC,
11 and 3 lncRNAs, predicted on the LncRNADisease and MNDR
databases, have been confirmed by Lnc2Cancer 3.0 (Gao et al.,
2021), LncRNADisease v3.0 (Lin et al., 2023b), and/or RNADisease
(Chen et al., 2023), respectively. Particularly, 7SK was linked to
NSCLC, which was ranked 8 and 11, respectively. lncRNA 7SK acts
as a transcription regulator. Its exosomal delivery could inhibit the
proliferation and aggressiveness of tumor cells in triple-negative
breast cancer (Farhadi et al., 2023). Furthermore, 7SK could
suppress human tongue squamous carcinoma (Zhang et al.,
2021). 7SK was predicted to be associated with NSCLC, which
needs further confirmation.

Among the inferred top 15 lncRNAs associated with LUAD,
8 and 11 lncRNAs, predicted on the LncRNADisease and MNDR
databases, have been reported by Lnc2Cancer 3.0, LncRNADisease
v3.0, and/or RNADisease, respectively. We found that HULC could
be associated with LUAD, which was ranked 7 and 11, respectively.
HULC is an oncogenic lncRNA and may serve as a prognostic
biomarker of hepatocellular carcinoma development (Liu S. et al.,
2023). Moreover, it displays the potential to be a novel biomarker for
assisting acute myocardial infarction diagnosis when combined with
other biomarkers (Xie et al., 2022).

4 Discussion and conclusion

Inferring possible LDAs can advance our understanding of
human complex diseases in the context of lncRNAs. However,
traditional experimental techniques for LDA prediction are
costly, laborious, and time-consuming, which restricts the
number of the verified LDAs. Thus, substantive computational
frameworks have been exploited. In this manuscript, we proposed
a novel computational LDA inference framework LDA-SABC by
combining SVD and an ensemble model of LightGBM and
AdaBoost-CNN.

LDA-SABC first acquired LDP linear features using SVD. Next,
it computed the association probability for each LDP with LDA-
LightGBM and LDA-AdaBoost-CNN. Finally, all LDPs were
classified through ensemble learning. To illustrate the
effectiveness of LDA-SABC, it was compared with four classical
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computational methods (SDLDA, LDNFSGB, IPCARF, and
LDASR) under three CVs. The results elucidated that its
performance was significantly improved. To validate the
performance of LDA-SABC, we further performed case studies to
find potential biomarkers of NSCLC and LUAD and discovered the
top 15 lncRNAs linked to them from all unknown LDPs. The results
demonstrated that among the inferred top lncRNAs reported by
RNADisease, LncRNADisease v3.0, or/and Lnc2Cancer
3.0 databases, 7SK and HULC could have a relationship with
NSCLC and LUAD, respectively.

The novelty of this study is the use of SVD for extracting LDP
features and designing an ensemble model with LightGBM and
AdaBoost-CNN for improving the LDA prediction accuracy.
Differing from traditional LDA prediction performance
validation, LDA-SABC was assessed under fivefold CVs on
lncRNAs, diseases, and LDPs. However, in the process of
negative LDA selection, a random selection strategy was adopted,
which affected the overall performance of the model. In the future,
we will design a reasonable negative LDA selection strategy based on
positive-unlabeled learning. More importantly, we will still explore a
stronger classification model for LDP classification by integrating
various data and deep learning methods. We hope that our proposed
LDA-SABC could contribute to the lncRNA biomarker discovery of
various complex diseases, especially cancers, and further help find
new therapeutic options for various types of cancers.
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