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Background: Obstructive sleep apnea (OSA) syndrome and nonalcoholic fatty
liver disease (NAFLD) have been shown to have a close association in previous
studies, but their pathogeneses are unclear. This study explores the molecular
mechanisms associated with the pathogenesis of OSA and NAFLD and identifies
key predictive genes.

Methods: Using the Gene Expression Omnibus (GEO) database, we obtained
gene expression profiles GSE38792 forOSA andGSE89632 for NAFLD and related
clinical characteristics. Mitochondrial unfolded protein response-related genes
(UPRmtRGs) were acquired by collating and collecting UPRmtRGs from the
GeneCards database and relevant literature from PubMed. The differentially
expressed genes (DEGs) associated with OSA and NAFLD were identified using
differential expression analysis. Gene Set Enrichment Analysis (GSEA) was
conducted for signaling pathway enrichment analysis of related disease genes.
Based on the STRING database, protein–protein interaction (PPI) analysis was
performed on differentially co-expressed genes (Co-DEGs), and the Cytoscape
software (version 3.9.1) was used to visualize the PPI network model. In addition,
the GeneMANIA website was used to predict and construct the functional similar
genes of the selected Co-DEGs. Key predictor genes were analyzed using the
receiver operating characteristic (ROC) curve.

Results: The intersection of differentially expressed genes shared between OSA
and NAFLD-related gene expression profiles with UPRmtRGs yielded four Co-
DEGs: ASS1, HDAC2, SIRT3, and VEGFA. GSEA obtained the relevant enrichment
signaling pathways for OSA and NAFLD. PPI network results showed that all four
Co-DEGs interacted (except for ASS1 and HDAC2). Ultimately, key predictor
genes were selected in the ROC curve, including HDAC2 (OSA: AUC = 0.812;
NAFLD: AUC = 0.729), SIRT3 (OSA: AUC = 0.775; NAFLD: AUC = 0.750), and
VEGFA (OSA: AUC = 0.812; NAFLD: AUC = 0.861) (they have a high degree of
accuracy in predicting whether a subject will develop two diseases).

Conclusion: In this study, four co-expression differential genes for OSA and
NAFLD were obtained, and they can predict the occurrence of both diseases.
Transcriptional mechanisms involved in OSA and NAFLD interactions may be
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better understood by exploring these key genes. Simultaneously, this study
provides potential diagnostic and therapeutic markers for patients with OSA
and NAFLD.
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Introduction

Obstructive sleep apnea (OSA) is a multifaceted clinical
condition with diverse underlying causes that can lead to
systemic dysfunction, culminating in complications such as
cardiovascular disease, type 2 diabetes, metabolic syndrome,
and cognitive impairment. OSA, a prevalent sleep disorder, is
characterized by intermittent hypoxemia, hypercapnia,
inflammatory responses, oxidative stress, and disrupted sleep
patterns (Durán et al., 2001). The escalating prevalence of OSA is
attributed to the expanding global economy and population
growth. OSA affects approximately 1%–5% of children (Bin-
Hasan et al., 2018) and 10%–26% of adults (Sarkar et al.,
2018), significantly impacting the overall population health.
Effective treatment options for OSA in adults are currently
limited, with continuous positive airway pressure therapy
being the primary intervention. However, this treatment
method exhibits restricted efficacy in addressing metabolic and
cardiovascular complications associated with OSA (4). Hence,
studying the molecular mechanisms of OSA on related
complications and treatments holds considerable clinical
importance. Nonalcoholic fatty liver disease (NAFLD)
encompasses liver tissue lesions unrelated to alcohol and other
specified liver injury factors, including simple hepatic steatosis
(NAFL) and nonalcoholic steatohepatitis (NASH), which may
progress to cirrhosis and hepatocellular carcinoma (HCC)
(Stefan et al., 2019). NAFLD represents a complex metabolic
disorder induced by various metabolic abnormalities like obesity,
hypertension, hypertriglyceridemia, and diabetes, closely linked
with NAFLD development (Younossi et al., 2016). The global
prevalence of NAFLD in adults is estimated at 25% (Global
burden of 369 diseases, 2020), surpassing hepatitis B as the
most widespread cause of chronic liver disease in China, thus
imposing a substantial burden on social and health services
(Zhou et al., 2020).

OSA and NAFLD are both metabolism-related disorders, each
belonging to distinct systems. However, a growing body of research
has highlighted the strong relationship and interaction
mechanisms between these two conditions. The correlation
between OSA and NAFLD has emerged as a significant area of
study. The primary pathophysiological feature of OSA is
intermittent hypoxia (IH), which can result in damage to
various target organs. The liver, being a key metabolic organ, is
inevitably affected. This impact is evident not only through
abnormal liver enzymes, blood lipids, and glucose metabolism
but also through observable changes in liver pathology. Studies
indicate that IH can induce liver injury through an excessive
inflammatory response, exacerbation of oxidative stress, and
impairment of mitochondrial function (Mesarwi et al., 2019).

NAFLD, a metabolically demanding liver condition, is closely
linked to genetic factors and insulin resistance (IR). Obesity,
age, type 2 diabetes, hyperlipidemia, and hypertension are
recognized as the five primary risk factors contributing to
NAFLD development (Clark and Diehl, 2003; Marchesini et al.,
2003). These risk factors are also significantly associated with OSA.
Additionally, data from a population-based study suggest that
patients with OSA have a higher prevalence of liver diseases,
including cirrhosis and NAFLD, when compared to non-OSA
individuals (Chou et al., 2015). Animal model studies have
revealed that obese mice exposed to intermittent hypoxia
exhibit elevated levels of serological markers, liver enzymes, and
insulin. Furthermore, liver tissue analysis showed steatosis and
lobular inflammation (Drager et al., 2011). Currently, the
mechanisms through which OSA influences NAFLD involve
factors such as intermittent hypoxia, insulin resistance,
oxidative stress, metabolic dysregulation, and intestinal barrier
dysfunction. The interplay between OSA and NAFLD, while not
entirely elucidated, underscores the intricate relationship between
these metabolic disorders. Notably, mitochondrial dysfunction
plays a key role in the pathogenesis and progression of
metabolic diseases, including OSA and NAFLD. The
mitochondrial unfolded protein response (UPRmt) acts as a
stress response mechanism triggered by the accumulation of
misfolded proteins in the mitochondrial matrix (Tran and Van
Aken, 2020a). This response, crucial for proper protein import into
the mitochondria, is regarded as a pivotal safeguard for
maintaining mitochondrial function (Haynes et al., 2013).
Potential key genes involved in the UPRmt have been identified
as significant contributors to the pathogenesis of OSA and
NAFLD. However, the specific genes implicated in this process
remain unidentified. Therefore, leveraging bioinformatics tools for
genetic analysis at the molecular level is imperative in deciphering
the genetic underpinnings of both disorders.

Traditional biological research often faces challenges in
identifying genes and their interactions within databases. With
the advancements in sequencing technology and bioinformatics,
researchers can now employ bioinformatics analysis to more
efficiently pinpoint specific genes associated with certain traits
and identify common genes of significant biological importance.
This enables the investigation of the correlation and mechanisms of
action between diseases. By conducting a thorough bioinformatics
analysis, differentially expressed genes (DEGs) between OSA and
NAFLD samples were identified. These DEGs were then used to
screen differentially co-expressed genes (Co-DEGs) and explore
their underlying molecular mechanisms. This study aimed to
delve into the related pathways and interaction networks of these
genes, ultimately identifying key predictive genes for OSA
and NAFLD.
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Materials and methods

The workflow detailing the analysis and extraction of key
predictive genes is illustrated in Figure 1.

Data preparation

Gene expression profiles and related clinical data from two
datasets were obtained for OSA (GSE38792) (Gharib et al., 2013)
and NAFLD (GSE89632) (Arendt et al., 2015a) using GEOquery of
the R package (Davis and Meltzer, 2007) from the GEO database
(Barrett et al., 2013). The GSE38792 dataset, sourced from Homo
sapiens, utilized the GPL6244 [HuGene-1_0-st] Affymetrix Human
Gene 1.0 ST Array [transcript (gene) version]. It included
microarray gene expression profiles from 10 OSA patient samples
(case group) and 8 normal visceral adipose tissue samples (normal
group). The GSE89632 dataset fromHomo sapiens was based on the
expression bead chip GPL14951 Illumina HumanHT-12WG-DASL
V4.0 R2, containing data from 39 NAFLD patient samples (case
group) and 24 normal liver samples (normal group). All samples
were included in the study, and the dataset probe naming used the
corresponding GPL-covered platform file. Specific dataset
information is given in Table 1. The GeneCards database (Stelzer

et al., 2016) offers comprehensive gene information about humans.
Mitochondrial unfolded protein response-related genes
(UPRmtRGs) were collected from the GeneCards database using
the search term “mitochondrial unfolded protein response” with a
relevance score threshold >0.2, resulting in a total of 78 UPRmtRGs.
Additional UPRmtRGs were identified through a PubMed literature
search (Ge et al., 2019; Tran and Van Aken, 2020), totaling 32 genes.
Merging the UPRmtRGs from both sources yielded 102 antioxidant-
related genes (ARGs) for subsequent analysis. Specific gene names
are given in Supplementary Table S1.

Differential expression analysis

To investigate the biological mechanisms, traits, and pathways
of target genes in individuals with OSA and NAFLD, we initially
used the limma plug-in within R 4.1.2 software (Ritchie et al., 2015)
to standardize the datasets GSE38792 and GSE89632. These datasets
were then divided into disease and normal groups, and the processed
expression profile data were analyzed. Through this process, DEGs
were identified within the various OSA and NAFLD dataset groups,
with upregulated genes defined as those with logFC >0.1 and p <
0.05 and downregulated genes as those with logFC < −0.1 and p <
0.05. The differential analysis outcomes were visualized using

FIGURE 1
Flowchart. NAFLD, nonalcoholic fatty liver disease; OSA, obstructive sleep apnea; UPRmtRGs, mitochondrial unfolded protein response-related
genes; GSEA, Gene Set Enrichment Analysis; Co-DEGs, differentially co-expressed genes; PPI, protein–protein interaction; ROC, receiver operating
characteristic.
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volcano plots created using the ggplot2 plug-in in R 4.1.2 software.
Subsequently, we compared the identified OSA and NAFLD
differentially expressed genes with the UPRmtRGs to pinpoint
Co-DEGs, which were illustrated using Venn diagrams.
Furthermore, the expression patterns of Co-DEGs in datasets
GSE38792 and GSE89632 were displayed as a heatmap generated
using R 4.1.2 software.

Gene Set Enrichment Analysis

To determine the contribution of each gene to the phenotype,
Gene Set Enrichment Analysis (GSEA) was utilized (Subramanian
et al., 2005). GSEA evaluates the distribution trend of a specified
gene set in a gene table sorted based on the phenotypic correlation.
In this study, the clusterProfiler plug-in in R 4.1.2 software was
employed to enrich all genes in the disease and normal groups of
datasets GSE38792 and GSE89632. The GSEA parameters included
a 2021 seed, 10,000 computation times, each gene set containing a
minimum of 5 genes, a maximum of 500 genes per set, and the
utilization of the Benjamini–Hochberg (BH) method for p-value
correction. The gene set “c2.cp.v7.2.symbols” was obtained from the
Molecular Signatures Database (MSigDB). Substantial enrichment was
determined based on the false discovery rate (FDR) value (q-value) <
0.25 and p-value <0.05.

Protein–protein interaction network
construction and module analysis

We utilized the STRING database to construct a protein–protein
interaction (PPI) network associated with Co-DEGs. The STRING
database is a valuable resource that identifies known proteins and
predicts their interactions (Szklarczyk et al., 2019). A minimum
interaction score of 0.150, signifying medium confidence, was set for
the inclusion of interactions in the network. In PPI networks,
densely interconnected local clusters may represent specific
chemical complexes with distinct biological functions.
Furthermore, the maximal clique centrality (MCC) algorithm, a
well-established metric in bioinformatics, was employed to assess
network performance. The PPI network model was visualized using
Cytoscape software (version 3.9.1) (Shannon et al., 2003). To predict
functionally related genes among the screened Co-DEGs, the

GeneMANIA website (Franz et al., 2018) was utilized. Following
the Co-DEG screening, functional gene predictions were made using
GeneMANIA, subsequently establishing an interaction network.

Statistical analysis

All data processing and analysis in this study were conducted
using R software version 4.1.2. Continuous variables were presented as
the mean ± standard deviation. In comparison of two sets of
continuous variables, the statistical significance of normally
distributed variables was assessed using the Wilcoxon rank sum
test or independent Student’s t-test. For comparison of categorical
variables, the chi-square test or Fisher’s exact test was used. The
receiver operating characteristic (ROC) curve (Mandrekar, 2010) was
generated using the pROC package in R 4.1.2. Spearman’s correlation
analysis was utilized to determine the correlation coefficient between
different molecules in the absence of specific instructions. A p-value
less than 0.05 was considered statistically significant.

Results

Identification of DEGs

The datasets GSE38792 and GSE89632 were normalized and
compared before and after standardization through distribution box
plot analysis (Figures 2A–D) and principal component analysis
(PCA) plots (Figures 2E, F). The results indicated that post-
standardization, the expression patterns of samples in both
GSE38792 and GSE89632 became more consistent,
demonstrating good intra-group reproducibility and intergroup
differentiation between the disease and normal groups. A total of
21,408 differentially expressed genes were identified in dataset
GSE38792, meeting the criteria of p < 0.05 and |logFC| > 0.1.
Among these, 851 genes were found to have high expression in
the OSA high-risk group (considered upregulated genes), while
765 genes exhibited low expression in the same group. This
differential gene expression analysis was visualized through
volcano plots (Figure 3A). In dataset GSE89632,
20,819 differentially expressed genes were discovered, with
10,778 genes meeting the thresholds of |logFC| > 0.1 and p <
0.05. In this dataset, 5,947 genes were upregulated and
4,841 genes were downregulated in the NAFLD high-risk group
compared to the low-risk group. A visualization of these results was
presented in volcano plots (Figure 3B). Subsequently, an intersection
analysis was carried out among the differentially expressed genes in
OSA, NAFLD, and UPRmtRG datasets, revealing four common
genes (ASS1, HDAC2, SIRT3, and VEGFA), which were illustrated
using a Venn diagram (Figure 3C). Lastly, a heatmap was generated
(Figures 3D, E) to display the expression levels of these four Co-
DEGs in datasets GSE38792 and GSE89632.

Gene Set Enrichment Analysis

In order to determine the impact of gene expression levels on
the difference between the disease group and the normal group,

TABLE 1 List of dataset information.

Items GSE38792 GSE89632

Platform GPL6244 GPL14951

Species Homo sapiens Homo sapiens

Disease OSA NAFLD

Tissue Visceral adipose tissue Liver

Samples in the case group 39 10

Samples in the normal group 24 8

Reference Sarkar et al. (2018) Light et al. (2018)

OSA, obstructive sleep apnea; NAFLD, nonalcoholic fatty liver disease.
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we analyzed the relationship between gene expression, biological
processes, cellular components affected, and molecular functions
involved in datasets GSE38792 and GSE89632 using GSEA. We
applied stringent enrichment screening criteria, defining
significance as p < 0.05 and FDR value (q-value) <0.25. Our
results revealed a notable enrichment of genes in dataset
GSE38792 in pathways such as REACTOME FCERI-
MEDIATED NF KB ACTIVATION, REACTOME P130 CAS
LINKAGE TO MAPK SIGNALING FOR INTEGRINS, WP
TGF BETA SIGNALING PATHWAY, and REACTOME
SIGNALING BY HEDGEHOG, as depicted in Figures 4B–E;
Table 2. Additionally, we visualized the data through ridge
plots and pathway maps in the dataset TCGA-COADREAD
(Figures 4A–E). Conversely, genes in dataset
GSE89632 exhibited significant enrichment in pathways
including KEGG JAK STAT SIGNALING PATHWAY, WP
TGF BETA SIGNALING PATHWAY, WP PI3K-AKT
SIGNALING PATHWAY, and KEGG MAPK SIGNALING
PATHWAY, as shown in Figures 4G–J; Table 3. Similar to the

previous dataset, we utilized ridge plots and pathway maps to
display the results in the dataset TCGA-COADREAD
(Figures 4F–I).

The PPI interaction network

We conducted a protein–protein interaction analysis on four
Co-DEGs (ASS1, HDAC2, SIRT3, and VEGFA) using the STRING
database. The minimum required interaction score in the STRING
database was set to medium confidence at 0.150. This score was
chosen as the threshold to construct the PPI network for the four
Co-DEGs. The interaction relationships were visualized using
Cytoscape software (see Figure 5A). The results showed that,
with a minimum interaction score of 0.150, all Co-DEGs, except
ASS1 and HDAC2, exhibited interactions with at least one other Co-
DEG. Subsequently, the MCC algorithm was used to calculate the
scores of the Co-DEGs associated with the nodes in the PPI network.
The Co-DEGs were then ranked based on these scores, visualized

FIGURE 2
Sample distribution box plot and PCA plot. (A,B) Sample distribution box plot before (A) and after (B) the dataset GSE38792 merged. (C,D) Sample
distribution box plots before (C) and after (D) the dataset GSE89632 merged. (E,F) PCA plots of the datasets GSE38792 (E) and GSE89632 (F). PCA,
principal component analysis.
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using a gradient color scale from red to yellow. As shown in
Figure 5B, SIRT3 and VEGFA are tied for the top position in the
MCC algorithm score ranking. These four genes were identified to
play crucial roles in the PPI network, with SIRT3 and VEGFA
receiving the highest scores in the MCC analysis, underscoring
their roles as core key genes in the diseases under investigation.
Detailed gene scores are given in Supplementary Table S2.
Additionally, we utilized the GeneMANIA website to predict and
construct a functionally similar gene interaction network for these
four Co-DEGs (see Figure 5C), allowing us to explore their physical
interactions, co-expression patterns, predictions, colocalization,
gene interactions, pathways, shared protein domains, and other
relevant information.

Group comparison charts and the
ROC curves

We subsequently analyzed the group comparison charts of the
expression levels of the four Co-DEGs (ASS1, HDAC2, SIRT3, and
VEGFA) in the datasets GSE38792 and GSE89632 (Figures 6A–H).
The results showed that there was no statistically significant
difference in the expressions of ASS1 and SIRT3 (p ≥ 0.05), while
the expressions of HDAC2 and VEGFA exhibited statistical
significance (p < 0.05) between the disease group and normal
group in dataset GSE38792. Furthermore, a statistically
significant difference in the expression of ASS1 (p < 0.05), a
highly statistically significant difference in the expression of

HDAC2 (p < 0.01), and an extremely statistically significant
difference in the expressions of SIRT3 and VEGFA (p < 0.001)
were observed between the disease group and normal group in
dataset GSE89632.

To investigate the relationship between the expressions of the
four Co-DEGs (ASS1, HDAC2, SIRT3, and VEGFA) and the
incidence of OSA and NAFLD, we generated ROC curves of
these genes in datasets GSE38792 and GSE89632 and presented
the findings (Figures 7A–H). The ROC curves indicated that in the
OSA dataset GSE38792, the AUC values for ASS1, HDAC2, SIRT3,
andVEGFA are 0.762, 0.812, 0.775, and 0.812, respectively (all above
0.7), suggesting their high accuracy in predicting the correct
classification of case and normal groups. In the NAFLD dataset
GSE89632, the AUC was 0.672 for ASS1, indicating lower accuracy
in predicting the correct classification of case and normal groups,
whereas the AUC values for HDAC2, SIRT3, and VEGFA are 0.729,
0.750, and 0.861, respectively (over 0.7), signifying their high
accuracy in predicting the correct classification of case and
normal groups. These significant predictive genes may serve as
valuable markers for the potential diagnosis and treatment of
OSA and NAFLD.

Discussion

OSA is a chronic, progressive disease that is widespread in the
population, and IH and the resulting oxidative stress response are
hallmark manifestations of OSA. In addition, sleep disorders are

FIGURE 3
Differential expression analysis. (A,B) Volcano plot of differential expression analysis of the datasets GSE38792 (A) and GSE89632 (B) between the
disease (group: case) and normal (group: normal). (C) Venn diagram of the intersection of differentially expressed genes and UPRmtRGs obtained from
datasets GSE38792 and GSE89632. (D,E) Heatmap of the expression levels of Co-DEGs in the datasets GSE38792 and GSE89632. UPRmtRGs,
mitochondrial unfolded protein response-related genes; Co-DEGs, differentially co-expressed genes.
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FIGURE 4
GSEA (A). Ridge plot of the GSEA of dataset GSE38792; GSEA of dataset GSE38792 yieldedmainly four biological features. (B–E) Pathwaymaps of the
GSEA of dataset GSE38792. Genes in dataset GSE38792 showed significant enrichment in pathways such as REACTOME FCERI-MEDIATED NF KB
ACTIVATION (B), REACTOME P130 CAS LINKAGE TO MAPK SIGNALING FOR INTEGRINS (C), WP TGF BETA SIGNALING PATHWAY (D), and REACTOME
SIGNALING BY HEDGEHOG (E). (F) Ridge plot of the GSEA of dataset GSE89632. The GSEA of dataset GSE89632 yielded mainly four biological
features. (G–J) Pathway maps of the GSEA of dataset GSE89632. Genes in the dataset GSE89632 showed significant enrichment in pathways such as
KEGG JAK STAT SIGNALING PATHWAY (G), WP TGF BETA SIGNALING PATHWAY (H), WP PI3KAKT SIGNALING PATHWAY (I), and KEGGMAPK SIGNALING
PATHWAY (J). p < 0.05 and an FDR value (q-value) < 0.25 were the significant enrichment screening parameters for the GSEA. GSEA, Gene Set
Enrichment Analysis.
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common in OSA patients, and a large number of studies (Koritala
et al., 2021; Soreca, 2021) show that OSA patients may have
circadian rhythm disorders, and the two may interact to cause
metabolic disorders. NAFLD is also a prevalent metabolic disease
in the population and may severely impair liver function, especially
after progression to NASH, and the liver disease spectrum may
further develop into hepatocellular carcinoma (Ye et al., 2020).
Progression of the liver disease spectrum is associated with an
increased incidence of metabolic disease, and metabolic-targeted
therapies may alleviate the progression of hepatocellular carcinoma
and can be used for other malignancies (Gnocchi et al., 2023).

OSA and NAFLD are linked to metabolism, and metabolic
disorders have emerged as risk factors for various malignancies
(Gnocchi et al., 2023). Studies focusing on both conditions can
provide valuable insights into the role of metabolic disorders in
disease development. Research findings (Tanné et al., 2005; Drager
et al., 2011; Sookoian and Pirola, 2013; Petta et al., 2015; Kang et al.,
2017) indicate a close association between OSA and NAFLD,
although there is an ongoing debate and a lack of high-quality
clinical evidence to definitively establish a causal or concurrent
relationship between OSA and NAFLD. Nonetheless, the majority of
studies have highlighted the impact of OSA on NAFLD. The recent
renaming of NAFLD to metabolism-related fatty liver disease
(Eslam et al., 2022) underscores the growing interest in exploring
the connection between OSA and NAFLD within the realm of
metabolism. Notably, CPAP therapy is currently the preferred
treatment for OSA, and studies suggest that CPAP treatment can
enhance the liver function in OSA patients with NAFLD (Kim et al.,
2018). However, noncompliance with CPAP therapy is common
among OSA patients, leading to the progression of OSA and its

associated complications. Therefore, it is imperative to identify
common predictor genes and investigate the molecular
mechanisms underlying the interaction between OSA and
NAFLD to facilitate early diagnosis and effective treatment
strategies. While the biological system is complex, and genes
represent just one aspect of the disease phenotype, genetic
research remains pivotal in guiding clinical and fundamental
investigations.

In this study, we analyzed datasets on OSA and NAFLD using
differential expression analysis and GSEA to identify Co-DEGs and
related signal transduction pathways. For the first time, we utilized
UPRmtRGs to identify core Co-DEGs by merging DEGs and
UPRmtRGs from both diseases, providing key genes for future
metabolic disease research. Additionally, we employed ROC
analysis to identify crucial predictor genes between OSA and
NAFLD. Our bioinformatics analysis revealed four key
differential genes—ASS1, HDAC2, SIRT3, and VEGFA—as Co-
DEGs in patients with Alzheimer’s disease (AD) and OSA.
Through GSEA, we identified significantly enriched signaling
pathways related to inflammation, stress response, cell
proliferation, and differentiation in OSA and NAFLD, with the
TGF BETA SIGNALING PATHWAY being shared between the two
diseases. Using PPI analysis, we found that besides ASS1 and
HDAC2, other Co-DEGs exhibited interacting relationships,
indicating a synergistic impact on the diseases through physical
interactions, co-expression, mutual prediction, co-localization,
genetic interactions, and shared protein domain connections.
Notably, SIRT3 and VEGFA scored the highest in the MCC
algorithm, highlighting their significance in the core of both
diseases. By comparing the ROC curves, we identified key

TABLE 2 GSEA of dataset GSE38792.

Description Set
size

Enrichment
score

NES p-value q-value

REACTOME CELL CYCLE MITOTIC 453 0.399311539 1.955092057 0.000139218 0.007625044

WP VEGFA VEGFR2 SIGNALING PATHWAY 395 0.318495785 1.542000725 0.000141143 0.007625044

REACTOME CLASS I MHC-MEDIATED ANTIGEN PROCESSING
PRESENTATION

333 0.35495257 1.694858866 0.00014374 0.007625044

REACTOME M PHASE 316 0.43204613 2.051897554 0.000145033 0.007625044

REACTOME ASPARAGINE N-LINKED GLYCOSYLATION 266 0.387808776 1.811180513 0.000147689 0.007625044

REACTOME ORGANELLE BIOGENESIS AND MAINTENANCE 250 0.387058632 1.795034965 0.000148368 0.007625044

REACTOME PLATELET ACTIVATION SIGNALING AND AGGREGATION 244 0.345733742 1.59952342 0.00014839 0.007625044

REACTOME DNA REPAIR 251 0.391426592 1.814982473 0.000148633 0.007625044

REACTOME CELL CYCLE CHECKPOINTS 233 0.435028556 2.001351684 0.000149723 0.007625044

REACTOME RHO GTPASE EFFECTORS 238 0.379048484 1.746110214 0.000150083 0.007625044

REACTOME DEUBIQUITINATION 220 0.360639403 1.647550585 0.000150784 0.007625044

REACTOME FCERI-MEDIATED NF KB ACTIVATION 77 0.404494579 1.585842553 0.006012024 0.064962718

REACTOME P130CAS LINKAGE TO MAPK SIGNALING FOR INTEGRINS 15 0.638084798 1.733972301 0.007993909 0.076478233

WP TGFBETA SIGNALING PATHWAY 128 0.344302402 1.46128931 0.013130504 0.09869798

REACTOME SIGNALING BY HEDGEHOG 137 0.335039805 1.435574434 0.013992686 0.101217951

GSEA, Gene Set Enrichment Analysis.
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predictor genes for OSA and NAFLD. In the OSA group, HDAC2
and VEGFA showed high accuracy (AUC > 0.7) in distinguishing
case and normal groups, with significant differences in their
expression levels (p < 0.05). Likewise, in the NAFLD group,
HDAC2, SIRT3, and VEGFA were accurate predictors
(AUC > 0.7) for case and normal groups, with differential
expression observed for ASS1 (p < 0.05), HDAC2 (p < 0.01), and
SIRT3 andVEGFA (p < 0.001). The genes and pathways identified in
this study are linked to oxidative stress, inflammatory responses, and
disruptions in circadian rhythms, suggesting common pathways
through which OSA and NAFLD may interact, aligning with
previous research findings (Friedman et al., 2018).

OSA causes organ lesions based on chronic intermittent
hypoxemia (CIH), which triggers a series of metabolic reactions.
CIH aggravates the body’s oxidative stress response by triggering
relative oxygen production in OSA patients and leading to an
oxidative/antioxidant imbalance (Hoffmann et al., 2013). At the
same time, due to repeated obstruction events of OSA, IH circulation
occurs, releasing hypoxia-inducible factors (HIF-1α) and
inflammatory factors, causing mitochondrial dysfunction, and
rapid reoxidation of transient hypoxic tissues may lead to tissue
damage and release reactive oxygen species (ROS), which are key
activators of inflammatory pathways (Bonsignore and Eckel, 2009),
which can further induce oxidative stress and inflammatory
response and trigger hepatocyte fat deposition and liver damage
through multiple downstream mechanisms, leading to the
occurrence or progression of NAFLD. Related studies have
shown significant progression of NAFLD in patients with OSA
and hypoxemia compared with young patients with non-OSA
and hypoxemia, suggesting that CIH-mediated oxidative stress
and inflammatory responses may be an important trigger for
NAFLD progression (Sundaram et al., 2016). Studies based on

animal experiments have shown that under the IH condition of
mouse hepatocytes, the expression level of the HIF-1α protein is
increased, but it is not expressed at a normal oxygen concentration
(Mesarwi et al., 2016), which indicates that CIH can activate the liver
to produce HIF-1α, causing oxidative stress damage in liver cells. In
addition, patients with OSA have circadian rhythm disorders, such
as sleep and wake time imbalances, eating rhythm disorders, and
hormone circadian rhythm disorders. Circadian rhythms regulate
the activity of various organs in the body, and their disturbances can
lead to a variety of complications, including metabolic,
cardiovascular, and neurodegenerative diseases (McHill and
Wright, 2017; Lemmer and Oster, 2018; Uddin et al., 2021). The
relationship between OSA and circadian rhythm disturbance may be
bidirectional, with the endogenous circadian system regulating the
pattern of respiratory OSA events and OSA modulating the
circadian system through repeated upper airway obstruction,
leading to sleep fragmentation and IH (Šmon et al., 2023). The
induced circadian clock disruption may be a potential signaling
pathway that is associated with the development and exacerbation of
metabolic syndrome in patients with OSA (Malicki et al., 2022).
Circadian rhythm disturbances are also closely related to NAFLD.
The pathogenic mechanism of NAFLD development is complex,
and it is mainly believed that metabolic disorders and genetic
background are involved in this process; circadian rhythm
disorders can participate in the development and progression of
NAFLD by participating in the regulation of hormones and
metabolic homeostasis and ultimately participate in the
occurrence of HCC (Gnocchi et al., 2019). Relevant studies have
proposed that restricting eating to a specified daily interval can
synchronize the central and peripheral circadian rhythms so as to
prevent or even treat metabolic syndrome and hepatic steatosis,
indicating that circadian rhythms may be the target of NAFLD

TABLE 3 GSEA of dataset GSE89632.

Description Set size Enrichment score NES P-value Q values

Reactome gpcr ligand binding 435 −0.345270488 −1.582097984 0.000133476 0.005819216

Reactome signaling by interleukins 427 −0.486109881 −2.223201608 0.000134336 0.005819216

WP vegfa vegfr2 signaling pathway 411 −0.360100378 −1.641413424 0.000135135 0.005819216

KEGG olfactory transduction 381 −0.617695066 −2.797025693 0.000136705 0.005819216

Reactome olfactory signaling pathway 374 −0.607846828 −2.745263814 0.000137438 0.005819216

Naba secreted factors 325 −0.443081706 −1.977235319 0.000139276 0.005819216

Reactome class A 1 rhodopsin like receptors 307 −0.381423481 −1.692225661 0.000141423 0.005819216

Wp nuclear receptors metapathway 307 −0.424678126 −1.884129471 0.000141423 0.005819216

Reactome extracellular matrix organization 286 −0.428167739 −1.886043407 0.000142531 0.005819216

WP IL18 signaling pathway 262 −0.463689704 −2.028176355 0.000143719 0.005819216

Naba core matrisome 255 −0.407800593 −1.77711959 0.000144823 0.005819216

KEGG jak stat signaling pathway 151 −0.534655611 −2.187984929 0.000153468 0.005819216

WP TGFBETA signaling pathway 129 −0.537025337 −2.149688837 0.000157109 0.005819216

WP PI3KAKT signaling pathway 333 −0.362479724 −1.620986548 0.000139005 0.005819216

KEGG mapk signaling pathway 257 −0.423841351 −1.849335982 0.000144363 0.005819216

GSEA, Gene Set Enrichment Analysis.
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FIGURE 5
PPI interaction network. (A) PPI network of Co-DEGs. (B) PPI network of Co-DEGs in theMCC algorithm; the color of the rectangle in the figure from
yellow to red represents the gradual increase in the score. (C) The GeneMANIA website predicts functionally similar gene interaction networks of Co-
DEGs. (A,B) Interconstructing networks are collected in the STRING database and built using Cytoscape software, with a minimum interaction score of
0.150. The infrastructure network in (C)was collected and exported on the GeneMANIA website. In this diagram, input Co-DEGs are represented by
black circles with white slashes, anticipated functionally related genes are represented by other black circles without white slashes, physical interactions
between genes are represented by red lines, co-expression correlations between genes are represented by purple lines, predicted relationships between
genes are represented by orange lines, co-localization relationships between genes are represented by blue lines, genetic interaction relationships
between genes are represented by green lines, pathway connections between genes are represented by pale blue lines, and shared protein domain
linkages between genes are represented by yellow–green lines. Co-DEGs, differentially co-expressed genes; PPI, protein–protein interaction; MCC,
maximal clique centrality.
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treatment (Saran et al., 2020). Many studies (Gabryelska et al., 2022;
von Allmen et al., 2018) have highlighted the relationship between
circadian rhythms and hypoxia, and oxygen acts as a circadian
synchronizer that is essential for maintaining circadian balance in
vivo (Hunyor and Cook, 2018). IH is one of the main
pathophysiological features of OSA and its related comorbidities,
which can induce circadian rhythm disorders between tissues
(Hunyor and Cook, 2018). In summary, we hypothesize that
OSA may play a role in the pathogenesis of NAFLD through IH-
induced oxidative stress, chronic inflammatory response, and
circadian rhythm disruption.

Assuming a causal relationship between ASS1 and the
inflammatory response, our investigation uncovered the potential
of ASS1 as a pivotal gene differentiating between OSA and NAFLD.
Thus, we posit that chronic inflammation potentially mediates the
interaction mechanism between OSA and NAFLD.
Argininosuccinate synthetase 1 (ASS1), predominantly present in
hepatic cells, serves as a crucial enzyme in arginine metabolism,
intricately linked to urea and nitric oxide synthesis. Prior studies
indicate the altered expression of various metabolites (Park et al.,
2005), notably reduced arginine levels in liver injury scenarios
(Sharma et al., 2012), signifying the downregulation of ASS1
during hepatic damage. L-arginine, an indispensable amino acid,
plays a fundamental role in diverse biosynthetic pathways and
regulatory functions such as immune modulation, neural activity,
and endothelial homeostasis. Furthermore, it functions as a
precursor for protein, creatine, and polyamine synthesis, besides
aiding in ammonia neutralization and liver detoxification in patients
with hepatic conditions (Nanji et al., 2001). Animal models
demonstrate the protective effects of arginine supplementation in
liver injury syndromes, such as lipopolysaccharide-induced injury,

hepatic ischemia–reperfusion injury, and acute cholestatic liver
injury (Muriel and González, 1998; Taha et al., 2009; Li et al.,
2012). The regulation of ASS1 expression primarily hinges upon
various stimuli like hormones, inflammatory mediators, cytokines,
and lipopolysaccharides. The literature also links elevated
inflammatory markers in OSA patients—such as C-reactive
protein, tumor necrosis factor-alpha, interleukins 6 and 8,
intercellular adhesion molecule, and vascular cell adhesion
molecule—with the severity of OSA assessed by the
apnea–hypopnea index (AHI) (Nadeem et al., 2013; Arnaud
et al., 2020). We postulate that in the context of chronic
intermittent hypoxia triggering inflammatory cascades, the
ensuing hyperinflammation hampers ASS1 expression,
culminating in liver injury and NAFLD pathogenesis. Notably,
ASS1 exerts hepatoprotective effects in the interplay between
OSA and NAFLD; hence, arginine supplementation holds
promise as a therapeutic intervention for liver ailments.

VEGFA and HDAC2 are currently believed to be closely linked
to oxidative stress and play pivotal roles in the interplay between
OSA and NAFLD. Oxidative stress responses leading to tissue
ischemia and hypoxia, including ROS, vascular endothelial
growth factor (VEGF), advanced glycosylation end products
(AGEs), and plasminogen activator inhibitor-1 (PAI-1), have
been identified in individuals with Obstructive sleep apnea
hypopnea syndrome (OSAHS), potentially contributing to the
onset and progression of vascular disease (Yamamoto et al., 2008;
Assoumou et al., 2012). In the context of chronic liver disease,
vascular endothelial growth factor A (VEGFA) acts as a crucial
regulator of angiogenesis, contributing to endothelial dysfunction
and immune cell infiltration (Bocca et al., 2015; Apte et al., 2019).
Abnormal angiogenesis appears to be inherently associated with

FIGURE 6
Group comparison charts of Co-DEGs. (A–D)Group comparison charts of the expression of genes ASS1 (A),HDAC2 (B), SIRT3 (C), and VEGFA (D) in
dataset GSE38792. (E–H) Group comparison charts of the expression of genes ASS1 (E), HDAC2 (F), SIRT3 (G), and VEGFA (H) in dataset GSE89632. The
following symbols represent different levels of statistical significance: * denotes a level of significance equal to p < 0.05, is statistically significant; **
denotes a level of significance equal to p < 0.01, is highly statistically significant; *** denotes a level of significance equal to p < 0.001, is extremely
statistically significant; and ns stands for not statistically significant. Co-DEGs, differentially co-expressed genes.
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fibrosis throughout the course of chronic liver disease. Research
indicates that VEGFA mediates hepatic stellate cell (HSC)
activation, promoting the advancement of NAFLD-HCC.
Pathological angiogenesis linked to VEGFA plays a significant
role in the progression of NAFLD, fostering inflammation,
fibrosis, and development of hepatocellular carcinoma (Shen
et al., 2022). Notably, fibrosis stands out as the principal risk
factor for malignant transformation in NAFLD patients (Adams
et al., 2005; Powell et al., 2021), with HSC being a key target of
VEGFA. In conclusion, it is posited that the oxidative stress response
in OSA patients may enhance VEGFA expression, subsequently
fueling NAFLD progression. Targeted pharmacological
interventions involving VEGFA may serve to delay the
advancement of chronic liver disease. Moreover, recent studies
have associated HDAC2 with the modulation of ROS levels.
Histone deacetylase-2 (HDAC2), a member of the histone
deacetylase family, participates in the regulation of chromatin
structure during transcription. The levels of histone acetylation

play a critical role in maintaining nuclear stability, gene
expression, physiological function, and chromatin structure in
hepatocytes (Cai et al., 2018; Ferriero et al., 2018). Dysregulation
of histone deacetylation has been implicated in the initiation and
advancement of liver disease (Cao et al., 2013). NASH represents the
more severe stage of NAFLD, with the ongoing accumulation of
ROS, oxidative stress, mitochondrial dysfunction, triglycerides, and
lipid-toxic metabolites being key factors in NASH development
(Fukushima et al., 2009). Inhibiting HDAC2 expression could
potentially aid in NASH prevention (Zhong et al., 2017). Studies
have indicated a correlation between HDAC2 and ROS (van de Ven
et al., 2017), with elevated HDAC2 expression potentially serving as
a crucial link in the onset of OSA-induced NAFLD. Therefore,
addressing the delicate balance between hepatic acetylation and ROS
levels may offer a novel treatment avenue for individuals with OSA
and NAFLD.

SIRT3 is implicated in oxidative stress and disruptions of the
circadian rhythm. Mitochondrial sirtuin 3 (SIRT3) is an NAD

FIGURE 7
ROC curves of the Co-DEGs. (A–D) ROC curve results of genes ASS1 (A), HDAC2 (B), SIRT3 (C), and VEGFA (D) in dataset GSE38792. (E–H) ROC
curve results of genes ASS1 (E), HDAC2 (F), SIRT3 (G), and VEGFA (H) in dataset GSE89632. TPR, true positive rate; FPR, false positive rate; Co-DEGs,
differentially co-expressed genes; ROC, receiver operating characteristic; CI, confidence interval.
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±-dependent protein deacetylase crucial for the maintenance of
redox balance and lipid homeostasis, thereby ensuring cellular
equilibrium (Ahn et al., 2008). Its deficiency can result in hepatic
steatosis. SIRT3 modulates the activity of various proteins by
deacetylating lysine residues, thus orchestrating mitochondrial
biogenesis, energy production, and the equilibrium of ROS (van
de Ven et al., 2017). Studies indicate that SIRT3 regulates ATP
synthesis in the mitochondria by influencing the respiratory chain
functioning (Ahn et al., 2008). Moreover, SIRT3 safeguards
mitochondrial activity by controlling ROS production through
multiple substrates, including superoxide dismutase 2 (SOD2)
and forkhead box O3 (FOXO3A) (Qiu et al., 2010; Yu et al.,
2012). Notably, experiments on animals lacking SIRT3 and fed a
high-fat diet reveal more severe hepatic steatosis compared to wild-
type mice (Hirschey et al., 2011). Furthermore, recent research
(Chang and Guarente, 2014) underscores the significant role of
mitochondrial sirtuin (SIRT) in regulating human metabolism and
circadian rhythms by influencing central and peripheral circadian
clocks (Masri, 2015). Studies on mice deficient in mitochondrial
sirtuin 1 (SIRT1) show circadian rhythm disturbances, indicating a
link between SIRT and the circadian cycle (Wang et al., 2016).
Interestingly, individuals with OSA exhibit reduced levels of serum
SIRT1, which can be restored post-CPAP therapy (Chen et al.,
2015). Consequently, it is hypothesized that akin to SIRT1, SIRT3
might play a pivotal role in circadian rhythm disruptions in OSA
patients, potentially triggering metabolic impairments and
ultimately leading to NAFLD. Hence, the downregulation of
SIRT3 could be a critical factor in the development of NAFLD in
OSA patients and a protective mechanism against the disease.

In this study, HDAC2, SIRT3, and VEGFA showed high
accuracy in predicting both diseases, indicating their
importance as key predictor genes for OSA and NAFLD.
These genes likely do not act independently in the two
diseases; rather, their interaction may play a significant role in
the development and progression of OSA and NAFLD. We
hypothesize that IH-induced oxidative stress, chronic
inflammatory response, and disruption of circadian rhythm
could be underlying mechanisms linking OSA to the
development of NAFLD. Our findings offer promising target
genes for future basic experimental and clinical studies, serving as
potential biomarkers for diagnosing and treating OSA and
NAFLD. Additionally, through GSEA, we identified signaling
pathways related to inflammation, stress response, cell
proliferation, and differentiation in OSA and NAFLD,
suggesting avenues for further research into these diseases and
their associated tumors. However, this study has limitations. It is
a retrospective analysis based on existing databases and public
information, limiting the ability to analyze differences and
sensitivities of samples based on specific clinical
characteristics. Causality cannot be determined, and the small
sample size underscores the need for a future large-scale,
multicenter, randomized controlled and prospective
observational study to verify the identified genes and establish
causal relationships between OSA and NAFLD. Furthermore,
while key predictor genes shared by OSA and NAFLD have been
identified, further research is needed to elucidate their molecular
and biological functions in these diseases. Extensive basic and
clinical investigations of these genes are essential for

understanding their interaction mechanisms and utilizing
them for clinical diagnosis, treatment, and disease prediction.

Conclusion

This study is the first to utilize bioinformatics methods in
investigating the shared predictor genes of OSA and NAFLD.
The research identified four key genes that have predictive value
for both conditions. These key genes offer novel insights into the
potential mechanistic interactions between OSA and
NAFLD, thereby guiding future basic research and clinical
endeavors. Furthermore, the study presents potential
diagnostic and therapeutic markers for individuals with OSA
and NAFLD.
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