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CTCF-mediated chromatin loops create insulated neighborhoods that constrain
promoter-enhancer interactions, serving as a unit of gene regulation. Disruption
of the CTCF binding sites (CBS) will lead to the destruction of insulated
neighborhoods, which in turn can cause dysregulation of the contained
genes. In a recent study, it is found that CTCF/cohesin binding sites are a
major mutational hotspot in the cancer genome. Mutations can affect CTCF
binding, causing the disruption of insulated neighborhoods. And our analysis
reveals a significant enrichment of well-known proto-oncogenes in insulated
neighborhoods with mutations specifically occurring in anchor regions. It can be
assumed that some mutations disrupt CTCF binding, leading to the disruption of
insulated neighborhoods and subsequent activation of proto-oncogenes within
these insulated neighborhoods. To explore the consequences of suchmutations,
we develop DeepCBS, a computational tool capable of analyzing mutations at
CTCF binding sites, predicting their influence on insulated neighborhoods, and
investigating the potential activation of proto-oncogenes. Futhermore, DeepCBS
is applied to somatic mutation data of liver cancer. As a result, 87 mutations that
disrupt CTCF binding sites are identified, which leads to the identification of
237 disrupted insulated neighborhoods containing a total of 135 genes.
Integrative analysis of gene expression differences in liver cancer further
highlights three genes: ARHGEF39, UBE2C and DQX1. Among them,
ARHGEF39 and UBE2C have been reported in the literature as potential
oncogenes involved in the development of liver cancer. The results indicate
that DQX1 may be a potential oncogene in liver cancer and may contribute to
tumor immune escape. In conclusion, DeepCBS is a promisingmethod to analyze
impacts of mutations occurring at CTCF binding sites on the insulator function of
CTCF, with potential extensions to shed light on the effects of mutations on other
functions of CTCF.
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1 Introduction

3D genomics is a rapidly growing field that investigates the complex folding and
organization of chromosomes in eukaryotic cells. Various techniques have been
developed to study the 3D structure of chromosomes, such as 3C (Dekker et al.,
2002), Hi-C (Lieberman-Aiden et al., 2009), ChIA-PET (Fullwood et al., 2009), 4C
(Simonis et al., 2009), and 5C (Dostie et al., 2006). The three-dimensional structure of
chromosomes includes chromosomal domains, chromosome compartments,
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topologically associated domains, insulator regions, and
promoter-enhancer loops. In 3D genomics, insulated
neighborhood is defined as a CTCF-CTCF homodimer that
binds with cohesions and contains at least one gene’s
chromatin loop (Dowen et al., 2014). Miao have observed that
this chromatin loop serves as a unit of gene regulation (Yu and
Ren, 2017). When the CTCF binding site is disrupted, improper
enhancer-promoter interactions can lead to the dysregulation of
local genes (Hnisz et al., 2016b).

Recently, a study has revealed that mutations in CTCF
binding sites occur frequently in cancer (Katainen et al.,
2015). And CTCF/cohesin binding sites are a major
mutational hotspot in the cancer genome. Some of these
mutations can cause a decrease in CTCF binding, leading to
the disappearance of insulated neighborhoods (Hnisz et al.,
2016b; Umer et al., 2016). Non-coding mutations at CTCF
binding sites have the potential to disrupt insulated
neighborhoods, leading to altered gene expression within these
regions. This, in turn, could potentially contribute to the
development of diseases. Previous research has indicated that
there are typically silent proto-oncogenes within insulated
neighborhoods. Additionally, the anchoring regions of
insulated neighborhoods containing proto-oncogenes undergo
frequent somatic mutations in various types of cancer (Hnisz
et al., 2016a). In summary, variations in CTCF binding sites in
cancer may lead to the disappearance of insulated neighborhoods
and the activation of oncogenes, ultimately promoting the
development of cancer. So the identification of variants that
have the potential to disrupt insulated neighborhood is a
critical task.A few studies focous on this task. Zhang et al. has
proposed a method, named CTCF-MP, to predict chromatin
loops. This method utilizes a machine learning model based
on word2vec and boosted trees (Zhang et al., 2018). CTCF-
MP algorithm incorporates sequence variations caused by
mutations and enables prediction of the influence of such
mutations on the formation of chromatin loops. Sequence-
based deep learning methods have shown great potential in
predicting the impact of genetic variants on insulated
neighborhoods. When provided with a pair of DNA sequences
of anchors, this model generates a value ranging from 0 to 1,
which can be used to determine the probability or strength of the
chromatin loop (Zhang et al., 2018). DeepCTCFLoop takes a pair
of DNA sequence containing CTCF motifs with flanking regions
and encodes it into one-hot encoding as input, uses a neural
network to predict whether this pair of sequences can form a
DNA loop (Kuang and Wang, 2021). DeepMILO, a deep learning
framework, utilizes one-hot encoding to represent DNA
sequences, comprises of an anchor model and an anchor
orientation model. It accurately predicts the effects of variants
on CTCF/cohesion mediated insulator loops and reveals a novel
mechanism for oncogene dysregulation in malignant lymphoma
(Trieu et al., 2020).

However, CTCF is a multifunctional protein, associated with a
number of vital cellular processes such as transcriptional
activation, repression, insulation, imprinting and genome
organization (Oh et al., 2017). CTCF not only regulates gene
expression by forming loops but also can independently
regulate gene expression.

While the discussed methods, such as DeepMILO, have certain
limitations as they require paired data, making them effective in
predicting the impact of mutations occurring at CTCF binding sites
on their insulator function. These methods are not capable of
predicting the effects of mutations at CTCF binding sites on
other function.

Both DeepMILO and DeepCTCFLoop utilize the one-hot
encoding method. One-hot encoding treats each position in the
sequence as an independent feature, disregarding the sequential
relationships between adjacent nucleotides. However, biological
sequences often contain important sequence patterns or motifs
that play a critical role in the functionality or structure of the
sequence. In comparison, using only one-hot encoding may not
fully capture the information conveyed by these patterns. In a recent
study, a novel method named dna2vec, has been proposed. This
method leverages the human genome sequences as the learning
corpus and embeds k-mers into a 100-dimensional continuous
vector space (Ng, 2017). By employing this encoding approach,
the model can capture a more comprehensive set of information,
enhancing its ability to capture relevant patterns and features in
the sequences.

Considering the limitations of the discussed methods, we
have developed a method named DeepCBS, which employs a
DNA sequence as input instead of a paired sequence and utilizes
the dna2vec encoding method for representation. Applying
DeepCBS to somatic mutation data of liver cancer patients, we
predicted the impact of these mutations on CTCF binding sites.
Then, through analysis of differential gene expression, we identify
three potential liver cancer oncogenes, providing potential
therapeutic targets for the treatment of liver cancer. In our
study, DeepCBS successfully predicts the impact of mutations
occurring at CTCF binding sites on insulated neighborhoods. In
the future, it can also be utilized to predict the effects of mutations
on other functions of CTCF.

2 Materials and methods

2.1 Data collection and processing

CTCF ChIP-seq data for GM12878, HepG2, K562, MCF-7, and
HMEC cell lines is downloaded from the Encode portal (accession:
ENCFF710VEH, ENCFF237OKO, ENCFF738TKN,
ENCFF738TKN, ENCFF288RFS). We also download
RAD21 CHIP-seq raw data of GM12878 (accession:
ENCFF002CPK) and CTCF CHIA-PET raw data of GM12878
(accession: ENCFF780PGS). We download comprehensive gene
annotation data from GENCODE.

Positive samples are generated by selecting 100 base pairs from
the summit of each ChIP-seq peak. Negative samples are generated
using the R package gkmSVM by matching the repeat fraction,
length, and GC content of the repetitive sequences in positive
samples (Ghandi et al., 2016). Then we get 43,631 positive and
48,753 negative samples for GM12878 cell line, 60,229 positive and
56,099 negative samples for HepG2 cell line, 56,889 positive samples
and 53,875 negative samples for K562 cell line.

We collect simple somatic mutations data of 1706 liver cancer
patients from ICGC database, we also collected RNA-seq data of
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liver cancer from this database, at the same time (see the
Supplementary Material).

2.2 Construction of DeepCBS

The model is illustrated in Figure 1. In this model, the forward
and reverse DNA sequence with CTCF binding are taken as input by
encoding into a matrix using the dna2vec (Ng, 2017) approach.
Then, a three-layer convolutional neural network is used to learn the
sequence motifs and high level features. The Bi-GRU(Bidirectional
Gate Recurrent Unit) layer is used to learn the long-range
dependencies between the high-level features. Next, two fully

connected layer is used to combine the output from the Bi-GRU
layer and make the binary prediction.

2.3 Identification of disrupted insulated
neighborhoods

We obtain insulated neighborhoods by integrating CTCF ChIA-
PET data, CTCF ChIP-seq data, RAD21 CHIP-seq data and
comprehensive gene annotation data. Specifically, we define an
insulated neighborhood as a CTCF loop whose loop anchors
overlap with a CTCF CHIP-seq peak and a RAD21CHIP-seq
peak, and which contains at least one gene.

FIGURE 1
Diagram of DeepCBS.
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We collect somatic mutation data from liver cancer patients,
identify mutated insulated neighborhoods, and utilize the deep
learning model proposed in the previous step to predict whether
these insulated neighborhoods would be disrupted.

2.4 Differential gene expression analysis

We obtain gene expression data from liver cancer patients in
ICGC databases. To analyze gene differential expression, we utilized
3 R packages, namely, limma, edgeR, and DESeq2, independently. In
order to enhance the robustness of our findings, we obtain
differentially expressed genes by taking the intersection of the
results from the three packages.

3 Results

3.1 Workflow of DeepCBS

To elucidate the impact of non-coding mutations occurring at
CTCF binding sites, we develop a method named DeepCBS,
comprising the following main steps. Initially, we generate
positive and negative samples from CTCF ChIP-seq data for
3 cell lines (GM12878, HepG2, K562). Using this data, we train a
deep learning model to predict whether mutations on CTCF
binding sites lead to the loss of CTCF binding at those sites.
Subsequently, we obtain RAD21-mediated loops from
RAD21 CHIA-PET data, defining a loop as an insulated
neighborhood if both anchors of the loop overlap with CTCF
CHIP-seq peaks. And if there are mutations within the CHIP-seq

peak region that overlaps with loop anchors, then the insulated
neighborhood is considered as a mutated insulated
neighborhood. Leveraging the well-trained deep learning
model, we predict whether mutations within the mutated
insulated neighborhoods disrupt the binding of CTCF,
resulting in the disruption of the insulated neighborhooods. In
the next step, we observe a significant enrichment of proto-
oncogenes in mutated insulated neighborhoods, suggesting
that the disruption of these neighborhoods may play a crucial
role in cancer development. Consequently, we identify the genes
within the disrupted insulated neighborhoods and intersect these
genes with the differentially expressed genes in liver cancer. This
process yield three genes that may undergo upregulation due to
the disruption of insulated neighborhoods. Notably, two out of
the three genes have been previously reported as potential
oncogenes in liver cancer. The remaining gene, DQX1, is
identified as a potential liver cancer oncogene through
bioinformatics analysis Figure 2.

FIGURE 2
Performance of models on cell type specific CTCF binding sites. The x-axis represents the cell lines comprising the training set, while the y-axis
represents the performance scores.

TABLE 1 Cross cell performance evaluation.

Train set Test set Auroc

GM12878 HepG2 0.97945

GM12788 K562 0.97364

K562 HepG2 0.97965

K562 GM12878 0.98921

HepG2 K562 0.97507

HepG2 GM12878 0.99106
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3.2 Performance of DeepCBS

To assess the model’s performance across different cell types, we
employe 1 cell type’s samples as the training data and used samples
from other cell types as the testing data, as shown in Table 1. As it
can be seen, the model has achieved AUC values over 0.97,
demonstrating that our method is a powerful tool for identifying
CTCF binding sites.

Since some CTCF binding sites are cell-type specific, we collect
CTCF CHIP-seq data from the MCF-7 cell line (breast cancer cell
line) and HMEC cell line (normal breast epithelial cell line), and get
cell-type specific CTCF binding sites in the MCF-7 cell line. As
shown in Figure 2, our models have demonstrated excellent
performance on cell-type-specific binding sites.

3.3 Identification of potential oncogenes in
disrupted insulated neighborhoods in
liver cancer

We apply a hypergeometric distribution test to our data and find a
significant enrichment of proto-oncogenes in mutated insulated
neighborhoods (p < 0.05). We have also observed this phenomenon
in the data provided by Ji (Ji et al., 2016). This suggests that the
disruption of insulated neighborhoods may be a key driver of cancer
development, as it can lead to the abnormal activation of proto-
oncogene into oncogene. We identify 237 disrupted insulated
neighborhoods, comprising a total of 135 genes. We perform
differential gene expression analysis, then identify 1,218 differentially
expressed genes using 3 R packages. To explore which genes among the
135 affected genes in the disrupted insulated neighborhoods are key
genes related to cancer. Then, we take the intersection of the
differentially expressed genes with the genes located within the

disrupted insulated neighborhoods, which resulted in the
identification of three key genes: ARHGEF39, UBE2C, and DQX1.
And all of them are upregulated genes, potentially activated due to the
disruption of insulated neighborhoods.

ARHGEF39 is a novel member of the Dbl-family of guanine
nucleotide exchange factors (Wang et al., 2012). Guanine nucleotide
exchange factors are recognized as crucial activators of Rho GTPases,
which play a significant role in cell migration (Cook et al., 2014;
Goicoechea et al., 2014). Overexpress of ARHGEF39 promotes
gastric cancer cell proliferation and migration through the Akt
signaling pathway (Wang et al., 2018; Zhou et al., 2018). Previous
literature has proposed that ARHGEF39 may act as an oncogene in the
progression of liver cancer, and thus represents a potential prognostic
indicator and therapeutic target for this disease (Gao and Jia, 2019).
Ubiquitin-conjugating enzyme E2C(UBE2C), a member of the
E2family, is encoded by the UbcH10gene situated on human
chromosome20q13.12. Its function involves the degradation of
various target proteins through catalysis. UBE2C has been found to
be upregulated in various types of cancer, including breast cancer, and is
considered a potent proto-oncogene associated with tumor malignancy
(Chou et al., 2014; Han et al., 2015). In liver cancer, UBE2C has been
identified as a potential oncogene that can promote cell proliferation,
migration, invasion, and drug resistance (Xiong et al., 2019).

Based on the above, we speculate that in liver cancer, the
overexpression of ARHGEF39 and UBE2C serves as activated
oncogenes and is involved in liver cancer development due to the
disruption of the insulated neighborhoods containing them.
However, there is currently no literature exploring the role of the
DQX1 in liver cancer.

3.4 Overexpression of DQX1 is oncogenic in
liver cancer

The Kaplan-Meier plotter (https://kmplot.com/analysis/) is a
powerful tool that enables the assessment of the impact of 54k genes
(including mRNA, miRNA, and protein) on survival across 21 types
of cancer (Győrffy, 2023). In this study, we focus on the analysis of
the relationship between DQX1 expression and survival in liver
cancer. The result of survival analysis, as shown in Figure 3, show
that highly expressed DQX1 is linked to poor prognosis of overall
survival (OS) for cancers of liver cancer.

Gene set enrichment analysis (GSEA) is further performed to
explore the signaling pathways and molecular mechanisms that were
differentially affected by DQX1 in liver cancer. In this study, the tumor
samples are grouped based on the mean expression level of DQX1.
Samples with expression levels higher than the mean are assigned to the
high-expression group (DQX1. Hi), while those with expression levels
lower than the mean are assigned to the low-expression group (DQX1.
Low). In our study, the Hallmark database is utilized for performing the
gene set enrichment analysis. As depicted in Figure 4, the analysis reveal
that high expression of DQX1 is significantly associated with the
activation of cell proliferation-related pathways. This finding suggests
that DQX1may play a crucial role in promoting cell proliferation in
liver cancer.

DQX1 is one of the RNA-binding protein genes and RNA-
binding protein can regulate the infiltration degrees of immune cells
(Sun et al., 2021). Therefore, we implement an immunological

FIGURE 3
Correlation between DQX1 gene expression and survival
prognosis of liver cancer.
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FIGURE 4
Signaling pathways associate with DQX1 in liver cancer. The depicted signaling pathways in the figure are all cell proliferation-related pathways.

FIGURE 5
The correlation between DQX1 and immune cell infiltration in liver cancer.
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Analysis of DQX1 in liver cancer. TIMER, a comprehensive online
resource for the systematic analysis of immune infiltrates in various
cancer types, is employed in this study to explore the correlation
between DQX1 expression in liver cancer and different immune
infiltrates (Li et al., 2020). The results are presented in Figure 5.

Also, we perform differential expression analysis of immune
checkpoint genes in relation to DQX1 using the same grouping
approach as in GSEA. The result is depicted in Figure 6.

Overall, the expression of DQX1 shows significant positive
correlations with immune infiltration levels of regulatory T cells
(Tregs), myeloid-derived suppressor cells (MDSCs), and expressions
of co-suppressive immune checkpoints, contributing to immune
escape. This suggests that we can develop immunotherapies
targeting DQX1 for the treatment of liver cancer, in the future.

Based on the bioinformatics analysis, we have been inferred that
DQX1 may potentially act as an oncogene and be involved in the
development of liver cancer.

4 Conclusion

In summary, the CTCF play an crucialrole in maintaining these
insulated neighborhoods. The disruption of CTCF binding sites can
lead to dysregulation of contained genes, potentially resulting in the
activation of oncogenes and promoting cancer development. It is
important to shed light on the impact of mutations occurring at
CTCF binding sites. So we develop a novel method, DeepCBS, to
analyze the impact of mutations occurring at CTCF binding sites.
Our analysis has identified three potential oncogenes,
ARHGEF39, UBE2C, and DQX1 of liver cancer. All three

genes play an oncogenic role in the development of liver
cancer. And overexpression of DQX1 is associated with poor
prognosis and tumor immune escape. Our findings demonstrate
the potential of DeepCBS to analyze the impact of mutations
occurring at CTCF binding sites, as well as providing valuable
insights for the diagnosis and treatment of liver cancer. Over all,
this study emphasizes the importance of understanding the 3D
organization of the human genome and its impact on gene
regulation, as well as highlights the potential of computational
methods to identify new targets for cancer therapy.
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