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Background: Previous observational studies have investigated the association
between sleep-related traits andmale fertility; however, conclusive evidence of a
causal connection is lacking. This study aimed to explore the causal relationship
between sleep and male fertility using Mendelian randomisation.

Methods: Eight sleep-related traits (chronotype, sleep duration, insomnia,
snoring, dozing, daytime nap, oversleeping, and undersleeping) and three
descriptors representing male fertility (male infertility, abnormal sperm, and
bioavailable testosterone levels) were selected from published Genome-Wide
Association Studies. The causal relationship between sleep-related traits and
male fertility was evaluated using multiple methods, including inverse variance
weighting (IVW), weighted median, Mendelian randomisation-Egger, weighted
model, and simple model through two-sample Mendelian randomisation
analysis. Mendelian randomisation-Egger regression was used to assess
pleiotropy, Cochrane’s Q test was employed to detect heterogeneity, and a
leave-one-out sensitivity analysis was conducted.

Results: Genetically-predicted chronotype (IVW,OR = 1.07; 95%CL = 1.04–1.12;
p = 0.0002) was suggestively associated with bioavailable testosterone levels.
However, using the IVW method, we found no evidence of a causal association
between other sleep traits and male fertility.

Conclusion: This study found that chronotype affects testosterone secretion
levels. However, further studies are needed to explain this mechanism.
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1 Introduction

Infertility is a disease of the male or female reproductive system defined by the failure to
achieve a pregnancy after 12 months or more of regular unprotected sexual intercourse
(World Health Organization, 2018). Infertility affects millions of people—and has an
impact on their families and communities. The World Health Organization estimates that
approximately one in every six people of reproductive age worldwide experience infertility
in their lifetime, in half of which the man is infertile (World Health Organization, 2023).
Male infertility has become a significant factor affecting the global population development
(Agarwal et al., 2015). Many genetic and lifestyle factors have been implicated in male
infertility.To reduce the social and public health burden of male infertility, it is crucial to
identify preventive causes, particularly modifiable risk factors (Sharma et al., 2013).
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The hectic lifestyles humans have been obliged to follow in
recent decades have affected sleep quality, causing an increase in
sleep disorders (Grandner, 2017).Sleep disorders and male infertility
are common global public health issues in contemporary society.
Sleep is crucial for overall health, and good sleep is beneficial for
health (Hirshkowitz et al., 2015). Sleep disorders have complex
phenotypes driven by genetic and lifestyle factors that contribute
to various health problems. In the past few decades, there has been an
increasing interest in exploring the extent to which disrupted sleep
patterns affect adverse health outcomes (Lane et al., 2017). Growing
evidence suggests that sleep quality has a significant impact on human
health, and insufficient sleep increases the risk of conditions such as
hypertension, diabetes mellitus type 2 (T2DM), cardiovascular
diseases, depression, cancer, and male infertility (Hvidt et al.,
2020). Recent studies have shown that sleep disorders may also be
one of the important factors leading to infertility. Sleep quality can
affect a person’s mental state, brain function, metabolism and
hormone levels, which in turn affect reproductive function and
lead to infertility (Auger et al., 2021).The extent to which sleep
duration affects male fertility is not yet clear; however, ecological
data suggest a correlation over the past few decades between an
increase in sleep deprivation and a decline in sperm counts among
Western men (Ford et al., 2015; Levine et al., 2017). Several studies
conducted abroad have found a U-shaped relationship between sleep
duration and male fertility, in which both insufficient and excessive
sleep are associated with poor fertility outcomes (Jensen et al., 2013;
Wise et al., 2018; Wang et al., 2021). Furthermore, multiple studies
have indicated that shift work disrupts the wake/sleep cycle and leads
to circadian rhythm disruption, which, in turn, contributes to
cardiovascular diseases, metabolic disorders, and male infertility
(Torquati et al., 2018; Demirkol et al., 2021). A previous study
revealed that sperm density, total motile count, and hormone
levels were lower in shift workers than in non-shift workers (Deng
et al., 2018). Similarly, a prospective cohort study confirmed that shift
work significantly increases the risk of male infertility (El-Helaly et al.,
2010). The impact of sleep on fertility is often overlooked when
studying male infertility. There is a significant lack of research on the
impact of sleep disorders on reproduction (Caetano et al., 2021).
Despite several studies indicating correlations between sleep-related
traits and male fertility, previous observational studies may have been
subject to bias due to reverse causality and confounding factors.
Therefore, there is no consensus regarding the causal relationship
between sleep-related traits and male fertility.

Mendelian randomisation (MR) analysis is an emerging
epidemiological research method considered an ideal tool for
optimising the design of subsequent randomised trials (Ference et al.,
2021). By including exposure-associated genetic variants of interest as
instrumental variables, MR can avoid unmeasured confounding factors
in observational studies and examine the causal relationship between
potentially modifiable risk factors and health outcomes (Davies et al.,
2018). In addition, the effect of genetic variation on exposure is present
since conception, indicating that MR can assess the effect of lifetime
exposure on outcome risk (Hemani et al., 2018). Therefore, it is
particularly important to use MR analysis to infer the causal
relationships between sleep-related traits and male fertility. In this
study, we used a two-sample Mendelian randomisation design to
infer the causal associations between eight sleep traits and male fertility.

2 Methods

2.1 Study design

Figure 1 presents an overview of the study design. In this study,
we used various sleep-related traits, including chronotype, sleep
duration, insomnia, snoring, dozing, daytime napping, oversleeping,
and undersleeping. Male infertility, abnormal sperm, and
bioavailable testosterone levels were used to define male fertility.
Mendelian randomisation was used to examine the causal
relationship between sleep traits and male fertility.

2.2 Data sources

Our exposure and outcome data were obtained from the Ieu
Open Genome-Wide Association Study (GWAS) project database
(https://gwas.mrcieu.ac.uk/), which is a large cohort study that has
collected more than 500,000 people from all over the UK. All the
participants were of European ancestry. These included the
chronotype (n = 413,343), sleep duration (n = 460,099),
insomnia (n = 462,341), snoring (n = 430,438), dozing (n =
460,913), sleep duration (n = 460,099). daytime nap (n =
452,633), oversleeping (n = 91,306), undersleeping (n = 110,188),
male infertility (n = 72,799), abnormal sperm (n = 209,006), and
bioavailable testosterone levels (n = 382,988).

Because the study was based on published data, no ethical
approval or informed consent was required.

2.3 Selection of instrumental variables

Mendelian randomisation should satisfy three core assumptions
to obtain unbiased estimates: 1) genetic variants (instrumental
variables) are strongly associated with sleep traits (exposure); 2)
genetic variants do not share common causes (potential
confounders) with male fertility-related indicators (outcomes); 3)
genetic variation affects male fertility-related indicators (outcomes)
only through its effect on sleep-related traits (exposure) (Bowden
et al., 2015).

In this study, to identify the best instrumental variable for sleep,
we used the following steps to select IVs and ensure that genetic
instruments were associated with sleep. Single nucleotide
polymorphisms (SNP) that were strongly associated with sleep
traits were extracted from the GWAS project database, and p <
5E-8 was used as the main screening condition. For oversleepers and
undersleepers, a more relaxed threshold was used (p < 5E-5) to select
more SNPs. Second, linkage disequilibrium (LD) SNPs were
eliminated (r2 0.001, clumping window = 10,000 kb) to ensure
exposure instrument independence, and to avoid bias due to
weak IV. We used the F statistic to measure the strength of the
IVs. A weak IVwas defined as an F-statistic less than 10, and all weak
instrumental variables were excluded. We then used the
PhenoScanner V2 website (http://www. phenoscanner. medschl.
cam. ac = /) to exclude single nucleotide polymorphisms (SNPs)
that are potentially confounding factors and related to the outcome
(male fertility description) to eliminate the possibility of genetic
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pleiotropy. After a series of rigorous screenings, the remaining SNPS
were considered eligible for IV.

2.4 Statistical analysis

We used five methods: inverse variance weighting (IVW),
weighted median (WM), MR-Egger, weighted model, and a
simple model, to assess the causal relationship between
exposure (sleep-related traits) and outcome (male fertility), with
inverse variance weighting (IVW) being the primary statistical
analysis method. In the IVW model, p < 0.05 is considered
statistically significant. The remaining four methods were used
for complementary analyses. When heterogeneity was significant,
the weighted median method was used as an auxiliary approach.
The MR-Egger regression method was used to assess pleiotropy
using the intercept test. The weighted model then estimates
individual proportions based on SNPs, groups the SNPs based
on their similarity, calculates the inverse variance-weighted sum
for each group of SNPs, and derives the causal estimate based on
the group with the highest weighted sum (Hwang et al., 2019).
Finally, if at least 50% of the IVs are valid, the simple median
provides a consistent estimate of the causal effect (Bowden
et al., 2016).

We used several sensitivity analyses to examine and correct
causal estimates. First, we performed a heterogeneity test, which can
indicate the reliability of the MR estimates, where Cochrane’s Q
value can indicate heterogeneity among the selected IVs. We used
the Egger regression intercept to estimate the magnitude of
horizontal pleiotropy, which could provide further insights into

whether SNPs influence male fertility through sleep traits. Finally,
leave-one-out sensitivity analyses were performed to confirm that
the causality was not driven by a single IV.

The results are reported as odds ratios (OR) along with their
corresponding 95% confidence intervals (CI) and p-values, with
statistical significance considered at p < 0.05. All analyses were
conducted using R statistical software version 4.3.1 and the R
package “TwoSampleMR”.

3 Results

3.1 Sleep-related characteristics and male
infertility

According to IVW analysis, we did not find that a genetically-
predicted chronotype (OR = 0.88; 95% CL = 0.42–1.83; p = 0.725),
sleep duration (OR = 0.99; 95% CL = 0.26–3.77; p = 0.994), insomnia
(OR = 0.34; 95% CL = 0.05–2.49; p = 0.290), snoring (OR = 0.53; 95%
CL = 0.03–9.40; p = 0.667), dozing (OR = 3.62; 95% CL = 0.19–70.21;
p = 0.395), daytime nap (OR = 2.64; 95% CL = 0.67–10.40; p =
0.164), oversleeping (OR = 1.55; 95% CL = 0.25–9.58; p = 0.635), or
undersleeping (OR = 4.38; 95% CL = 0.44–43.22; p = 0.206) had a
causal connection to a diagnosis of male infertility (Table 1). The
other four analysis methods revealed consistent estimates
(Supplementary Figure S1). However, several sensitivity analyses
did not detect heterogeneity or horizontal pleiotropy (Table 2).
Among them, the heterogeneity of the time type was high; therefore,
IVW meta-analysis under the random-effects model was used to
mitigate the impact of heterogeneity.

FIGURE 1
Overview of study design.
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3.2 Sleep-related characteristics and sperm
abnormalities

According to the results of two-sample MR analysis, chronotype
(IVW,OR = 0.97; 95% CL = 0.55–1.69; p = 0.907), sleep duration
(IVW,OR= 0.89; 95%CL= 0.26–3.03; p = 0.854), insomnia (IVW,OR=
1.07; 95%CL= 0.24–4.81; p= 0.933), and snoring (IVW,OR= 8.49; 95%
CL = 0.81–8.89 E+01; p = 0.074) did not show a causal relationship with

the risk of abnormal sperm (Supplementary Figure S4). Similarly, we did
not find a genetically-predicted risk from dozing (IVW,OR = 0.79; 95%
CL = 6.04 E-02–10.27; p = 0.855), daytime nap (IVW,OR = 0.83; 95%
CL = 0.25–2.72; p = 0.762), oversleeping (IVW,OR = 2.73; 95% CL =
0.57–13.08; p = 0.208), undersleeping (IVW,OR = 0.50; 95% CL =
0.07–3.78; p = 0.503) and the risk of abnormal sperm (Table 3). The
other four analytical methods yielded consistent estimates
(Supplementary Figure S2). The Cochrane Q statistic showed no

TABLE 1 Associations of genetically-predicted sleep characteristics with male infertility.

Exposure No, of Snps OR (95%CI) P

Chronotype 147 0.88 (0.42–1.83) 0.725

Sleep duration 64 0.99 (0.26–3.77) 0.994

Insomnia 38 0.34 (0.05–2.49) 0.290

Snoring 39 0.53 (0.03–9.40) 0.667

Dozing 30 3.62 (0.19–70.21) 0.395

Daytime nap 93 2.64 (0.67–10.40) 0.164

oversleepers 31 1.55 (0.25–9.58) 0.635

undersleepers 25 4.38 (0.44–43.22) 0.206

SNP, single-nucleotide polymorphism; CI, confidence interval; OR, odds ratio.

TABLE 2 Sensitivity analysis of sleep characteristics and male infertility.

Exposure Pleiotropy Heterogeneity

Intercept p Q p

Chronotype 0.001 0.65 189 0.01

Sleep duration 0.015 0.62 53 0.82

Insomnia 0.004 0.9 49 0.08

Snoring −0.052 0.34 43 0.28

Dozing 0.015 0.77 22 0.83

Daytime nap 0.001 0.95 79 0.83

oversleepers −0.001 0.73 34 0.27

undersleepers 0.028 0.42 22 0.62

TABLE 3 Associations of genetically-predicted sleep characteristics with abnormal sperm.

Exposure No, of Snps OR (95%CI) P

Chronotype 147 0.97 (0.55–1.69) 0.907

Sleep duration 64 0.89 (0.26–3.03) 0.854

Insomnia 38 1.07 (0.24–4.81) 0.933

Snoring 39 8.49 (0.81–8.89E+01) 0.074

Dozing 30 0.79 (6.04E-02–10.27) 0.855

Daytime nap 93 0.83 (0.25–2.72) 0.762

oversleepers 31 2.73 (0.57–13.08) 0.208

undersleepers 25 0.50 (0.07–3.78) 0.503

SNP, single-nucleotide polymorphism; CI, confidence interval; OR, odds ratio.
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significant heterogeneity and the MR-Egger regression results showed
no horizontal pleiotropy (Table 4).

3.3 Sleep-related characteristics and
bioavailable testosterone levels

This study identified a set of causal relationships. A causal
relationship was found between chronotype and bioavailable
testosterone levels (IVW,OR = 1.07; 95% CL = 1.04–1.12; p =
0.0002). However, we did not find a causal relationship between
genetically-predicted sleep duration (OR = 1.04; 95% CL =
0.95–1.14; p = 0.434), insomnia (OR = 1.09; 95% CL = 0.95–1.26;
p = 0.229), snoring (OR = 0.89; 95% CL = 0.67–1.20; p = 0.446),
dozing (OR = 0.97; 95% CL = 0.79–1.19; p = 0.773), daytime nap
(OR = 1.09; 95% CL = 1.00–1.19; p = 0.052), oversleeping (OR =
1.07; 95%CL = 0.96–1.19; p = 0.211), undersleeping (OR = 1.03; 95%
CL = 0.91–1.17; p = 0.629) and bioavailable testosterone levels
(Table 5). The other four analyses yielded consistent results
(Supplementary Figure S3). Heterogeneity (p < 0.05) was
observed in chronotypes, sleep duration, insomnia, snoring,
dozing, daytime nap, and undersleeping through sensitivity
analysis (Table 6). Therefore, we used IVW meta-analysis under
the random-effects model to reduce the impact of heterogeneity. No
pleiotropy was detected in the sensitivity analyses. For positive

results, the leave-one-out analyses demonstrated the consistency
of the results (Figure 2A), and the remaining visualisations of the
results of MR analysis are shown in Supplementary Figure S8.

4 Discussion

In this study, we used the British Bank of Biological Data Sets
Mendelian randomisation analysis, a systematic evaluation of eight
sleep-related traits, and male fertility (male infertility, abnormal
sperm, and bioavailable testosterone levels). We found a causal
relationship between genetically-predicted chronotype and
bioavailable testosterone levels. However, we found no association
between the other seven sleep-related characteristics andmale fertility.

The circadian rhythm, generated by a core set of clock genes, is an
intrinsic timing system that synchronises an organism’s cellular,
behavioural, and physiological processes with the Earth’s rotation,
including sleep-wake preferences, body temperature, hormone
secretion, food intake, and cognitive and physical performance.
Individual differences in sleep-wake cycles lead to the emergence of
distinct behavioural phenotypes called chronotypes. Under normal
conditions, the endogenous rhythm of the sleep-wake cycle is
synchronised with alterations in the circadian cycle (Roenneberg
et al., 2003; Sack et al., 2007; Montaruli et al., 2021). Disruption of
circadian rhythms can lead to various pathological disorders and

TABLE 4 Sensitivity analysis of sleep characteristics and abnormal sperm.

Exposure Pleiotropy Heterogeneity

Intercept p Q p

Chronotype 0.024 0.1 146 0.48

Sleep duration 0.043 0.14 70 0.24

Insomnia 0.008 0.77 27 0.88

Snoring −0.057 0.21 30 0.82

Dozing 0.036 0.43 26 0.64

Daytime nap 0.015 0.44 92 0.49

oversleepers −0.001 0.94 31 0.41

undersleepers −0.006 0.84 22 0.64

TABLE 5 Associations of genetically-predicted sleep characteristics with bioavailable testosterone levels.

Exposure No, of Snps OR (95%CI) P

Chronotype 155 1.07 (1.04–1.12) 0.0002

Sleep duration 69 1.04 (0.95–1.14) 0.434

Insomnia 39 1.09 (0.95–1.26) 0.229

Snoring 42 0.89 (0.67–1.20) 0.446

Dozing 31 0.97 (0.79–1.19) 0.773

Daytime nap 105 1.09 (1.00–1.19) 0.052

oversleepers 35 1.07 (0.96–1.19) 0.211

undersleepers 28 1.03 (0.91–1.17) 0.629

SNP, single-nucleotide polymorphism; CI, confidence interval; OR, odds ratio. Bold values represent positive results.
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diseases. Testosterone is essential for maintaining spermatogenesis
(Smith and Walker, 2014). Studies have found that the rhythm of
testosterone production is circadian in normal men and begins to rise
during sleep onset and peaks during the first REM sleep (Luboshitzky
et al., 2001).Meanwhile, sleep deprivation in the second half of the night
has been shown to significantly lower testosterone levels in themorning

(Schmid et al., 2012). In addition, relevant animal studies have shown
that the steroidogenic-related genes which are responsible for
testosterone production in Leydig cells (including Star, Cyp11a1,
Cyp17a1, Hsd3b2, Hsd17b3, Sf1, positive-Nur77, and negative-
Arr19) also exhibited 24-h rhythmic expression patterns (Chen
et al., 2017; Gao et al., 2022; Pavlovic et al., 2022), And the

TABLE 6 Sensitivity analysis of the sleep characteristics and bioavailable testosterone levels.

Exposure Pleiotropy Heterogeneity

Intercept p Q P

Chronotype −0.0008 0.43 450 8.45E-31

Sleep duration −0.001 0.58 292 1.38E-29

Insomnia 0.003 0.21 204 1.60E-24

Snoring −0.003 0.62 401 1.46E-60

Dozing 0.003 0.36 114 9.67E-12

Daytime nap 0.002 0.12 376 2.05E-32

oversleepers −0.0002 0.86 37 0.35

undersleepers 0.0002 0.91 61 0.0002

FIGURE 2
Sensitivity analysis (A), forest plot (B), scatter plot (C) and funnel plot (D) the causal effect of Chronotype on Bioavailable testosterone levels.
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circadian clock system was involved to the process of bisphenol A (Li
et al., 2021) and zearalenone (Zhao et al., 2021) reducing testosterone
production. which indicates a crucial role of the circadian clock in
testosterone production. Moreover, disturbances in sleep homeostasis
are often accompanied by increased activity of the hypothalamic-
pituitary-adrenal (HPA) axis, leading to elevated circulating levels of
stress hormones (e.g., cortisol in humans, corticosterone in rodents).
Elevated corticosteroid levels lead to decreased testosterone production
(Gao et al., 2002; Nollet et al., 2020; Liu and Reddy, 2022). These
findings are consistent with the results of the present study.

However, there have been conflicting findings regarding the
association between sleep duration and serum testosterone levels.
Animal studies have shown that chronic sleep restriction causes a
decrease in testosterone level in experimental rats (Chen et al., 2020).
Two other studies of healthy adult men found the same results
(Leproult and Van Cauter, 2011; Alvarenga et al., 2015). In contrast,
some studies have found that sleep duration does not change the
concentration of serum testosterone (Chen et al., 2016), whereas
others have found that insufficient sleep significantly increases the
concentration of serum testosterone (Siervo et al., 2019).

Similarly, the effects of sleep-related factors on sperm quality
remain undefined. A survey of 953 young Danish men found a
negative U-shaped association between sleep quality and sperm
concentration, total sperm count, and normal sperm morphology,
with men with higher and lower sleep scores having significantly
lower sperm parameters than controls (Jensen et al., 2013). A
similar study among Chinese students confirmed a negative
U-shaped association between sleep duration and sperm count
(Chen et al., 2016). Additionally, domestic and foreign researchers
have found that late sleep is associated with decreased sperm quality in
studies investigating sleep chronotypes and spermparameters (Liu et al.,
2017; Hvidt et al., 2020). In contrast, some researchers have found no
significant association between sleep duration and sperm parameters
(Wogatzky et al., 2012; Pokhrel et al., 2019), and no evidence of a
correlation between shift work and sperm parameters has been found
(Eisenberg et al., 2015).

We found that most of the previous studies were cross-sectional,
retrospective, or prospective cohort studies. Because of their
observational nature, they could not overcome the influence of
unmeasured confounding factors on the results and had the
disadvantage of a small sample size. In addition, we assessed sleep-
related parameters mainly in the form of self-reported questionnaires,
which carries the risk of subjective evaluation, and there is
heterogeneity in the methods of assessing sleep characteristics
between different studies; therefore, it is difficult to compare results
between different studies. Finally, none of the studies accurately
determined the periodicity or frequency of sleep-related traits.
Therefore, there are inconsistencies in the results of previous studies
regarding the association between sleep-related traits and male fertility.

To the best of our knowledge, this is the first study to explore the
association between sleep-related traits and male fertility at the
genetic level. Second, the MR design reduced the likelihood of
confounding factors and other contributors to the observed bias.
Third, all instrumental variables used were derived from publicly-
available GWAS with substantial data, providing statistical validity
for assessing sleep-related traits associated with male fertility.

This study had some limitations. First, the GWAS focused
primarily on individuals of European ancestry, which may limit

how our findings can be extended to other ethnic groups. Second,
the sleep-related characteristics selected were all based on self-
reported results, which inevitably led to subjective bias. Next, the
sleep-related summary data used in our MR analysis were not
stratified by sex, which may have implications for association
studies on male fertility. Finally, our analysis has limited power
and may therefore lead to false-negative results. Subsequent large-
scale epidemiological cohort studies are necessary to determine
more accurate associations.

In conclusion,genetically-predicted chronotype is associated
with bioavailable testosterone levels. Therefore, healthcare
providers may recommend men of childbearing age who are
ready for pregnancy to pay attention to sleep according to the
human biological clock to reduce the risk of male infertility.
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