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Background: Cancer is a significant global health problem that continues to
cause a high number of deaths worldwide. Traditional cancer treatments often
come with risks that can compromise the functionality of vital organs. As a
potential alternative to these conventional therapies, Anticancer peptides (ACPs)
have garnered attention for their small size, high specificity, and reduced toxicity,
making them as a promising option for cancer treatments.

Methods: However, the process of identifying effective ACPs through wet-lab
screening experiments is time-consuming and requires a lot of labor. To
overcome this challenge, a deep ensemble learning method is constructed to
predict anticancer peptides (ACPs) in this study. To evaluate the reliability of the
framework, four different datasets are used in this study for training and testing.
During the training process of the model, integration of feature selection
methods, feature dimensionality reduction measures, and optimization of the
deep ensemble model are carried out. Finally, we explored the interpretability of
features that affected the final prediction results and built a web server platform to
facilitate anticancer peptides prediction, which can be used by all researchers for
further studies. This web server can be accessed at http://lmylab.online:5001/.

Results: The result of this study achieves an accuracy rate of 98.53% and an AUC
(Area under Curve) value of 0.9972 on the ACPfel dataset, it has improvements on
other datasets as well.
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1 Introduction

The BLOBOCAN 2020 statistics drew a grim picture of the global cancer burden with
19.29 million new diagnosis and 9.95 million cancer-related fatalities (Sung et al., 2021). In
the following year, both China and the United States reported 4.82 million and 2.37 million
new cases, respectively. The alarming figures from 2022 indicated over 19.3 million new
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cases globally. The continual prevalence posed the urgent quest for
potential anticancer drugs (Chhikara and Parang, 2023).

Existing therapeutic strategies for cancer encompasses surgical
interventions, radiation, chemotherapy, and immunotherapy. But
they frequently present a myriad of complications (Berger et al.,
2023). These include infections, pronounced immunosuppression,
bleeding, and other severe side effects that jeopardize patient
wellbeing (Timmons and Hewage, 2021). In this context,
anticancer peptides (ACPs) emerge as a promising alternative
since it typically consists of 10–60 amino acids and derived from
the biological immune system. ACPs are characterized by their
ability to impede tumor progression and with a diminished potential
for drug resistance (Turánek et al., 2015; Xie et al., 2020).

The rapid advancements in sequencing technology coupled with
the proliferation of high-throughput peptide datasets have ignited
interest in machine learning and deep learning for peptide
identification. Agrawal et al. employed the ETree learning
paradigm for ACPs prediction (Agrawal et al., 2020). Another
tool iAMP-2L centered its predictions on antibiotic peptides,
diverging from a sole focus on anticancer variants (Xiao et al.,
2013). AMPfun (Chung et al., 2020) and xDeep-AcPEP (Chen
J. et al., 2021) have Using deep learning methods to predict the
multifaceted functionalities of peptides, while Alsanea et al.
employed ensemble techniques for ACPs prediction (Alsanea
et al., 2022). Advanced models like ME-ACP (Feng et al., 2021)
and ACP-DA (Chen X. G. et al., 2021) which successfully integrated
neural network architectures and data balancing techniques. Equally
impressive is the approach taken by Lv et al. that married the light
gradient booster with deep representation learning algorithms (Lv
et al., 2021a). ENNAACT synergized BiLSTM, CNN, and LightGBM
algorithms to achieve the ACPs prediction accuracy 78.95% (Yuan
et al., 2023).

Inspired by the research of above scholars, we developed a deep
convolutional neural network (DCNN) algorithm model that
integrates feature selection, feature reduction, regularization,
dropout, and other optimization methods. Based on this
foundation, we introduce the idea of integrated algorithms and
ensemble 10 machine learning methods as the final cancer peptides
prediction model. Furthermore, our model interpretation endeavors
spotlight pivotal feature combinations instrumental in shaping the
classification outcomes using the technique in Li, Z’s research
(Li, 2022).

2 Materials and methods

2.1 Datasets

To construct a main research dataset, we opted for the most
recent anticancer peptides from DBAASP (Yi et al., 2019). We
specifically chose peptide sequences designed to target cancer from
the database, excluding duplicates and sequences with a length less
than 5. Ultimately, we acquired 2,377 anticancer peptide sequences
for the positive dataset. Additionally, we selected 2,377 peptide
sequences without antimicrobial activity for the negative dataset.
Consequently, we assembled a dataset named ACPfel, comprising
4,754 peptide sequences as the main dataset.

In contrast, this paper utilized the same datasets as the
benchmark studies by Lv et al. (Lv et al., 2021a) and Yuan et al.
(Yuan et al., 2023). And introduced the ACP740 datasets
constructed in ACP-DL (Pirtskhalava et al., 2021) The
ACP740 dataset comprised 376 ACPs and 374 non-ACPs.
Additionally, we sourced the ACPs data from the CancerPPD
(Atul et al., 2015). From this database, we selected a main dataset
of 688 ACPs and an equal number of non-ACPs to create the
training dataset. The remaining 171 samples from each category
were chosen to form the test dataset. Furthermore, we introduced
the CancerPPD alternative dataset, which consisted of
970 experimentally validated ACPs and an equal number of non-
ACPs. Within this alternative dataset, the training set was
constructed using 776 samples from each class. The remaining
194 ACPs and 194 non-ACPs were set aside to serve as the
testing dataset. All the training, validation, and testing datasets
used are presented in Table 1.

2.2 Sequence encoding

An ACP sequence is denoted as P = R1R2. . .RL, where Ri

represents the ith amino acid (AA) and L is the length of this
ACP (Liu M. et al., 2023). Then, in the process, every individual
instance of AA (which represents a specific amino acid in a protein
sequence) is converted into a binary code using the encoding
strategy described in detail in Table 2. This binary encoding
strategy assigns a unique binary sequence to each AA, enabling
easy representation and manipulation of the amino acid sequences
in a binary format. The encoding process involves converting the
properties or characteristics of each AA into binary digits, which are
then combined to form a binary representation specific to that AA.
This binary representation serves as a digital counterpart that can be
easily analyzed, compared, and processed in various computational
tasks such as sequence alignment, protein folding prediction, or
machine learning algorithms. as shown in Table 2.

We utilized the 5-bit binary encoding instead of the standard 20-
bit one-hot method to avoid generating many sparse matrices.
During the feature extraction process, we employed BiLSTM to
capture the contextual relationships between amino acids. By setting
the sequence padding maxlen to 512 in data preprocessing, we
enhanced efficiency, as using the traditional 20-bit one-hot encoding
would have led to longer vector lengths, demanding more memory,
and slowing down training.

2.3 Data preprocessing

In the initial phase of preprocessing, we employed the pad
sequence function to convert variable-length peptides into a
consistent length of 512 by padding. This approach enhances the
consistency and comparability of the input data, and ensures the
peptides share a uniform length. Then, using the random forest
algorithm (Biau, 2012) to extract the features of the training and test
sets separately, where the training set serves as the training and
learning data for the deep convolutional neural network (DCNN),
and the cross-validation is introduced during the training process,

Frontiers in Genetics frontiersin.org02

Liu et al. 10.3389/fgene.2024.1352504

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1352504


building a feature extraction model through k-fold cross-validation,
and evaluating the training performance.

Then, extract the features of the intermediate layer of the deep
convolutional neural network, and then perform PCA
dimensionality reduction on the standardized features. PCA is a
renowned method to diminish the dimensionality of a dataset while
preserving the major share of the intrinsic variability (Bro and
Smilde, 2014). This study uses the principal component analysis
(PCA) technique to enrich the peptide encoded feature space and
proposes the PCA-enriched ensemble learning framework ACPPfel
for the ACPs prediction task. The PCA-based dimensionality-
reduced training set features reflect the transformation
information of the feature space. These are then dispatched to
10 classification algorithms for rigorous training and evaluation.

2.4 Model construction

The entire process of constructing the model involved several
steps. Firstly, encoded the anticancer peptide sequences, and then
selected the features based on the encoded data using the random
forest algorithm. The selected features were subsequently used as the
training and learning features for the deep convolution neural
network (DCNN). During the training process, the bidirectional
long short-term memory (BiLSTM) (Zhang et al., 2022) technique
was incorporated to extract contextual information from
the features.

After the DCNN training, the feature information from the first
layer of the fully connected network was extracted and utilized as input
for the subsequent training of the ensemble model. Prior to training the
ensemble model, the RobustScaler method in scaler was applied to
standardize the data. The processed data were then fed into the PCA
algorithm for dimensionality reduction, enriching the information
within the feature vectors. The data after dimensionality reduction
were subsequently used as input for the ensemble learning algorithm,
facilitating the training process, and ultimately leading to the

construction of the final predictive model for anticancer peptides. It
is worthmentioning that the RobustScaler (Reddy et al., 2021)method is
a robust approach for scaling numerical features, providing reliable and
accurate results across various machine learning tasks. Additionally, the
PCA algorithm was also employed to reduce dimensionality while
preserving valuable information in the feature vectors. Finally, the
ensemble classifier was built based on ten classifiers. The overall
training workflow is shown in Figure 1.

The ACPPfel framework was implemented using Python
programming language version 3.9.18. We evaluated ten binary
classifiers using the following packages, including keras version
2.8.0, tensorflow version 2.8.0, joblib version 1.1.0, scikit-learn
version 1.0.2, xgboost version 1.6.0, and lightgbm version 3.3.5.

1) Support Vector Machine (SVM). SVM has been widely used
for both classification and regression tasks (Boopathi et al.,
2019). This study used SVM as a binary classifier by the
following parameter choices: kernel = ‘poly’, C = 5, gamma =
0.2, degree = 3, coef0 = 0.8, and tol = 1e-3.

2) Random Forest (RF). RF is an ensemble learning method
based on multiple decision trees and determines the class
label of a sample by the ensembled results of the individual
trees. The parameters were set to n_estimators = 10, random_
state = 35, criterion = ’entropy’, and max_depth = 50.

3) XGBoost. It is the abbreviation of extreme gradient boosting
algorithm with very fast training speed (Chen et al., 2015).
The key parameters were max_depth = 50, n_estimators =
100, learning_rate = 0.1, colsample_bytre = 0.7, gamma = 0,
reg_alpha = 4, objective = ‘binary: logistic’, eta = 0.3, and
subsample = 0.8.

4) K-Nearest Neighbors (KNN). KNN functions by classifying a
sample based on its similarity to the neighboring data points
and demines a sample’s class label by themajority one of the k
neighbors of this query sample (Xing and Bei, 2019).
Parameters were set to n_neighbors = 2, p = 1, and
metric = ‘euclidean’.

TABLE 1 The benchmark research datasets of this paper.

Datasets Training datasets Test datasets In total

ACP740 629 111 740

CancerPPD main dataset 1,376 342 1718

CancerPPD alternative dataset 1,552 388 1940

ACPfel dataset 3,327 1,427 4,754

TABLE 2 Encoding strategy of the twenty amino acids (AA).

AA Encoding AA Encoding AA Encoding AA Encoding

A 00,001 G 00,110 M 01,011 S 10,000

C 00,010 H 00,111 N 01,100 T 10,001

D 00,011 I 01,000 P 01,101 V 10,010

E 00,100 K 01,001 Q 01,110 W 10,011

F 00,101 L 01,010 R 01,111 Y 10,100
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5) Gaussian Naïve Bayes (GNB). This probabilistic classifier
roots in Bayes’s theorem, and operates under the
assumption of feature independence (Kamel et al., 2019).
The var_smoothing parameter was tuned to 1e-05.

6) Logistic Regression (LG). LG models the relationship
between a binary dependent variable and one/more
independent variables (Shipe et al., 2019). Parameters were
adjusted to random_state = 1,000, max_iter = 128, tol = 10,
penalty = ‘l2’, and solver = ‘sag’.

7) Decision Tree Classifier (DTree). DTree employs tree-like
decision structures, and aims to predict target variables based
on the learned decision rules (Yoo et al., 2020). Parameters were
criterion = ‘entropy’, random_state = 1, and max_depth = None.

8) Bagging. The Bagging classifier uses the bagging strategy to
train on different training data subsets to enhance model
accuracy and stability (Sandag, 2020). Key parameters
included: criterion = ‘entropy’, random_state = 1, max_
depth = None, base_estimator set to the ‘Decision Tree
Classifier’, n_estimators = 50, max_samples = 1.0, max_
features = 1.0, bootstrap = True, bootstrap_features =
False, n_jobs = 1, and another random_state = 1.

9) LightGBM. It is a gradient-boosting framework that uses tree-
based algorithms for classification (Yuan et al., 2023). It is

optimized for memory efficiency and speed. During training,
we employed GridSearchCV for parameter tuning. The
‘num_leaves’ was set to 31, with ‘learn-ing_rate’ and ‘n_
estimators’ values fine-tuned in ranges [0.01, 0.1, 1] and [20,
40, 80, 100], respectively. Optimal values were ‘learning_
rate’ = 0.01 and ‘n_estimators’ = 80.

10) Ensemble Learning. Our ACPs prediction model utilized the
stacking classification technique and comprised a two-step
process: constructing primary estimators and integrate them
into a holistic estimator (Dong et al., 2020). Five classifiers,
namely, RF, XGBoost, LightGBM, DTree, and Bagging,
formed the estimators. These classifiers retained the
parameter configurations from their individual model
descriptions. Finally, the Stacking Classifier technology was
harnessed to produce ACPs predictions.

2.5 Model explanation

We incorporated the SHAP (Shapley Additive explanation)
model (Lundberg and Lee, 2017) to rank the influential features
within logistic regression and discern the specific feature
combinations with the most profound influence on the ultimate

FIGURE 1
The overall construction process of the ACPPfel model.
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classification outcomes. SHAP is a robust methodology designed to
elucidate the results made by prediction models. It aims to calculate
the Shapley value as the quantifiable measure of each feature’s
contribution towards a given prediction model. This empowers
users with explain ability of each feature in the prediction model
and has been adopted across diverse areas, including biomedical
sciences and healthcare.

SHAP generates locally additive feature attribution as
ŷi � shap0 + shap(X1i) + shap(X2i) + . . . + shap(Xpi), where ŷi

is the model prediction value of the observation i, shap0 = E(ŷi)
is the mean prediction across all observations, and shap(Xji) refers
to the SHAP value of the jth feature for observation i, which
represents the marginal contribution of the feature to the
prediction (Li, 2022).

2.6 Model evaluation

The four metrics are used as principal indicators to calculate the
performance metrics of an ACP prediction model. True positives
represent the positive samples which are correctly identified, and TP
is the number of true positives. True negatives denote the correctly
classified negative samples, and the number of such samples is TN.
False positives and false negatives refer to the samples that are
incorrectly tagged as positives and negatives, respectively. TP and
TN denote the numbers of false positives and false negatives.
Sensitivity and specificity (Skaik, 2008) are defined as SN = TP/
(TP + FN) and SP = TN/(TN + FP), respectively. The accuracy
ACC=(TP + TN)/(TP + FN + TN + FP) describes the overall rate
of the correctly predicted samples. Matthew’s correlation
coefficient (MCC) offers a quality measure of a binary classification
model and is defined as MCC � (TN × TP − FP × FN)/�����������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√

.
Furthermore, the Receiver Operating Characteristic (ROC) and

its accompanying Area Under the ROC Curve (AUC) metrics
employed in our evaluation. The ROC curve visually illustrates
the trade-offs between the true positive rate (TPR = TP/(TP +
FN)) and the false positive rate (FPR = FP/(TN + FP)) over a range
of decision thresholds.

The convexity of the ROC curve offers insights into the model’s
performance, with a curve skewing towards the top-left corner being
indicative of superior predictive capability. The AUC, on the other
hand, quantifies the overall performance, with values tending
towards 1.0 symbolizing exemplary predictions, while a score
around 0.5 is indicative of a model that predicts no better than
random chance (Dzisoo et al., 2019).

In essence, this suite of metrics provides a holistic view of our
model’s proficiency, ensuring that we capture both its strengths and
areas of potential improvement.

3 Results

To ensure the stability and comprehensiveness of our delivered
model. We constructed a new dataset called ACPfel and utilized
three publicly available datasets for training and testing. In the
process of model construction, we introduced feature selection
mechanisms, Dropout, and regularization methods to overcome

the overfitting phenomenon of deep neural networks. The
experimental results of our approach were highly encouraging.
The model developed exhibited superior performance during
independent testing, indicating its robustness and generalizability.
To facilitate easy access and utilization of these datasets and the
finalized model, we have made them readily available on our
web server.

3.1 Training dataset model performance

The main dataset, the alternative dataset, ACP740 the ACPfel
dataset were utilized during the training process. After data
encoding, the dataset is subjected to feature selection using the
random forest algorithm. The resulting selected features are then fed
into the DCNN for the purpose of learning and training. We used
cross-validationmethods to evaluate the performance of the training
set during the training process.

The performance of the main dataset training shown in Figure 2,
we discovered from Figure 2 that the main dataset exhibited
overfitting, and to address this issue, we introduced the dropout
layer during the training process and added regularization methods
to the fully connected layer, reducing the size of the network, and
other measures.

To compare studies, we then introduced the alternative dataset,
while the performance of the alternative training dataset is shown in
Figure 3, we discovered in Figure 3 that the accuracy of the training
and test processes reached 90% or higher during training, and its
performance was better than that of the main dataset.

And then, we introduced the ACP740 dataset, while the
performance of the ACP740 training dataset is shown in
Figure 4, we discovered in Figure 4 that the ACP740 dataset also
exhibited overfitting, but the overall training and cross-validation
test performance changed synchronously.

Finally, we constructed a larger dataset ACPfel, which was
collected from the latest databases, containing more recent
anticancer peptides, as shown in Figure 5. We found that the
performance of the ACPfel training dataset was better during
training, with an accuracy of 96% or higher for both training and
5-fold cross-validation, the AUC value was 0.996 and more stable
than the other three dataset.

3.2 Performance of independent validation

The ACPPfel algorithm is a classification ensemble
algorithm designed for prediction anticancer peptides. We
constructed the model using the preprocessed training data
and then evaluated its performance on two separate
independent validation datasets the main one and an
alternative one. This approach ensured objectivity in
measuring the performance of different classifiers and
comparing them objectively. During their extensive
comparative research. We found that using the feature
selection and PCA algorithm for feature dimensionality
reduction improved the performance of the classification
ensemble algorithm. This improvement was observed by
comparing the performance results presented in Table 3, the
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best values are highlighted in bold. According to Table 3, the
model achieved the highest values for the accuracy reached
78.07%, the sensitivity reached 81.29%, and the specificity
reached 78.36%.

To evaluate the overall performance of the models, the ROC
values of 10 different models were assessed simultaneously, as
shown in Figure 6, the main dataset highest AUC value is 0.8597.

We then tested the alternative dataset using an independent test
set, the best values as shown in Table 4, are highlighted in bold. We
found that our model achieved an accuracy (ACC) of 93.56%, with a
sensitivity (SN) of 94.33% and a specificity (SP) of 94.33%, the result
outperforming the main dataset.

We also found that the ROC values of the alternative dataset
independent test in 10 classification models were well-performed, all

reached a value of 0.9 or higher. And the maximum value was
0.9747, as shown in Figure 7.

To further validate the performance of the model, additional
experiments were conducted. We then continued to introduce the
ACP740 dataset used in the literature ACP-DL (Yi et al., 2019) for
training and testing, with 629 of the data used as the training set, and
the 5-fold cross-validation method was used during the training
process. The remaining 111 of the data was used as an independent
test dataset for the final model testing and validation, the best values
as shown in Table 5, are highlighted in bold.We found that theMCC
value reached the highest of 0.8380 in Table 5, with SP, SN, and ACC
values of 92.98%, 92.59%, and 91.89%, respectively.

We tested the ROC values of the ACP740 dataset, as shown
in Figure 8. Out of the 10 classification algorithms, 9 of them had

FIGURE 2
The training performance of main dataset: (A) The training accuracy of main dataset; (B) The test ROC of the main dataset during training.

FIGURE 3
The training performance of alternative dataset: (A) The training accuracy of alternative dataset; (B) The test ROC of the alternative dataset
during training.

Frontiers in Genetics frontiersin.org06

Liu et al. 10.3389/fgene.2024.1352504

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1352504


values that exceeded 0.9, the LG reaching a maximum value
of 0.9620.

We built a training and test dataset called ACPfel that
included more recent anticancer peptides from DBAASP
(Pirtskhalava et al., 2021), with sequences of length less than
5 removed and duplicate sequences removed. The final dataset
consisted of 4,754 sequences, with 3327 of the data used as the
training set and cross-validation. The remaining 1427 of the data
was used as an independent test dataset, the best values as shown
in Table 6, are highlighted in bold.

We found that the performance of 10 classification
algorithms in Table 6 was better than others, with the highest
MCC value reaching 0.9720 and the highest SP, SN, and ACC
values of 99.86%, 97.63%, and 98.53%, and that the final test
ROC values exceeded 0.970 or higher, even reaching a maximum

value of 0.9972. The performance of ACPfel was better than
those of the previous three datasets. The result as shown
in Figure 9.

3.3 SHAP feature explanation

After predicting anticancer peptides using the logistic
regression model, the SHAP algorithm was used to extract the
features and rank the feature importance. We used the SHAP
Summary Plot method to generate the Summary plot chart,
which displayed the Shapley values for each feature of each
sample in the past tense. This helped us determine which
features were the most important and their impact on the
dataset. The y-axis represented the feature names, and the

FIGURE 4
The training performance of ACP740 dataset: (A) The training accuracy of ACP740 dataset; (B) The test ROC of ACP740 dataset during training.

FIGURE 5
The training performance of ACPfel dataset: (A) The training accuracy of ACPfel dataset; (B) The test ROC of ACPfel dataset during training.
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x-axis represented the influence weight of the Shapley value. The
color indicated the feature value (red for high, blue for low). The
overlapping points were jittered along the y-axis so that we could
observe the distribution of Shapley values for each feature, which
were sorted according to their importance.

The results of the experiment are shown in Figure 10. Based on
the information presented in Figure 10, it can be observed that when
the feature dimensionality is reduced by PCA, feature 0 and feature
1 significantly influence the LGmodel in the main dataset, as seen in
subfigures (A), (B) of Figure 10. Similarly, in the alternative dataset,
feature 0, feature 1, feature 2 has the most substantial impact on the

LG model, as observed in subfigures (C) and (D) of Figure 10.
Similarly, in the ACP740 dataset, feature 0, feature 1 has the most
substantial impact on the LG model, as observed in subfigures (E)
and (F) of Figure 10, Similarly, in the ACPfel dataset, feature 0,
feature 1 has the most substantial impact on the LG model, as
observed in subfigures (G) and (H) of Figure 10. This pattern is also
visible when examining the SHAP heat map, as shown in subfigures
(I), (J), (K) and (L) of Figure 10. To gain insights into which features
the models heavily rely on for making their final predictions, it is
essential to analyze the feature importance ranking depicted in
the figure.

TABLE 3 The performance of various classification models based on DCNN
of the main dataset.

Classification model MCC SP SN ACC

SVM 0.5440 0.7602 0.7836 0.7719

RF 0.5380 0.7544 0.7836 0.7690

XGBoost 0.5500 0.7544 0.7953 0.7749

KNN 0.4690 0.7661 0.7018 0.7339

GNB 0.5610 0.7836 0.7778 0.7807

LG 0.5570 0.7485 0.8070 0.7778

DTREE 0.5010 0.6901 0.8070 0.7485

Bagging 0.5630 0.7485 0.8129 0.7807

LightGBM 0.5500 0.7544 0.7953 0.7749

Ensemble 0.5380 0.7544 0.7953 0.7690

That the bold values indicates the best values.

FIGURE 6
The ROC Curve performance of independent validation dataset
of main dataset.

TABLE 4 The performance of various classification models based on DCNN
of alternative dataset.

Classification model MCC SP SN ACC

SVM 0.8610 0.9278 0.9330 0.9304

RF 0.8610 0.9330 0.9278 0.9304

XGBoost 0.8660 0.9227 0.9433 0.9330

KNN 0.8560 0.9433 0.9124 0.9278

GNB 0.8710 0.9278 0.9433 0.9356

LG 0.8710 0.9433 0.9278 0.9356

DTREE 0.8250 0.8969 0.9278 0.9124

Bagging 0.8560 0.9175 0.9381 0.9278

LightGBM 0.8710 0.9278 0.9433 0.9356

Ensemble 0.8660 0.9278 0.9433 0.9330

That the bold values indicates the best values.

FIGURE 7
The ROC Curve performance of independent validation dataset
of alternative dataset.

Frontiers in Genetics frontiersin.org08

Liu et al. 10.3389/fgene.2024.1352504

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1352504


3.4 Comparison with the state-of-the-art
approaches

There were some previous predictors for ACPs prediction, such
as iACP (Chen et al., 2016), PEPred-Suite (Wei et al., 2019),
ACPpred-Fuse (Rao et al., 2020a), ACPred-FL (Leyi et al., 2018),
ACPred (Schaduangrat et al., 2019), AntiCP (Tyagi et al., 2013),
AntiCP_2.0 (Agrawal et al., 2021a), iACP-DRLF (Lv et al., 2021a),
they are all test on the main independent validation dataset. To
demonstrate the efficacy of our model, we conducted a comparative
analysis of its performance with that of previous predictors on the
same dataset. The datasets are the same as those used in the

benchmark study by (Lv et al., 2021a). The performance of the
main dataset shown as in Table 7, Compared to the best model ACP-
OPE, our model demonstrated improvements in SP by 1.6%, while
the other performances were similar.

However, in this study, the ACPPfel algorithm was constructed
with a highest AUC value of 0.8597 on the main dataset. These
results show that the ACPPfel algorithm proposed in this article can
better predict the anticancer peptides.

For further verifying the effectiveness of our method, we
compared ACPPfel with the existing methods including ACP-DL
(Yi et al., 2019), DeepACPpred (Lane and Kahanda, 2021), ACP-
MHCNN (Ahmed et al., 2021), GRCI-Net (You et al., 2022),

TABLE 5 The performance of various classification models based on DCNN
of the ACP740 dataset.

Classification model MCC SP SN ACC

SVM 0.7660 0.8772 0.8889 0.8829

RF 0.7660 0.8947 0.8704 0.8829

XGBoost 0.7840 0.9123 0.8704 0.8919

KNN 0.7320 0.9123 0.8148 0.8649

GNB 0.7660 0.8772 0.8889 0.8829

LG 0.7660 0.8947 0.8704 0.8829

DTREE 0.6760 0.8246 0.8519 0.8378

Bagging 0.8380 0.9123 0.9259 0.9189

LightGBM 0.8030 0.9298 0.8704 0.9009

Ensemble 0.8030 0.9298 0.8704 0.9009

That the bold values indicates the best values.

FIGURE 8
The ROC Curve performance of independent validation dataset
of ACP740 dataset.

TABLE 6 The performance of various classification models based on DCNN
using the ACPfel dataset.

Classification model MCC SP SN ACC

SVM 0.9680 0.9944 0.9735 0.9839

RF 0.9710 0.9958 0.9749 0.9853

XGBoost 0.9670 0.9930 0.9735 0.9832

KNN 0.9670 0.9972 0.9693 0.9832

GNB 0.9720 0.9986 0.9735 0.9860

LG 0.9660 0.9902 0.9763 0.9832

DTREE 0.9550 0.9831 0.9721 0.9776

Bagging 0.9690 0.9944 0.9749 0.9846

LightGBM 0.9690 0.9944 0.9749 0.9846

Ensemble 0.9710 0.9944 0.9749 0.9853

That the bold values indicates the best values.

FIGURE 9
The ROC Curve performance of independent validation dataset
of ACPfel dataset.
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StackACPred (Mishra et al., 2019) on the cross-validation datasets
and iACP (Chen et al., 2016), PEPred-Suite (Wei et al., 2019),
ACPpred-Fuse (Rao et al., 2020b), ACPred-FL (Wei et al., 2018),
ACPred (Schaduangrat et al., 2019), AntiCP (Kumar and Li, 2017),
DeepACPpred, AntiCP_2.0 (Agrawal et al., 2021b), iACP-DRLF (Lv

et al., 2021b), ME-ACP (Feng et al., 2022) on alternative
independent datasets.

From Table 8, we can see that the algorithm model ACPPfel
outperforms the current best algorithm in terms of SN, with an
increase of 2.63%. The highest performance of ACPPfel in terms of

FIGURE 10
(Continued).
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AUC value was 0.9747, compared to the best result of ME-ACP of
0.936, which increased by 3.87%.

To make a more objective comparison, we also introduced the
ACP740 dataset used in the ACP-DL paper for evaluation, as shown in
Table 9. We can see that our proposed algorithm has improved 2.29%,
5.89%, and 4.2% in terms of ACC, SN, and MCC, respectively, and the
highest AUC value has been improved to 0.9620.

Finally, we constructed a more larger anticancer peptides dataset
and evaluated its performance with this dataset. The highest ACC,
SN, and SP values were 98.53%, 97.63%, and 99.86%, respectively,
and the AUC value reached 0.9972, as shown in Table 6 and
Figure 9, it indicates that all indicators were very well-performed.

3.5 Web server interface and functional
confirmation

By introducing web server technologies such as Flask and HTML
(Yang et al., 2021; Zhou et al., 2022), We have developed a web
server system for analyzing anticancer peptides data. Users can input

the sequence of peptides they want to analyze directly on the
webpage and submit it to the analysis system by clicking the
“Submit” button. The new peptide sequence is then fed into the
ensemble prediction system. If the model’s prediction threshold
exceeds 0.5, it indicates that the sequence is an anticancer peptide.
Otherwise, it is classified as a non-anticancer peptide. The results of
the peptide sequence prediction are displayed at the bottom of the
webpage. Figure 11 illustrates the process of the analysis
demonstration.

Based on Figure 11, the analysis system can analyze each peptide
sequence data, predict whether the sequence is an anticancer
peptide, and provide the results at the bottom of the webpage.
This article has already been established a web server for anticancer
peptide prediction which can be accessed at http://lmylab.online:
5001/. The web server not only offers predictions for anticancer
peptides but also provides a download link for the benchmark
datasets used in the study, allowing users to access them for
further research purposes.

To verify the reliability of the model, we downloaded the
latest discovered anticancer peptide sequences from the

FIGURE 10
(Continued). Performance of training dataset on the training model. (A) The SHAP values scatter plot of the main dataset training; (B) The SHAP
values bar chart of the main dataset training; (C) The SHAP values scatter plot of the alternative dataset training; (D) The SHAP values bar chart of the
alternative dataset; (E) The SHAP values scatter plot of the ACP740 dataset training; (F) The SHAP values bar chart of the ACP740 dataset training; (G) The
SHAP values scatter plot of the ACPfel dataset training; (H) The SHAP values bar chart of the ACPfel dataset training; (I) The SHAP values heat map of
the main dataset training; (J) The SHAP values heat map of the alternative dataset training. (K) The SHAP values heat map of the ACP740 dataset training.
(L) The SHAP values heat map of the ACPfel dataset training.
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DBAASP database (Pirtskhalava et al., 2021), Through biological
experiments, it has been demonstrated that this sequence
possesses functions such as anti-Gram+, anti-Gram-, and
anticancer (Rončević et al., 2023). Moreover, this sequence is
not included in our training dataset. When we performed
prediction on this sequence using the web server developed in
this study, it was found that our model can accurately predict the
latest anticancer peptide sequences, as shown in (G), (H)
of Figure 11.

4 Discussion

Cancer as a disease caused by pathological changes in
cellular division, has become a leading cause of death
worldwide. The persistent prevalence of cancer worldwide

results in the loss of millions of lives annually. Traditional
cancer treatment methods often inflict significant harm on
patients. However, Anticancer peptides (ACPs) offer several
advantages including high specificity, low immunogenicity,
minimal toxicity, and high tolerance under normal
physiological conditions. It provides a potential alternative
for cancer treatment. Traditional laboratory methods for
identifying these peptides are time-consuming, expensive, and
inefficient. In contrast, machine learning methods can be used to
predict anticancer peptides, requiring only computational
resources (Zhou et al., 2023a; Zhou et al., 2023b). This
approach offers a more efficient and cost-effective means of
identifying potential candidates for anticancer therapy (Liu X.
W. et al., 2023; Yang et al., 2022).

During the training of the anticancer peptides prediction model,
the deep convolution neural network (DCNN) (Zhou et al., 2023b)
model is prone to overfitting issues due to both the limited size of the
dataset and the influence of interfering data. To address these
concerns, we performed feature extraction prior to training to
eliminate interfering data. Additionally, we incorporated
techniques such as dropout, Batch Normalization and
Regularizers to enhance the simplicity of the network. In future
research, we intend to explore more methods to effectively mitigate
this problem.

To evaluate the model, we conducted a systematic evaluation
and comparison analysis of the final performance of the model
with other related studies. Firstly, we compared our algorithm
with the best result of ME-ACP (Feng et al., 2022). As shown in
Table 8, ACPPfel had a 2.63% higher SN on an alternative
independent dataset. The best performance of ACPPfel in
terms of AUC value was 0.9747, which was 3.87% higher than
that of ME-ACP. We also introduced the ACP740 dataset used in
the ACP-DL (Yi et al., 2019) for evaluation. As shown in Table 9,
our model has improved 2.29%, 5.89%, and 4.2% in terms of
ACC, SN, and MCC, respectively, and the best AUC value has
been improved to 0.9620. Finally, we constructed a larger
anticancer peptides dataset and evaluated its performance
with this dataset. The highest ACC, SN, and SP values were
98.53%, 97.63%, and 99.86%, respectively, and the AUC value
reached 0.9972, as shown in Table 6 and Figure 9. ACPPfel has
made and optimized based on DCNN using many techniques,
including a feature selection algorithm to reduce interference
data, BiLSTM to extract context features from the anticancer

TABLE 7 The performance of different classification models on main
independent validation dataset.

Model Sens Spec Accuracy

ACP-OPE 0.8153 0.7676 0.7895

iACP-DRLF 0.807 0.743 0.775

AntiCP_2.0 0.775 0.734 0.754

AntiCP 1.000 0.120 0.506

ACPred 0.856 0.214 0.535

ACPred-FL 0.671 0.225 0.448

ACPpred-Fuse 0.692 0.686 0.689

PEPred-Suite 0.331 0.738 0.535

iACP 0.779 0.332 0.551

ACPPfel (this paper) 0.8129 0.7836 0.7807

TABLE 8 The performance of different classification models on alternative
independent dataset.

Model Accuracy Sens Spec MCC

ACP-MHCNN 0.900 0.865 0.933 0.800

iACP-DRLF 0.776 0.784 0.964 0.550

AntiCP_2.0 0.920 0.923 0.918 0.840

AntiCP 0.900 0.897 0.902 0.800

ACPred 0.853 0.871 0.835 0.710

ACPred-FL 0.438 0.602 0.256 −0.15

ACPpred-Fuse 0.789 0.644 0.933 0.600

PEPred-Suite 0.575 0.402 0.747 0.160

iACP 0.776 0.784 0.964 0.550

ACP-DL 0.881 0.860 0.902 0.762

ME-ACP 0.933 0.917 0.948 0.866

ACPPfel (this paper) 0.9356 0.9433 0.9433 0.8710

TABLE 9 The performance of different classification models on
ACP740 independent dataset.

Model Accuracy Sens Spec MCC

ACP-MHCNN 0.860 0.889 0.831 0.720

DeepACPpred 0.850 0.853 0.850 0.706

GRCI-Net 0.823 0.836 0.821 0.647

StackACPred 0.845 0.841 0.849 0.705

ACP-DL 0.815 0.826 0.806 0.631

ME-ACP 0.896 0.867 0.922 0.796

ACPPfel (this paper) 0.9189 0.9259 0.9298 0.8380
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sequence during training, and the middle layer feature of the
fully connected layer as the learning feature for the ensemble
algorithm. The entire process is performed in multiple steps of
dimensionality reduction, which improves the training speed,

and the SHAP algorithm is introduced to backtrack to find the
feature combination that affects the result.

In future research, based on the approach mentioned,
investigators undertook additional exploratory studies to delve

FIGURE 11
Anticancer Peptides Prediction System. (A) Enter the peptides sequence data that need to be predict; (B) Submit the peptides sequence that need to
be predicted and obtain the prediction results; (C) FASTA format data input; (D) Submit the FASTA format data peptides sequence and obtain the
prediction results; (E) Introduction of the study; (F) The benchmark dataset of this study. (G) Enter the newest six peptides sequence data that need to be
predict; (H) Submit the newest six peptides sequence that need to be predict and obtain the final prediction results.
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into the intricate biological mechanisms that drive the anticancer
activity inherent in peptide sequences. This rigorous investigation
involved the inclusion of various biological experiments to not only
validate the findings but also unravel the biological significance and
interpretability of the observed effects. By thoroughly understanding
the underlying biological mechanisms, this research will establish a
solid theoretical groundwork that can guide the later stages of
developing effective and targeted anticancer peptide drugs. The
comprehensive understanding gained from these studies will aid
in the identification and design of potential therapeutic peptides
with optimal properties, paving the way for more successful drug
development efforts in the future.

5 Conclusion

In this research project, we have developed a model for
predicting anticancer peptides by ten classification algorithms to
analyze and identify anticancer peptides data.

To overcome the challenges posed by high feature
dimensionality and the presence of irrelevant feature information,
we introduced the feature selection and PCA algorithm for
dimensionality reduction during the feature extraction process.
This approach aimed to mitigate noise interference and enhance
the overall performance of the algorithm.

To validate the effectiveness of our proposed algorithm, we
utilized the same dataset as the benchmark paper by Lv Z, et al. (Lv
et al., 2021a). Independent testing with this dataset demonstrated
that our algorithm achieved comparable performance to existing
anticancer peptide prediction algorithms in terms of accuracy,
sensitivity, MCC, and other evaluation metrics. Furthermore,
when compared with state-of-the-art algorithms, our approach
exhibited improvements and yielded better results.

In future research endeavors, our objective is to enhance the
interpretability of the algorithm from a biological standpoint.
Additionally, we aim to verify the functional activities of anticancer
peptides through wet laboratory experiments, thereby establishing a
comprehensive understanding of their potential applications.
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