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Introduction: Autism spectrum disorders (ASD) represent a heterogeneous
group of neurodevelopmental disorders with strong genetic predispositions.
Although an increasing number of genetic variants have been implicated in
the pathogenesis of ASD, little is known about the relationship between ASD-
associated genetic variants and individual ASD traits. Therefore, we aimed to
investigate these relationships.

Methods: Here, we report a case-control association study of 32 Japanese
children with ASD (mainly with high-functioning autism [HFA]) and 36 with
typical development (TD). We explored previously established ASD-associated
genes using a next-generation sequencing panel and determined the association
between Social Responsiveness Scale (SRS) T-scores and intelligence quotient
(IQ) scores.

Results: In the genotype-phenotype analyses, 40 variants of five genes (SCN1A,
SHANK3, DYRK1A, CADPS, and SCN2A) were associated with ASD/TD
phenotypes. In particular, 10 SCN1A variants passed permutation filtering (false
discovery rate <0.05). In the quantitative association analyses, 49 variants of
12 genes (CHD8, SCN1A, SLC6A1, KMT5B, CNTNAP2, KCNQ3, SCN2A, ARID1B,
SHANK3, DYRK1A, FOXP1, and GRIN2B) and 50 variants of 10 genes (DYRK1A,
SCN2A, SLC6A1, ARID1B, CNTNAP2, SHANK3, FOXP1, PTEN, SCN1A, and CHD8)
were associated with SRS T- and IQ-scores, respectively.

Conclusion: Our data suggest that these identified variants are essential for the
genetic architecture of HFA.
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1 Introduction

Autism spectrum disorder (ASD) is a common
neurodevelopmental disorder characterized by impaired social
communication and restricted, repetitive behaviors or interests
(Masi et al., 2017; Lord et al., 2018; Hirota and King, 2023). In
the US, ASD affects approximately 2.3% of children aged 8 years
(Hirota and King, 2023). One important aspect of ASD is its
heterogeneous clinical features. For example, some individuals
exhibit intellectual disability (ID) and limited language ability,
while others display motor impairments (Hirota and King,
2023). This heterogeneity is attributed to multiple genetic
variations and environmental factors (Baron-Cohen, 2017; Bai
et al., 2019).

Genetic variations are associated with varying allelic effect
sizes and population frequencies. In addition, genetic variations
exist in a continuum, ranging from single nucleotide changes to
genomic changes at the chromosomal level. Small-scale
variations include single-nucleotide polymorphisms (SNPs)
and insertions or deletions (indels) of a short DNA sequence,
while typical large-scale variations include copy number
variations (CNVs) and chromosomal rearrangement (Sebat
et al., 2007). In general, rare variants tend to have a larger
effect size than common variants (Grove et al., 2019). The
presence of numerous variants with different effect sizes and
allele frequencies, along with their interactions with
environmental factors, generates a highly complex genetic
architecture of ASD (Timpson et al., 2018). Although whole-
genome and whole-exome next-generation sequencing (NGS)
have been utilized for comprehensive analyses of such
polygenic disorders, these approaches are relatively expensive
(Mellone et al., 2022). Targeted panel sequencing allows the
efficient and accurate detection of variants with high
sensitivity (Mellone et al., 2022).

To date, several large cohort studies have identified an
increasing number of ASD-associated genetic variants. More
than one thousand ASD-associated rare variants have been
identified using whole-genome sequencing and transmission
and de novo association tests (Murtaza et al., 2022). By exome
analyses in a Japanese population, Kimura et al. (2022) identified
rare synaptic function-related variants. However, these large-
scale cohort studies might have included individuals with various
degrees of autistic traits and severity of ID. Moreover,
relationships between genetic variants and individual ASD
traits, such as speech development, social responsiveness, and
intelligence remain largely unexplored.

In this study, we performed case-control NGS analyses
combined with psychological assessments on Japanese children
with ASD, mainly with high-functioning autism (HFA). As HFA
is not considered to be a distinct and absolute diagnostic category,
we assessed it as a form of ASD, which was highly heterogeneous in
phenotype. Children with ASD with an intelligence quotient (IQ) of
70 or above were defined as having HFA (Alvares et al., 2020). Using
short-read-based methods, we analyzed SNPs and short indels,
regardless of whether they were rare or common in population
frequency. We aimed to further our understanding of ASD by
clarifying the relationship between ASD-associated variants and
individual ASD traits.

2 Materials and methods

2.1 Participants

Participants, all of whom lived in the Hokuriku District of
Japan, were called upon to participate in the Bambi Plan at
Kanazawa University and its affiliated hospitals. The
participants were children diagnosed with ASD and typically
developing (TD) children who did not exhibit apparent
developmental delay. Additionally, those with low birth weight
were referred to participate in the Bambi Plan by the Department
of Pediatrics of Kanazawa University Hospital. The children were
5–8 years old and were able to sit for 1 h, which is a requirement for
the IQ assessment as it must be taken seated. Children with low
birth weight and who exhibited developmental delay were assessed
with the assessments, which were established according to the
Diagnostic and Statistical Manual of Mental Disorders (fourth
edition) (American Psychiatric Association, 2000) using the
Diagnostic Interview for Social and Communication Disorders
(Wing et al., 2002), Autism Diagnostic Observation Schedule-
Generic (Lord et al., 2000), and Autism Diagnostic Observation
Schedule 2 (Lord C et al., 2012), as well as children with ASD.
Those who did not fully meet the criteria of these assessments were
regarded as individuals with sub-threshold autistic traits (Shiota
et al., 2021). In addition, children enrolled in TD were referred to
as TD without the formal assessments. IQ was assessed using the
mental processing composite scale of the Kaufman Assessment
Battery for Children (K-ABC) (Kaufman AS, 1983). Overall,
118 children with ASD (92 males, 26 females), 104 with TD
(59 males, 45 females), 3 with sub-threshold autistic traits
(3 males), and 10 with low birth weight (3 males, 7 females)
were enrolled (Supplementary Figure S1).

2.2 Target gene regions for enrichment

Based on the SFARI gene database (https://gene.sfari.org/) and
previous reports (Satterstrom et al., 2020; Fóthi et al., 2022; Murtaza
et al., 2022; Qiu et al., 2022), 16 highly confident ASD-associated
genes, one promoter region, and 20 intergenic regions containing
ASD-associated SNPs were selected for the biotinylated
oligonucleotide probe design for enrichment (Table 1).

2.3 Sequencing and data processing

Buccal mucosa was collected using a swab. Genomic DNA was
extracted from the buccal mucosa using a Maxwell RSC Instrument
(Promega, Madison, WI, United States) with the Maxwell RSC
Blood DNA Kit (Promega), according to the manufacturer’s
instructions. Subsequently, whole-genome amplification was
performed on 147 genomic DNA samples (88 were excluded)
using a PicoPLEX WGA kit (TaKaRa Bio, Mountain View, CA,
United States), according to the manufacturer’s instructions. An
Illumina paired-end sequencing library was constructed using the
KAPA HyperPlus Kit (Kapa Biosystems, Wilmington, MA,
United States), followed by enrichment of target sites with xGen
Custom Hyb Panel (Integrated DNA Technologies) and sequencing
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TABLE 1 Genes and SNPs targeted in this study.

No. ASD-associated genes Chromosome Description References

1 POGZ 1q21.3 Binds to HP1-α in a competitive manner with
PxVxL motif-binding proteins such as TIF1-beta
and INCENP. Knockdown in human cell lines
caused mitotic defects, with accelerated mitosis,
abnormal chromosome segregation, nuclear
fragmentation, and disrupted mitotic HP1-α
localization and Aurora kinase B activity (Nozawa
et al., 2010)

Neale et al., 2012; Iossifov et al., 2012; Iossifov
et al., 2014; De Rubeis et al., 2014; Iossifov et al.,
2015; White et al., 2016; Stessman et al., 2016;
Zhou et al., 2022

2 SCN1A 2q24.3 Encodes the large α-subunit of the vertebrate
voltage-gated sodium channel essential for the
generation and propagation of action potentials
(Goldin et al., 1986; Isom, 2002)

Weiss et al., 2003; O’Roak et al., 2011; O’Roak
et al., 2012a; O’Roak et al., 2012b; De Rubeis et al.,
2014; Yuen et al., 2017; Ouss et al., 2019;
Satterstrom et al., 2020

3 SCN2A 2q24.3 Encodes the voltage-gated sodium channel
Nav1.2, which plays an important role in the
initiation and conduction of action potentials.
(Wolff et al., 2017)

Weiss et al., 2003; Sanders et al., 2012; Tavassoli
et al., 2014; Jiang et al., 2013; De Rubeis et al.,
2014; Iossifov et al., 2015; Ben-Shalom et al., 2017;
Wolff et al., 2017; Zhou et al., 2022

4 FOXP1 3p13 A transcriptional repressor that plays a critical role
in monocyte differentiation and macrophage
function (Shi et al., 2008)

O’Roak et al., 2011; Meerschaut et al., 2017;
Feliciano et al., 2019; Satterstrom et al., 2020;
Trelles et al., 2021, Zhou et al., 2022

5 SLC6A1 3p25.3 Encodes a γ-aminobutyric acid (GABA)
transporter, which removes GABA from the
synaptic cleft (Hirunsatit et al., 2009)

Sanders et al., 2012; Carvill et al., 2015; Sanders
et al., 2015; Satterstrom et al., 2020; Johannesen
et al., 2018; Mermer et al., 2021; Zhou et al., 2022

6 ARID1B 6q25.3 A small subset of SWI/SNF complexes, which
contain a Swi2/Snf2-related DNA-dependent
ATPase and function in the remodeling of
chromatin (Hurlstone et al., 2002; Nie et al., 2003)

Nord et al., 2011; Halgren et al., 2012; De Rubeis
et al., 2014; Iossifov et al., 2015; Zhou et al., 2022

7 SYNGAP1 6p21.32 Encodes a brain-specific synaptic Ras GTPase
activating protein that suppresses signaling
pathways linked to NMDA receptor-mediated
synaptic plasticity and AMPA receptor membrane
insertion (Clement et al., 2012; Berryer et al., 2013)

Hamdan et al., 2011; Iossifov et al., 2015; Zhou
et al., 2022

8 CNTNAP2 7q35-q36.1 Encodes a neuronal transmembrane protein
member of the neurexin superfamily involved in
neural-glia interactions and clustering of
potassium channels in myelinated axons

Arking et al., 2008; Alarcon et al., 2008; Vernes
et al., 2008; Li et al., 2010; Whitehouse et al., 2011;
Poot, 2014; Shiota et al., 2021; Shiota et al., 2022;
Weinschutz et al., 2023

9 KCNQ3 8q24.22 A member of the voltage-gated potassium channel
family. The KCNQ2 and KCNQ3 channel
subunits can coassemble to form a channel with
essentially identical biophysical properties and
pharmacologic sensitivities to the native
M-channel (Wang et al., 1998)

Gilling et al., 2013; Toma et al., 2014; De Rubeis
et al., 2014; Satterstrom et al., 2020; Zhou et al.,
2022

10 PTEN 10q23.31 Encodes a ubiquitously expressed tumor
suppressor dual-specificity phosphatase that
antagonizes the PI3K signaling pathway through
its lipid phosphatase activity and negatively
regulates the MAPK pathway through its protein
phosphatase activity (Pezzolesi et al., 2007)

Goffin et al., 2001; O’Roak et al., 2012a; O’Roak
et al., 2012b; De Rubeis et al., 2014; Frazier et al.,
2015; Iossifov et al., 2015; Zhou et al., 2022

11 SUV420H1 (also known as
KMT5B)

11q13.2 Functions as histone methyltransferases that
specifically trimethylate nucleosomal histone
H4 on lysine 20 (K20) (Schotta et al., 2004)

Sanders et al., 2012; Carvill et al., 2015; Sanders
et al., 2015; Satterstrom et al., 2020; Johannesen
et al., 2018; Mermer et al., 2021; Zhou et al., 2022

12 GRIN2B 12p13.1 NMDA receptors are heterotetramers composed
of 2 NMDA receptor-1 (NR1 or GRIN1) subunits
and 2 NR2 subunits, such as GRIN2B (Matta et al.,
2011)

O’Roak et al., 2011; Myers et al., 2011; O’Roak
et al., 2012a; De Rubeis et al., 2014; Iossifov et al.,
2015; Platzer et al., 2017; Zhou et al., 2022

13 CHD8 14q11.2 An ATP-dependent chromatin-remodeling factor
that regulates transcription of beta-catenin target
genes (Thompson et al., 2008)

O’Roak et al., 2012b; O’Roak et al., 2012a; O’Roak
et al., 2012b; Talkowski et al., 2012; Iossifov et al.,
2014; De Rubeis et al., 2014; Bernier et al., 2014;
Iossifov et al., 2015; Zhou et al., 2022

(Continued on following page)
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using an Illumina iSeq 100 System. Adapter sequences were
trimmed from the reads using Trimmomatic v0.39 and mapped
to the human reference genome (hg38) using Burrows–Wheeler
Aligner v0.7.17 (https://github.com/lh3/bwa). Libraries from the
amplified DNA resulted in insufficient sequencing and mapping

rates; thus, the data were not used for further analysis. Libraries
constructed directly from the unamplified DNA yielded sufficient
read-count mapping rates. Variant calls were carried out using
HaplotypeCaller in GATK version 4.2.6.1 (McKenna et al., 2010)
to obtain the gVCF file for each individual. Further, individual gVCF

TABLE 1 (Continued) Genes and SNPs targeted in this study.

No. ASD-associated genes Chromosome Description References

14 ADNP 20q13.13 A homeodomain-containing zinc finger protein
with transcription factor activity that is essential
for brain formation (Gozes, 2007; Mandel and
Gozes, 2007)

O’Roak et al., 2012a; De Rubeis et al., 2014;
Helsmoortel et al., 2014; Iossifov et al., 2015; Zhou
et al., 2022

15 DYRK1A 21q22.13 Encodes a member of the dual-specificity tyrosine
phosphorylation-regulated kinase (DYRK) family
and participates in various cellular processes. It is a
highly conserved gene located in the so-called
Down Syndrome critical region (DSCR), a part of
chromosome 21 that is responsible for the
majority of phenotypic features in Down
syndrome (van Bon et al., 2011)

O’Roak et al., 2012b; De Rubeis et al., 2014;
Iossifov et al., 2015; van Bon et al., 2016; Evers
et al., 2017; Zhou et al., 2022

16 SHANK3 22q13.33 Encodes a scaffolding protein that is enriched in
postsynaptic densities of excitatory synapses (Yi
et al., 2016)

Durand et al., 2007; Gauthier et al., 2010; Leblond
et al., 2014; Iossifov et al., 2015; Zhou et al., 2022

No. Promoter region Chromosome Mapped Gene References

1 HTTLPR 17q11.2 SLC6A4/5HTT Devlin et al., 2005; Brune et al., 2006; Velasquez
et al., 2017; Wang et al., 2019

No. SNPs in intergenic regions Location Gene References

1 rs1620977 1:72263459 NEGR1 Grove et al. (2019)

2 rs34213746 (rs201910565) 1:96096255 RNU1-130P, LINC02790 Grove et al. (2019)

3 rs1452075 3:62495388 CADPS Grove et al. (2019)

4 rs16854048 4:42121711 BEND4 Grove et al. (2019)

5 rs325506 5:104676602 NIHCOLE, RNU6-334P Grove et al., 2019; Baranova et al., 2022

6 rs2388334 6:98143746 EIF4EBP2P3, MIR2113 Grove et al. (2019)

7 rs111931861 7:105103772 KMT2E Grove et al. (2019)

8 rs7794745 7:146792514 CNTNAP2 Vardarajan et al., 2013; Warrier et al., 2015;
Zhang et al., 2019

9 rs10099100 8:10719265 RP1L1, SOX7 Grove et al., 2019; Wu et al., 2020

10 rs11787216 8:142615222 MIR1302-7, C8orf90 Grove et al. (2019)

11 rs2094530 13:50990321 GUCY1B2 Gialluisi et al. (2021)

12 rs10149470 14:103551616 RNU7-160P, BAG5 Grove et al. (2019)

13 rs113877277ß 17:38498858 ARHGAP23 Price et al. (2020)

14 rs6035856 20:2207896 LOC388780 Gialluisi et al. (2021)

15 rs6035857 20:2207898 LOC388780 Gialluisi et al. (2021)

16 rs6047381 20:2204711 LOC388780 Gialluisi et al. (2021)

17 rs6137325 20:2207297 LOC388780 Gialluisi et al. (2021)

18 rs6137326 20:2207298 LOC388780 Gialluisi et al. (2021)

19 rs71190156 20:14855610 MACROD2 Grove et al., 2019; Wu et al., 2020

20 rs910805 20:21267478 XRN2, ZNF877P Grove et al., 2019; Wu et al., 2020; Peyrot and
Price, 2021
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files were combined with CombineGVCFs (GATK version 4.4.0.0),
and final genotype sets were called from the whole cohort of
preselected target regions (Supplementary Table S1) using
GenotypeGVCFs with 3-bp expansion (command: ‘--interval-
padding’) to obtain the cohort genotype VCF file. Cohort
genotype VCF files were read with PLINK ver. 1.9 (Purcell et al.,
2007) to generate data files named plink.{bed,fam,bim}. Sex data
were manually recorded on the. fam file. The phenotype data were
encoded as 01 (TD), 02 (ASD), G1 (sub-threshold autistic traits),
and d1 (low birth weight) (Supplementary Table S2). Using these
files, case-control association tests were performed with PLINK.
Genotype associations with IQ scores and Social Responsiveness
Scale (SRS) (see Supplementary Material for details) scores, as
quantitative phenotypes, were analyzed with PLINK. Statistically
significant associations at the variant sites were further investigated
using the Integrative Genomics Viewer (Robinson et al., 2011), and
the validity was confirmed.

2.4 Statistical analyses

Statistical analyses were performed using R version 4.3.0 (R Core
Team, 2021). SRS and IQ were treated as continuous variables for
the quantitative association analyses. False discovery rates (FDRs)
were calculated with the p. adjust function in R with the “BH”

method, as previously described (Benjamini and Hochberg, 1995).

3 Results

3.1 Genotyping

Target-enrichment sequencing following whole-genome
amplification resulted in low-quality reads. Subsequent direct
library construction and enrichment yielded high-quality reads in
79 of the 88 samples. Consequently, genomic DNA from 79 children
(32 with ASD, 36 with TD, 3 with sub-threshold autistic traits, and
eight children with low birth weight; 53 males and 26 females aged
5–8 years; Supplementary Table S2) were processed for further
analyses (Supplementary Figure S1).

3.2 Participants’ characteristics

The mean age of the children was 5.6 and 5.4 years for ASD and
TD, respectively (Table 2). The sex ratio was biased toward males in

participants with ASD (27:5) but comparable in those with TD (20:
16). The IQ scores of three children were not obtained. SRS T-scores
and IQ scores of these 79 children are plotted in Supplementary
Figure S2 with ASD phenotype diagnosis (Supplementary Table S3),
showing positive and negative correlation of SRS T-scores and IQ
scores with ASD diagnosis, as demonstrated through Welch’s two-
sample t-test (Table 2).

3.3 Genotype–phenotype
association analyses

We detected 1,418 variant sites with an average call rate of
70% (Supplementary Data). In total, 748 variants were called at a
genotype call rate of 95% (number of individuals = 79). Forty
variants were associated with ASD/TD (p < 0.05, chi-square tests);
low birth weight and sub-threshold autistic traits were not
included in the analyses because the autistic phenotypes were
not strictly defined. Thus, 68 children were included in the final
analyses (Supplementary Figure S1). Among these, variants
within the SCN1A gene, which encodes the pore-forming α-
subunit of the Nav 1.1 voltage-gated sodium channel, exhibited
the strongest association with ASD/TD (χ2 = 18.8–5.80, p =1.45 ×
10-5-0.016) (Figure 1). In addition, ASD/TD was correlated with
variants in SHANK3 (χ2 = 5.84–5.04, p = 0.016–0.025), DYRK1A
(χ2 = 4.64, p = 0.03), CADPS (χ2 = 4.52, p = 0.03), and SCN2A
(χ2 = 4.43–3.93, p = 0.04–0.05) genes. Compared with SCN2A
(encodes the pore-forming α-subunit of the Nav 1.2 voltage-
gated sodium channel) variants rs2304010, rs10930160,
rs2304012, rs767942624, rs1252589686, and rs59934051
(Figure 1), the SCN1A variant rs79990586 exhibited lower
p-values under dominant model (p = 0.01–0.03). Although
37.4 sites were expected to result in p < 0.05, if 748 sites are
independent of ASD, then the associations of 10 variants (dbSNP:
Chromosome: BP; rs28663047: 2: 166052559, rs11691603: 2:
166035836, rs10168027: 2: 166039309, rs10198801: 2:
166041507, rs67636132: 2: 166045389, rs11690962: 2:
166047552, rs1021999648: 2: 166049124, rs1187504368: 2:
166037655, rs1541783: 2: 166055076, and rs1019723: 2:
166039251) of SCN1A are calculated to have FDRs <0.05 (q =
2.8 × 10-3-0.02) and permutation test (p = 2.1 × 10-3-0.04), as
summarized in Table 3 (also see Supplementary Table S4 for
details). We found that 42 variants were associated with HFA
(29 children with HFA) excluding individuals with ASD with
IQ < 70/TD (p < 0.05, chi-square test), as summarized in
Supplementary Table S5.

TABLE 2 Participants’ characteristics.

ASD N = 32 TD N = 36 χ2 or t p

Age 5.63 5.36 −1.52 0.13

Sex (% Male) 84.3% 55.6% 6.59 0.01

SRS total score 71.76 (14.99) 46.17 (6.36) −9.29 8.2 × 10−12

K-ABC Mental Processing scale a89.65 (17.39) 105.54 (13.86) 4.18 1.0 × 10−4

aN = 29.

Numbers are mean (standard deviation).

ASD, autism spectrum disorder; K-ABC, kaufman assessment battery for children; SRS, social responsiveness scale; TD, typical development.
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3.4 Association with SRS T-scores

Quantitative association analyses revealed 49 associated variants
(p = 9.7 × 10-4-0.05; Supplementary Table S6). The strongest
association (p = 9.7 × 10-4-0.02) was found in variants of the
CHD8 gene, which encodes chromodomain helicase DNA-
binding protein 8 (Figure 1). Additionally, rs148502223
(SHANK3; SH3 and multiple ankyrin repeat domains 3) was
more closely associated with ASD than with TD (χ2 = 5.84, p =
0.02). Welch’s two-sample t-test revealed that individuals with the
C/T genotype at rs148502223 had higher mean SRS T-scores than
those with the C/C genotype (p = 0.01328). However, this

association with rs148502223 and all detected variants was not
significant after multiple-testing correction (FDRs >0.05).

3.5 Association with IQ scores

Using quantitative association analyses, we identified 50 variants
(p = 3.0 × 10-5-0.05; Supplementary Table S7). The variants with the
strongest association were DYRK1A (p = 3.0 × 10-5-6.3 × 10−3),
which encodes dual-specificity tyrosine-(Y)-phosphorylation
regulated kinase 1A (Figure 1). rs17229402 of DYRK1A was
associated with IQ scores (ASD vs. TD, p = 0.0313). Although

FIGURE 1
Association of SNPs with ASD, social responsiveness, or intelligence. The gene name and its chromosomal location are given above each panel. The
x-axis shows the locations of SNPs, and the y-axis shows significance as -log10(P). Each symbol represents an individual. Circles (in orange), triangles (in
blue), and pluses (in green) indicate association with ASD, IQ scores, and SRS-T scores, respectively.
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TABLE 3 Association analysis of genotype and ASD.

CHR Gene SNP BP A1 A2 P FDR_P FAM_perm_P Correl
Coeff

SRS_P IQ_P

2 SCN1A rs28663047 166052559 C T 1E-05 0.003 0.002 −0.499 0.095 0.035

2 SCN1A rs11691603 166035836 G A 3E-05 0.003 0.004 −0.539 0.042 0.034

2 SCN1A rs10168027 166039309 G A 3E-05 0.003 0.004 −0.539 0.042 0.034

2 SCN1A rs10198801 166041507 T G 3E-05 0.003 0.004 −0.539 0.042 0.034

2 SCN1A rs67636132 166045387 A AG 3E-05 0.003 0.004 −0.539 0.042 0.034

2 SCN1A rs11690962 166047552 T G 3E-05 0.003 0.004 −0.539 0.042 0.034

2 SCN1A rs1021999648 166049124 T TACTTTACA
GTGCAAAGT
ATTTCTTCA
TTATGAAGA
AATGACATT
AGATTAGAT
ACAGTGCAA
AGATACTTT
AGACa

3E-05 0.003 0.004 −0.497 0.042 0.034

2 SCN1A rs1187504368 166037655 CTT CT 4E-05 0.004 0.005 −0.436 0.045 0.048

2 SCN1A rs1541783 166055076 C T 1E-04 0.008 0.016 −0.486 0.082 0.041

2 SCN1A rs1019723 166039251 A G 3E-04 0.020 0.039 0.448 0.105 0.171

2 SCN1A rs367905968 166052619 A AT 1E-03 0.085 0.178 −0.347 0.627 0.088

2 SCN1A rs6432861 166046718 C T 4E-03 0.119 0.467 −0.317 0.640 0.186

2 SCN1A rs13383628 166047150 T C 4E-03 0.119 0.467 −0.317 0.640 0.186

2 SCN1A rs11690959 166047515 G A 4E-03 0.119 0.467 −0.317 0.640 0.186

2 SCN1A rs1542484 166048865 A G 4E-03 0.119 0.467 −0.317 0.640 0.186

2 SCN1A rs1542483 166049062 T A 4E-03 0.119 0.467 −0.317 0.640 0.186

2 SCN1A rs1841546 166052594 C T 4E-03 0.119 0.467 −0.317 0.640 0.186

2 SCN1A rs3812718 166053034 C T 4E-03 0.119 0.467 −0.317 0.640 0.186

2 SCN1A rs2217199 166053185 A G 4E-03 0.119 0.467 −0.317 0.640 0.186

2 SCN1A rs66512822 166054359 ATGTG A 4E-03 0.119 0.467 −0.317 0.578 0.200

2 SCN1A rs1461203 166056247 C T 4E-03 0.119 0.467 −0.317 0.640 0.186

2 SCN1A rs7564306 166058385 A G 4E-03 0.119 0.467 −0.317 0.640 0.186

2 SCN1A rs6147014 166039198 C CTGAG 4E-03 0.119 0.483 0.301 0.708 0.336

2 SCN1A rs6706163 166051520 C A 4E-03 0.119 0.483 0.301 0.708 0.336

2 SCN1A rs6750294 166051603 A T 4E-03 0.119 0.483 0.301 0.708 0.336

2 SCN1A rs8191987 166058504 G A 4E-03 0.119 0.483 0.301 0.708 0.336

22 SHANK3 rs148502223 50676362 T C 2E-02 0.403 0.930 0.299 0.015 0.642

2 SCN1A rs79990586 166038417 C T 2E-02 0.403 0.940 0.168 0.525 0.783

22 SHANK3 rs12483981 50703953 A G 2E-02 0.599 0.987 0.243 0.175 0.881

21 DYRK1A rs17229402 37472458 A T 3E-02 0.610 0.998 0.265 1.000 0.006

3 CADPS rs1452075 62495388 C T 3E-02 0.610 0.999 −0.253 0.422 0.461

2 SCN2A rs2304010 165367537 A G 4E-02 0.610 0.999 −0.249 0.191 0.986

2 SCN2A rs10930160 165367696 A G 4E-02 0.610 0.999 −0.249 0.191 0.986

(Continued on following page)
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the association of seven DYRK1A variants with IQ scores had
FDR <0.05, (q = 4.4 × 10-3-0.02) (Supplementary Table S6), we
did not detect reads through BAM file inspection, to support the
presence of the variants.

3.6 Variants showing association with
multiple phenotypes

Associations with both ASD/TD and SRS T-scores were
observed in seven SCN1A variants (SNPs: rs11691603,
rs10168027, rs10198801, rs11690962, and rs1187504368; indel:
rs67636132 and rs1021999648) and one SHANK3 SNP
(rs148502223) (Table 3). Nine SCN1A variants (SNPs:
rs28663047, rs11691603, rs10168027, rs10198801, rs67636132,
rs11690962, rs1187504368, and rs1541783; indel: rs1021999648),
one DYRK1A SNP (rs17229402), and two SCN2A SNPs
(rs12614399 and rs2304015) showed association with both ASD/
TD and IQ scores (Table 3). One CHD8 SNP (rs10467770), six
SCN1A SNPs (rs11691603, rs10168027, rs10198801, rs11690962,
and rs1187504368; indel: rs1021999648) and one unconfirmed
SCN2A (BP: 166045387 on Chromosome 2) showed association
with both SRS T-scores and IQ scores (Table 3).

4 Discussion

In our cohort, mainly containing children with HFA, we
identified 40 variants within five genes that are associated with
ASD. In addition, we observed an association of 49 and 50 variants
including CHD8 and DYRK1A with SRS T-scores and IQ scores,
respectively. With the exception of seven unregistered DYRK1A
variants and one unregistered SCN2A variant, all other identified
variants were reported in dbSNP (Table 3; Supplementary Tables S5,
S6). In particular, 10 variants of SCN1A passed filtering of the
permutation test and the FDR was below 0.05, as determined
through BH correction. These data provide some insights into
the genetic architecture of HFA.

Of the variants found to be associated with the phenotypes, none
were present in exons; all were found in introns and predicted to be
benign variations that are not expected to cause medically important
phenotypes. Given the nature of association studies, variants may
constitute a linked haplotype group that results in improper
expression levels in specific cell types. Confirmation of the
expression levels is not possible in humans and is beyond the
scope of the current report. Notably, HFA may be caused by a
small effect size rather than a large effect size of the major ASD
genes; that is, the genes are highly functional because gene function
is only subtly impaired. The cumulative impact of hundreds of risk
alleles from common variations (both SNPs and CNVs) has been
observed to lower penetrance effects in HFA (Toma, 2020). A large
genome-wide association study reported that the polygenic
contribution of common SNPs may be more prominent in
patients with HFA than in patients with both ASD and ID
(Grove et al., 2019). Thus, the accumulation of genetic SNPs with
small effect sizes may contribute to HFA. All ASD-related
variations were already in dbVAR and are known
polymorphisms with little impact on fitness. Given that the
subtle effects of intronic variation may be linked to the
phenotype, it may be worth designing probes on introns and
flanking regions in addition to those in the exons of the
candidate target genes.

However, in our cohort, variants in SCN2A were associated with
ASD, and those on SCN1A were most strongly associated with the
ASD phenotype. Among them, SNP rs3812718 is a known risk
factor for epilepsy (Tang et al., 2014; Wang et al., 2018; Zhi et al.,
2018). SCN1A and SCN2A, both of which are located on
chromosome 2, encode voltage-gated sodium channel α-subunits
Nav1.1 and Nav1.2, respectively. Both proteins play important roles
in the initiation and propagation of action potentials, thereby
modulating the neural network activity (Barbieri et al., 2023).
Missense mutations in these genes have been identified in
inherited seizure disorders, including generalized epilepsy with
febrile seizures plus (GEFS+) (Meisler et al., 2001), as well as in
ASD (O’Roak et al., 2011; Reynolds et al., 2020). Loss-of-function
mutations in SCN1A have been observed in most cases of Dravet

TABLE 3 (Continued) Association analysis of genotype and ASD.

CHR Gene SNP BP A1 A2 P FDR_P FAM_perm_P Correl
Coeff

SRS_P IQ_P

2 SCN2A rs2304012 165370468 G A 4E-02 0.610 0.999 −0.249 0.191 0.986

2 SCN2A rs767942624 165380360 T TG 4E-02 0.610 0.999 −0.249 0.191 0.986

2 SCN2A rs12614399 165293790 C G 4E-02 0.610 0.999 −0.229 0.900 0.045

2 SCN2A rs12692768 165372999 T C 4E-02 0.610 1.000 0.224 0.883 0.113

2 SCN2A rs1368238 165375124 G A 4E-02 0.610 1.000 0.224 0.883 0.113

2 SCN2A rs2304015 165307838 A G 4E-02 0.610 1.000 0.259 0.122 0.009

2 SCN2A rs62174667 165342016 G A 5E-02 0.610 1.000 −0.226 0.769 0.069

CHR, chromosome; SNP, SNP ID; BP, Physical position (base-pair); A1, Minor allele name (based on whole sample); A2, major allele name.

P, Asymptotic p-value for this test; P_dom, under dominant model; FDR_P, FDR p-value; FAM_perm_P, Family-wise permutation test p-value.

Correl Coeff, correlation coefficient; SRS_P, association with SRS T-scores p-value; IQ_P, association with IQ, scores p-value; NA, not applicable.
aCommon alleles are T>C.
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syndrome (DS), manifesting as epileptic seizures, hyperactivity,
autistic traits, and cognitive decline. Loss of function of the
Nav1.1 channel from familial febrile seizures to GEFS+ and
finally DS results in a progressive and severe DS phenotype
(Catterall, 2014; Ishii et al., 2017). In our study, no individuals
had a clinical history of epilepsy (unpublished data), and all variants
were detected in introns. A possible explanation is that these intronic
variants, which do not destroy the channel structure, may contribute
only to autistic traits in HFA but not to ASD with epileptic seizures.

One key aspect of the heterogeneity of ASD may result from
diverse IQ (Wolff et al., 2022). In clinical reports of ASD cases, more
individuals with ASD had above-average IQ and fewer had below-
average IQ, with the latter including -ID (Mayes and Calhoun, 2003;
Rommelse et al., 2015). Autistic traits can be found and examined in
any type of psychiatric or neurodevelopmental disorder, as well as in
individuals without a disorder (Mottron and Bzdok, 2020). This
could account for the increase in reports of individuals with ASD
with an average or above-average IQ (Wolff et al., 2022).

The cumulative effect of diverse common risk alleles from
common variants is thought to cause HFA (Toma, 2020). For
example, 22 rare SNPs were documented in delayed speech
development in Spanish children with HFA (Alvarez-Mora
et al., 2016). Nakata et al. (2019) found that the downregulation
of miR-6126 in HFA was correlated with the severity of social
deficits. More recently, Wang et al. (2023) noted that ASD-
associated genes were responsible for impairments in social
communication but not in cognitive functions. Individuals with
HFA carried fewer disruptive de novo variants than those with both
ASD and ID (Wang et al., 2023). These observations imply that
HFA-related genes are distinct from low-functioning autism-
related genes. In addition, nine new ASD-associated genes were
revealed, including SLC35G1, in which they identified recurrent
mutations in HFA probands (Wang et al., 2023). In the future, an
HFA group should be compared carefully with an ASD + ID group
to identify HFA-specific factors.

We also found that CHD8 variants were strongly associated with
SRS T-scores. The protein product of CHD8, one of the major ASD-
associated genes, functions as a chromatin-remodeling factor that
regulates the expression of many genes including those for β-catenin
and several components of the p53 pathway (Krumm et al., 2014;
Katayama et al., 2016). A large cohort of a two-stage analysis of rare de
novo and inherited coding SNPs identified CHD8 as a gene with exome-
wide significance (p < 2.5 × 10−6) (Zhou et al., 2022). Furthermore,
CHD8 regulates the expression of ASD-associated genes related to
synaptic function and neurodevelopment during neurogenesis
(Sugathan et al., 2014; Cotney et al., 2015; Paulsen et al., 2022).
DYRK1A variants were strongly associated with IQ scores. DYRK1A
encodes a dual-specificity tyrosine phosphorylation-regulated kinase 1A
that contributes to neural development by phosphorylating various
substrates including transcription, splicing, and synaptic proteins (Park
et al., 2009). DYRK1A has also been implicated in the development of
intelligence (Earl et al., 2017; Neumann et al., 2018; Trost et al., 2022);
however, the site variations discovered in the present analysis have not
been confirmed through alignment.

Both SRS T-score and IQ are important criteria for the
classification of ASD. However, it remains unclear whether the
same genes are associated with both of them. Previous studies
have reported a relationship between IQ and autistic traits. Bölte

et al. (2008) reported a low correlation between SRS and IQ. In
contrast, Marinopoulou et al. (2023) demonstrated that intellectual
functioning was negatively associated with SRS in children with
ASD. Presumably, these SNPs detected in this study may
independently affect both social responsiveness and intelligence
through complex interactions.

This study has a few limitations. First, the sample size was small.
To detect the small-effect size genes by high-multiplicity comparison,
a sample size of a few thousand would be necessary. Second, variants
were determined as substitutions or small indels, and such SNPs were
not phased; thus, the haplotype of the entire gene structure was not
determined. Haplotypes can be reconstructed using long-read
sequencing or family genetic analysis. Finally, a targeted panel was
constructed by the combination of highly-confident ASD-associated
genes known at the beginning of this study. Optimizing theNGS panel
by incorporating new variants and/or by removing inappropriate ones
would enable the precise elucidation of genetic architectures of
different subtypes of ASD.

In summary, our results indicate the presence of core HFA-
associated genes in the Japanese population. Future studies,
combined with a trio analysis of children and their parents
at a larger scale, would define in detail the genetic
architecture of HFA.
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