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SVhawkeye is a novel visualization software created to rapidly extract essential
structural information from third-generation sequencing data, such as data
generated by PacBio or Oxford Nanopore Technologies. Its primary focus is
on visualizing various structural variations commonly encountered in whole-
genome sequencing (WGS) experiments, including deletions, insertions,
duplications, inversions, and translocations. Additionally, SVhawkeye has the
capability to display isoform structures obtained from iso-seq data and
provides interval depth visualization for deducing local copy number variation
(CNV). One noteworthy feature of SVhawkeye is its capacity to genotype
structural variations, a critical function that enhances the accuracy of
structural variant genotyping. SVhawkeye is an open-source software
developed using Python and R languages, and it is freely accessible on GitHub
(https://github.com/yywan0913/SVhawkeye).
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Introduction

The genetic variations in the human genome encompass a variety of categories,
including numerical abnormalities of chromosomes, structural variation (SV) in
chromosomes, copy number variation (CNV), single nucleotide variation (SNV), and
insertion-deletion mutations (indels). Numerical abnormalities of chromosomes can result
in conditions like trisomy syndrome, which can be identified through methods such as
karyotyping or analyzing the depth distribution of all chromosomes (Santoro et al., 2020;
Santoro et al., 2022).

SVs denote significant genomic alterations that typically span at least 50 base pairs
(Duan et al., 2022). These genomic variants include inversions, balanced translocations, and
genomic imbalances, which involve duplications, insertions, and deletions collectively
referred to as DNA gains, losses, or rearrangements (Sudmant et al., 2015; Sedlazeck
et al., 2018a). Whole-genome sequencing (WGS) from next-generation sequencing (NGS)
or third-generation sequencing (TGS) data can detect these variants.

SVs are not only play an important role in gene expression (Chain and Feulner, 2014;
Chiang et al., 2017) and phenotypic diversity (MacArthur et al., 2007; Perry et al., 2007;
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Jarvis et al., 2012; Kamberov et al., 2013). Numerous complex
hereditary diseases, including autism (Hoischen et al., 2014;
Dennis et al., 2017), cancer (Vogelstein et al., 2013; Zack et al.,
2013), Alzheimer’s disease (Roses, 2016), and schizophrenia (Klar,
2004; Marshall et al., 2017), are known to originate from structural
variations in the genome. Examples of such variations encompass
translocations and large deletions, significantly contributing to both
cancer and hereditary diseases (Abeysinghe et al., 2006). Gene
inversions also play a role in certain conditions, such as
Hemophilia A (Dai et al., 2021). Moreover, Short Tandem
Repeats (STRs) (Masters et al., 2001) and Variable Number of
Tandem Repeats (VNTRs) (Bakhtiari et al., 2021), specific types
of structural variations, have been extensively studied in connection
with repeat expansions. For instance, ATTCC repeat expansions
have been associated with Parkinson’s disease (Schüle et al., 2017),
and CAG expansions have been linked to Huntington’s disease
(McColgan and Tabrizi, 2018).

SNVs are the most common type of genetic variation in humans
(Katsonis et al., 2014). They play a crucial role in phenotypic
diversity. RNA splicing (Wilkinson et al., 2020), a significant
biological process in eukaryotic gene expression, is frequently
detected through RNA-seq or isoform sequencing (iso-seq). This
process results in the creation of numerous functional mRNAs
carrying coding information. CNV (Wong et al., 2007; Fanciulli
et al., 2010), on the other hand, refers to variations in the number of
copies of specific DNA segments across different individuals’
genomes, resulting from duplications, deletions, or other
alterations, often indicated by changes in read depth in WGS or
whole exome sequencing (WES).

To effectively detect SVs from long reads, numerous software
packages have been developed using genomic sequence data. These
tools, including sniffles (Sedlazeck et al., 2018b), cuteSV (Jiang et al.,
2020), pbsv (https://github.com/PacificBiosciences/pbsv), and svim
(Heller and Vingron, 2019), provide valuable SV results but may
still have limitations in accurately identifying specific target SVs.

Detected SVs can contain inaccuracies or lack sufficient read
support, requiring meticulous manual interpretation using
Integrative Genomics Viewer (IGV) (Robinson et al., 2011;
Thorvaldsdottir et al., 2013; Robinson et al., 2017; Robinson et al.,
2020). This process is time-consuming and involves importing
reference genomes and BAM files (https://www.ncbi.nlm.nih.gov/sra/
docs/submitformats/), as well as constant manual adjustments to
observe structure types and read mapping quality. Additionally,
users may overlook SV types resulting from split-mapping.

Alternative tools such as bamsnap (Kwon et al., 2021) and svviz
(Spies et al., 2015) provide automation, but are unable to handle long read
data and can be slow (Table 1) and more detailed information may be
needed to understand the presented SV structure (Figure 2B, Figure 5B).
Samplot (Belyeu et al., 2021) offers a rapid overview ofmutation structure
but may obscure essential read information, making it difficult to discern
precise genotyping details and missing nearby structural information.
Even inaccurate SV length may occur (Figure 3C).

In this paper, we introduce SVhawkeye, a novel software that
addresses these aforementioned shortcomings. SVhawkeye offers a
comprehensive suite of detection and visualization tools for SV
curation. It enables the rapid generation of multiple SV graphs from
VCF files simultaneously. SVhawkeye meticulously reviews and
interprets each read, highlighting those that support target SVs.
It can help quickly screen for pathogenic variants in clinical samples
detected through third-generation sequencing. Moreover,
SVhawkeye has the capability to concurrently exhibit various
samples, encompassing family and population samples. It also
accommodates the visualization of other genomic structural types
like SNVs, RNA splicing, and CNV.

Methods

SVhawkeye undergoes several pre-processing steps to prepare
data for visualization (Figure 1A).

TABLE 1 Feature comparisons of currently available SV plot tools.

Software Variation
type

Variation type
judgment

Input
format

Speed
(second/sv)

Visual
information
reading

SV
genotyping/

recall

Supports
long reads

SVhawkeye Fullly supporta auto bam +
vcf/bed

3.29 obviousd yes yes

Samplot Partb specify bam +
vcf/pos

2.41 deliberativee no yes

IGV — no bam + pos — — no yes

IGVScreenshot — no bam + bed 22.36 complexf no yes

Bamsnap — no bam + vcf/
bed/pos

— complex no no

Svviz2 partc specify bam +
vcf/bcf

31.03 complex no no

Svviz partc specify bam + pos 35.55 complex no no

aDEL/INS/INV/DUP/TRA/SNV/InDel/CNV, e.g.
bDEL/INS/INV/DUP.
cDEL/INS/INV/TRA.
dObvious: It is possible to simultaneously observe factors such as SV, type; SV, length, and SV, supported reads. (Figure 2; Figure 3; Figure 4; Figure 5; Figure 6).
edeliberative: Missing partial information for SV, e.g., missing number of variant reads and even possible inaccurate variant length (Figure 3).
fComplex: More information may be needed to confirm the displayed SV, type. (Figure 2; Figure 4; Figure 5).
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Step 1) Quality Assessment: Initially, SVhawkeye assesses the
validity and quality of mapped reads, filtering out reads with
insufficient evidence, Factors considered include low quality
scores (default: mean reads quality ≥ Q20), low sequence
identity (default: mapping identity ≥60%), and short mapping
lengths (default: remove reads with mapping length less
than 100 bp).
Step 2) Breakpoint Identification: SVhawkeye identifies
breakpoints for each read based on cigar-mapping and split-
mapping, utilizing the pysam package (https://pysam.
readthedocs.io/en/stable/) to read the BAM file. The cigar
information is utilized to identify possible deletions,
insertions, and soft clipping events. Split-reads are employed
to gather breakpoint data, serving as a foundation for interpreting
the SV sequence.
Step 3) SV Type Interpretation: SVhawkeye interprets SV types
using mapping coordinate information, amalgamating the
breakpoint data from all reads and predicting SV
characteristics through common SV types (Abel et al., 2020)
and a well-designed algorithm. This relevant breakpoint
information is subsequently recorded. In this step, all reads
are recorded after comparison with the reference in various
types, which can be reference reads, deletions, insertions,
duplications, inversions or translocation reads, along with the
corresponding breakpoint information.
Step 4) Reads Rearrangement and Clustering: To visualize SV
structures with significant intervals, SVhawkeye utilizes a greedy
non-overlapping interval clustering algorithm (https://
labuladong.gitbook.io/algo-en/i.-dynamic-programming/
intervalscheduling). This algorithm automatically arranges and

assigns reads to each row in the graph, ensuring a visually
appealing representation of SVs based on the previously
acquired breakpoint information. Finally, plot these arranged
coordinate information using the R language.
Step 5) SV Genotyping: SVhawkeye ascertains SV genotypes by
scrutinizing the breakpoint information of reads that corroborate
the specific SV within the interval relative to the target SV interval.
This procedure entails excluding reads with coverage below 0.5 and
breakpoint position disparities surpassing 1000, then removing
reads with effective comparison length less than 100bp in this
region. After reordering the reads in the step 4, the depth value also
becomes more reasonable. Following this, SVhawkeye consolidates
and computes the allele frequency (AF) value. A genotype of 0/1 is
assigned when the AF value exceeds 0.3, while it is designated as 1/
1 if the AF value surpasses 0.8.

Workflow of SVhawkeye

The main ‘hawkeye.py’ function comprises five subroutines: ‘sv_
browse,’ ‘snpindel_browse,’ ‘rna_browse,’ ‘regiondepth_browse,’
and ‘sv_genotyping.’ All of these subroutines require input in the
form of BAM files and interval information, such as BED/VCF files
or interval strings (Figure 1B).

Moduel #1 sv_browse

The ‘hawkeye.py sv_browse’ command is used to visualize
structural variants within a specified interval, sourced from either

FIGURE 1
The overall workflow of SVhawkeye. (A)Data processing of SVhawkeye. (B) The SVhawkeye tool provides fivemodules, the first four modules can be
used independently to graphically display gene variation information, and the last module can be used for SV genotyping. The input file displays that all
modules require BAM file(s) and coordinate information for use.
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a BED or VCF file. Firstly, the graphical layout and details closely
resemble those of the IGV software. ‘sv_browse’ offers the advantage
of automatically identifying SV types from cigar-mapping and split-
mapping reads. Furthermore, this software provides support for
multiple sample files and facilitates the batch plotting of multiple
intervals. Additionally, it demonstrates proficiency in presenting
extensive intervals in a user-friendly fashion. It intelligently selects

reads for display when confronted with an excessive quantity of
fragments. This approach enables users to quickly assess the
reliability of the target variant for subsequent analysis.

The using method of sv_browse command is as follows:
hawkeye.py sv_browse -i $bam -b $input.vcf -f

vcf --thread $cpu -o $outdir --genome hg19

--quanlty 20 --sv_min_length 50 -F png

FIGURE 2
Display of deletion. (A) SVhawkeye. When reads are split-mapping, the colored dotted lines represent gaps, reads are aligned to both ends, and the
purple number in the middle indicates the deletion length. When cigar-mapping, reads are linked by solid line. (B) Bamsnap.
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or
hawkeye.py sv_browse -i $bam -b $input.bed -f

bed --thread $cpu -o $outdir --genome hg38

--quanlty 20 --sv_min_length 50 -F pdf

Moduel #2 snpindel_browse

The ‘hawkeye.py snpindel_browse’ command is utilized to
visualize SNVs or indel structures from sequencing data. Its

FIGURE 3
Display of insertion. (A) IGV. (B) SVhawkeye. When reads are split-mapping, they would be colored, and cigar-mapping would not be. The purple
number in the middle indicates the insertion length. The red breakpoint at the end indicates soft-clipping which indicates that the reads may be too short
to display an incomplete insert frequently. (C) Samplot.
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usage closely mirrors that of “sv_browse,” and users have the option
to specify a reference FASTA file using “-r $ref.fa” to display
reference bases. This feature is very user-friendly for intervals less
than 200bp.

Moduel #3 regiondepth_browse

The “hawkeye.py regiondepth_browse” command is utilized to
quickly visualize the depth of a region within a specific segment of
the genome, especially in areas where deletions or duplications
are present.

The usingmethod of regiondepth_browse command is as follows:
hawkeye.py regiondepth_browse -i $bam -o

$outdir -r ${chrom:start-end}

Moduel #4 rna_browse

The “hawkeye.py rna_browse” command is used to visualize
isoform structures obtained from RNA-seq or iso-seq data. Users
need to provide a BED file containing the target interval and a
GenePred (Hubisz and Siepel, 2023) file if the input species is
not human.

FIGURE 4
Display of duplication. (A) IGV. (B) SVhawkeye. Split-mapping reads are colored, and the black number in the middle of the breakpoint indicates the
length of duplication.
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The using method of rna_browse command is as follows:
hawkeye.py rna_browse -i $bam -b $inputbed -g

$genome -t $cpu -o $outdir --genepred

genome.genePred.gz

Moduel #5 sv_genotyping

The “hawkeye.py sv_genotyping” command is employed to
swiftly perform genotyping of structural variants using an
accurate force-calling method.

The using method of sv_genotyping command is as follows:
hawkeye.py sv_genotyping -i $bam -b $vcf -f vcf

-o $outdir -t $cpu

Results

Table 1 presents a comprehensive comparison between
SVhawkeye and commonly used SV plotting tools currently
available. SVhawkeye boasts the following advantages.

1. Easy to Get Started: SVhawkeye is not required to install on
personal computer, and includes an efficient matching annotation
database. Users can operate it with a friendly one-click command-
line operations, and only requires input the bam(s) and coordinate
file (vcf/bed) (refer to Table 1 Input format column).

2. Diversification: SVhawkeye supports multi-threading
capabilities, and has the ability to display and compare
multiple samples simultaneously.

FIGURE 5
Display of inversion. It is caused by two breaks in the same chromosome, and the resulting pieces are reversed 180° and reconnected. (A)
SVhawkeye. (B) Svviz
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FIGURE 6
Display of balanced translocation. Two chromosomes from different sources are broken and then reconnected with each other to form two
rearranged chromosomes in structure. The example data of balanced translocation are fromNCBI (PRJNA559962) (Hu et al., 2020) and select the sample
of SRR9982132. (A) Ribbon. (B) SVhawkeye.

TABLE 2 Drawing efficiency of 1000 randomly selected SVs.

SVTYPE SV counts Max Len (/bp) Threads Max Memory (/M) Run time (s) Average time (/SV/thread)a (s)

DEL 437 61,031 4 15.2 26m19.34 3.61

INS 516 5,279 4 9.8 25m20.07 2.95

INV 47 11,660 4 11.4 3m12.27 4.09

ALL 1,000 61,031 4 15.2 54m51.68 3.29

aUse Ubuntu 18.04 LTS, in DELL, Latitude 3510.
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3. Support for Displaying Very Large Intervals: SVhawkeye excels
in presenting data across extensive intervals. It organizes reads
for an orderly arrangement and provides depth information
simultaneously (Figure 2A). When handling an abundance of
fragments, SVhawkeye intelligently selects a subset of reads for
display, ensuring efficient visualization.

4. Automatic Variation Type Identification: In contrast to tools
like Samplot and Svviz that require specifying SV types.
SVhawkeye automatically identifies SV types based on
coordinate information. It can highlight split-mapping reads
and determined all SV types of reads within the interval, and
marking their lengths numerically. (refer to Table 1 variation
type judgment column).

5. Support for Displaying All Variation Types: SVhawkeye stands
out by providing essential functionality for displaying all
variation types, including deletion (Figure 2), insertion
(Figure 3), duplication (Figure 4), inversion (Figure 5),
balanced translocations (Figure 6) etc. This feature
distinguishes it from other tools lacking this capability.
(refer to Table 1 variation type column).

6. Speediness: The speed of SVhawkeye is at the forefront of
ensuring more information and accuracy. The average drawing
time per SV on Ubantu 18.04 LTS is approximately 3.29 s, only
about 1 s slower than the Samplot tool (refer to Table 1 Speed
column). On this basis, we also tested the performance of
SVhawkeye on other aspects, the memory it occupies is related
to the length and depth of the interval, usually not exceeding
1 g (RAM), which can be satisfied by a personal computer
(refer to Table 2).

7. SV Genotyping: Due to SVhawkeye’s ability to determine the
SV type for each read, SV genotyping is one of its strengths.

However, SVhawkeye is better suited for long read sequencing.
(refer to Table 1 SV genotyping and Supports long
reads columns).

In our visualization results example, all the data is obtained from
Genome in a Bottle (GIAB) (Nature, 2015). Figure 2 shows a deletion
variation with a length of more than 85 K bp. SVhawkeye can quickly
identify the mutation type, mutation length and the number of reads
Supplementary Material (Figure 2A). Although Bamsnap is also a fast
IGV-drawing based screenshot, it may require more information to
support the displayed structural types. As it is only applicable to short
reads and paired-end reads, it can quickly browse depth distribution
information for NGS data (Figure 2B). Figure 3 is a comparison chart
of insertion variation with a length of about 1.6 K. IGV (Figure 3A)
can display the cigar-mapped insertion in a friendly way, with the
insertion lengthmatching the length in SVhawkeye. However, it is not
easy to visualise insertions caused by split-mapping reads present in
soft-clipping (represented by red triangles at one or both ends of the
reads). Insertion in IGV lacks support for two reads coloured by
SVhawkeye (Figure 3B). The depth information is ignored in samplot
(Figure 3C) and there is a situation of fuzzy SV length (2 K). Figure 4
shows a DUP mutation with a length of more than 10 Kbp. As
described in Figure 3A, if the mutation region is too long, the split-
mapping reads make it difficult for IGV to display the SV type
(Figure 4A) and may need to be interpreted by manually
concatenating the included soft-clipping reads. SVhawkeye does
not require these complex manual operations (Figure 4B). In the
INV mutation example, SVhawkeye clearly shows the change in read
alignment strand caused by the inversion (Figure 5A). The Svviz plot
is difficult to understand for a while, but its presentation style is worth
learning (Figure 5B). Finally, in the TRA example, SVhawkeye

FIGURE 7
Comparison of accuracy of SV genotyping. (A) Genotyping from SVhawkeye compare to sniffles. (B) Genotyping from SVhawkeye compare
to CuteSV.
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achieved a unique display compared to the aforementioned software,
supporting reads at both ends of the breakpoint of the two
chromosomes undergoing balanced translocation (Figure 6B). Of
course, the Ribbon software (Nattestad et al., 2021) also supports
this type of display (Figure 6A), but it cannot use command line
operations and batch operations, so no detailed
comparison was made.

In conclusion, SVhawkeye has a speed no lower than other
software, and many easily understood factors have been added to the
graph results, including SV type, SV length and SV read support. It
can display the SV type with highlighted reads and record the SV
length numerically. Samplot is fast and the graphs are clear and
concise, but it may miss some important factors of SV, such as SV
allele frequency, and may even give unreliable SV length. After all,
for clinical samples, many detailed features need to be considered.
The only drawback of IGV, as a commonly used software in the field
of bioinformatics, is that it requires cumbersome steps to import
bam file and adjust the reads to achieve the purpose of displaying
specific mutation information. If the interval is large, it is difficult to
display in IGV. Fortunately, Bamsnap and Svviz are more suitable
for next-generation sequencing and are good at quickly displaying
alignment information for short reads intervals. (refer to Table1
Visual information reading column).

At the bottom of the structural diagram, gene annotations content
has been added, including gene name, repeatmaker and
genomicSuperDups database information (Wang et al., 2010),
provide valuable insights into the annotation of the breakpoint location.

In addition, SVhawkeye distinguishes itself by incorporating
features such as SNP, InDel, RNA splicing, and CNV visualization,
which are not present in other tools. In the SNP and InDel diagram
(Supplementary Figure S1), users can conveniently access
information for each base within the reads and include details
about the reference sequence beneath the reads. The RNA
splicing diagram (Supplementary Figure S2) enables users to
specify a gene interval for visualizing its isoform structure,
detected from iso-seq or full-length single-cell transcriptome
data. The CNV plot (Supplementary Figure S3) requires users to
input an interval to display the depth distribution of reads,
facilitating the identification of the coverage range of the target area.

The genotyping feature is an essential component of SVhawkeye,
contributing significantly to the accuracy of SV genotyping (Figure 7).
We utilized HG002 HiFi data for initial SV detection, employing tools
such as sniffles and cute SV. Subsequently, we employed truvari
(English et al., 2022) to compare SVhawkeye’s recall SV results with
the initial SVs using the GIAB Tier1 v0.6 benchmark data (Zook et al.,
2020). This analysis revealed a substantial improvement in genotype
prediction accuracy, increasing from 31.6123% to 46.8814% for the
sniffles results and from 90.8312% to 91.0554% for the cute SV results.
Furthermore, the recall rate improved from 73.4472% to 85.6892% for
the sniffles results and from 94.5167% to 94.75% for the cute
SV results.

Discussion and applications

In summary, the SVhawkeye software takes inspiration from
the layout of IGV and aims to provide a swift, comprehensive

visualization of structural variants. It automates the
interpretation of read data and presents it in a meaningful and
visually intuitive manner. This improved clarity and user-
friendliness greatly streamline both the sequencing process
and data interpretation, saving valuable time for biomedical
researchers.

With SVhawkeye’s assistance, users can rapidly identify target
regions across multiple disease samples, trio or pedigree samples,
and more. For instance, SVhawkeye accurately detects balanced
translocations, as demonstrated in various studies, including those
referenced in PMC8804325 (Pei et al., 2022), benchmark structural
variant research (Du et al., 2022), and population short tandem
repeat counts, as verified in PMC9117641 (Liu et al., 2022).
SVhawkeye is well-suited for detecting structural variants in
clinical samples generated from PacBio or Oxford Nanopore
sequencing. Of course, it is also suitable for other species and
requires screening for more accurate variations, such as
population variation analysis.

It is worth noting that while SVhawkeye offers valuable features,
certain challenges in the sv_genotyping aspect, such as false-positive
issues, remain unaddressed. These challenges include concerns such
as read correction, breakpoint fragment realignment, and local
assembly checking. Therefore, there is significant potential for
future enhancements in the sv_genotyping component
of SVhawkeye.
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