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Introduction: Predicting TCR–peptide binding is a complex and significant
computational problem in systems immunology. During the past decade, a
series of computational methods have been developed for better predicting
TCR–peptide binding from amino acid sequences. However, the performance of
sequence-based methods appears to have hit a bottleneck. Considering the 3D
structures of TCR–peptide complexes, which provide much more information,
could potentially lead to better prediction outcomes.

Methods: In this study, we developed TCRcost, a deep learning method, to
predict TCR–peptide binding by incorporating 3D structures. TCRcost
overcomes two significant challenges: acquiring a sufficient number of high-
quality TCR–peptide structures and effectively extracting information from these
structures for binding prediction. TCRcost corrects TCR 3D structures generated
by protein structure tools, significantly extending the available datasets. The main
and side chains of a TCR structure are separately corrected using a long short-
term memory (LSTM) model. This approach prevents interference between the
chains and accurately extracts interactions among both adjacent and global
atoms. A 3D convolutional neural network (CNN) is designed to extract the
atomic features relevant to TCR–peptide binding. The spatial features extracted
by the 3DCNN are then processed through a fully connected layer to estimate the
probability of TCR–peptide binding.

Results: Test results demonstrated that predicting TCR–peptide binding from 3D
TCR structures is both efficient and highly accurate with an average accuracy of
0.974 on precise structures. Furthermore, the average accuracy on corrected
structures was 0.762, significantly higher than the average accuracy of 0.375 on
uncorrected original structures. Additionally, the average root mean square
distance (RMSD) to precise structures was significantly reduced from 12.753 Å
for predicted structures to 8.785 Å for corrected structures.

Discussion: Thus, utilizing structural information of TCR–peptide complexes is a
promising approach to improve the accuracy of binding predictions.
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1 Introduction

T lymphocytes (T cells) play a critical role in the adaptive immune
system (Marshall et al., 2018; Weber et al., 2021). T-cell receptors
(TCRs) specifically identify antigenic peptides presented by major
histocompatibility complexes (MHCs), initiating an immune
response (La Gruta et al., 2018; Rudolph et al., 2006; Davis and
Bjorkman, 1988). Predicting TCR–peptide binding is a fundamental
computational challenge in systems immunology, which is crucial for
drug development and immunotherapy design (Greiff et al., 2020;
Winge-Main et al., 2020; Grazioli et al., 2023).

High-throughput immune repertoire sequencing has led to several
publicly available, immune-related TCR sequence databases, such as
VDJdb (Shugay et al., 2018), McPAS-TCR (Tickotsky et al., 2017), and
IEDB (Mahajan et al., 2018), each containing hundreds to thousands of
TCR–peptide amino acid sequence pairs. Using data from these
databases, various computational models for TCR–peptide binding
prediction have been developed, such as NetTCR-2.0, AttnTAP,
TITAN, AVIB, and TCRPrediction, most of which extract specific
features from the sequence pairs (Montemurro et al., 2021; Xu et al.,
2022a;Weber et al., 2021; Grazioli et al., 2023; Koyama et al., 2023). The
main differences between these models lie in how they encode the
sequences and the types of deep learning models employed (Henikoff
and Henikoff, 1992; Zhang et al., 2023; Pham et al., 2023). However,
most methods predicted binding based on sequence information and
did not implement the spatial information (structure of TCR–peptide
binding). Structural data often provide critical insights that sequence
data alone cannot, such as the spatial arrangement of atoms and
interactions (Ovchinnikov and Huang, 2021). For instance,
structural data can offer a more accurate description of atom pairs
that are spatially close but distant in the linear sequence. Structural
information has been shown to improve the performance in other areas
of protein research, such as in predicting protein–protein interactions,
with methods like SGPPI (Huang et al., 2023), PCA-Pred (Siva
Shanmugam et al., 2021), and PSG-BAR (Pandey et al., 2022)
demonstrating superior results. Therefore, we aim to incorporate
TCR–peptide structures into our models to improve the accuracy of
binding prediction.

Obtaining a large amount of TCR–peptide structures remains a
great challenge. The number of available TCR–peptide structures is
significantly lower than the number of sequences. Only a few
hundred validated TCR–peptide structures are currently available
(Zvyagin et al., 2020; Jisna and Jayaraj, 2021). These structures can
be accurately determined using experimental techniques, such as
X-ray crystallography, nuclear magnetic resonance spectroscopy,
and electron microscopy. However, these methods are labor-
intensive and time-consuming (Jisna and Jayaraj, 2021).

The rapid development of AI-based protein structure prediction
methods makes it possible to determine 3D protein structures from
amino acid sequences (Zhang et al., 2021; Shokrani et al., 2023).
These approaches have demonstrated high accuracy and reliability
in predicting protein structures (Eswar et al., 2006; Song et al., 2013;
Roy et al., 2010; Das and Baker, 2008). For example, AlphaFold2, an
advanced end-to-end algorithm based on deep learning, can predict
structures with atomic-level accuracy (Jumper et al., 2021). A recent
advancement in protein structure prediction, using AlphaFold
Multimer, has been released to address the prediction of
multimeric protein complexes (Evans et al., 2021). These

methods comprehensively extract information from amino acid
sequences, multiple sequence alignments, homologous structures,
co-evolution signals, and other relevant data sources (Jones and
Thornton, 2022). Recent research studies, including OmegaFold
(Wu et al., 2022) and trRosettaX-Single (Wang et al., 2022), suggest
leveraging large-scale natural language processing models to extract
additional information relevant to protein structure prediction.

In this study, we focused on the CDR3A, CDR3B, and peptide
regions because CDR3 loops are primarily responsible for
interacting with peptides (Joglekar and Li, 2021; Chiffelle et al.,
2020). We evaluated the performance of AlphaFold2 (Jumper et al.,
2021) and OmegaFold (Wu et al., 2022) in predicting the structures
of CDR3A, CDR3B, and peptide segments and found their
performance to be comparable. For this study, we chose
AlphaFold2 and used AlphaFold Multimer, which are specifically
designed for predicting complex protein structures, to predict
TCR–peptide interactions. We observed some inaccuracies in the
predicted TCR–peptide structures, even though they adhered to
established structural constraints. One possible reason is that the
predictors often focus more on the main chains than on the side
chains. These models primarily construct structures based on the
main chains, with the side chains added later for fine-tuning
(Jumper et al., 2021). However, binding structures involve
interactions not only within the main and side chains but also
between them (Chakrabarti and Pal, 2001). Therefore, to obtain
high-quality structures for binding prediction, it is essential to apply
a correction step to the predicted CDR3 structures.

Consequently, we developed TCRcost, a deep learning
framework designed to predict TCR–peptide binding using
corrected structures. We designed a correction model specifically
to refine the accuracy of the predicted structures. This correction
model takes into account both the main and side chains, ensuring
that their interactions are accurately represented. The model first
corrects the main chain and the side chain independently and then
integrates them into a single structure for final adjustments.
TCRcost utilizes a 1D convolutional neural network (1DCNN) to
capture relationships between neighboring atoms and a long short-
term memory (LSTM) model to analyze global atomic interactions.
TCRcost uses a 3D convolutional neural network (3DCNN) to
extract information from the atomic characteristics and corrected
3D coordinates of each atom. A fully connected layer is then used to
predict TCR–peptide binding. We evaluated the performance of
TCRcost in terms of both the structure correction and binding
prediction. TCRcost achieved high accuracy (0.974) for binding
prediction. Corrected structures were more similar to precise
structures, whose average root mean square distance (RMSD) to
precise structures was much smaller (12.753 Å between predicted
structures and precise structures and 8.785 Å between corrected
structures and precise structures) (Kufareva and Abagyan, 2012).
Additionally, the accuracy of binding prediction improved
significantly, increasing from 0.375 to 0.762 when using corrected
structures compared to the original predicted structures.

2 Methods

TCRcost consists of two modules: the structure correction
module and the binding prediction module (Figure 1). In the
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FIGURE 1
TCRcost corrects predicted structures and then predicts TCR–peptide binding. (A) The overall architecture of the TCRcost model. The 3D
coordinates of the predicted structures with low quality were fed into the framework to accurately predict TCR–peptide binding. The correction module
corrected the atoms of the main and side chains separately after capturing the relationships of adjacent atoms by 1DCNN, then combined them into
entire structures, and processed themwith LSTM (green area). The binding predictionmodule extracted features of the structures and predicted the
likelihood of TCR–peptide binding by 3DCNN andMLP (orange area). (B) The transformations of different representations of TCR–peptide structures. (C)
The separation of atoms intomain chains and side chains. (D) The two-layer LSTMmodel of all_LSTM, which was the same as side_LSTM andmain_LSTM.
(E) The structures represented by 3D coordinates and eight atomic features were embedded into eight channels and fed into the 3DCNN model.
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correction module, it adjusts the spatial location for every atom.
First, for each atom, the 1DCNN extracts the relationships between
the neighboring atoms. Then, the atoms in the main and side chains
are corrected by an LSTM. Next, the two chains are combined into
an entire structure, which is also corrected by an LSTM model. The
corrected structures are used to predict TCR–peptide binding along
with the atomic characteristics. The structures are processed by the
3DCNN and MLP models to predict TCR–peptide binding.

2.1 Structure correction module

The precise structures and predicted structures are aligned to
keep the order of the atoms consistent, and then the 3D atomic
coordinates are encoded into the tensors as the input. The maximum
length of the input is set to 400, and the redundant parts are
truncated. For the structures having fewer atoms, we completed
them with 0 up to the maximum length. In addition, to acquire the
atoms of the main and side chains, TCRcost defines the main matrix
Mm and the side matrix Ms, whose dimensions are 400*150 and
400*400, respectively. For the main matrixMm, if the ith atom in the
input vector is the jth atom of the main chains, then Mmij is 1;
otherwise, it is 0. A similar definition is applied to the side matrixMs.

Since the neighboring atoms in the input tensors have significant
influences on each other, TCRcost uses the 1DCNN model to learn
the relationships between them first, with the output tensors sharing
the same dimensions as the input tensors. The 3D coordinates of
atoms are fed into 1DCNN as three channels.

Then, the tensors of the entire structures are multiplied by Mm
and Ms to separate the atoms of the main chains and side chains,
respectively (Figure 1C). Both the main-chain parts and the side-
chain parts are processed using a two-layer LSTM model
(Figure 1D) and produce the intermediate results Omain and
Oside, respectively. Based on the different effects of the main and
side chains on entire structures and protein–protein interactions,
loss functions Lmain and Lside are designed for Omain and Oside,
respectively.

Lmain is calculated as FAPE as proposed in AlphaFold2 (Jumper
et al., 2021). Formula 1 shows the specific calculation for Lmain. For
each alignment, it chooses the identical residue from precise
structures and Omain and then uses its three atoms in the main
chain (N, CA, and C) to generate a new coordinate system. The
average distance between the corresponding atoms in Omain and the
precise structures Rmain is determined as the distance between the
two structures in the new coordinate systems. The operations
performed above are repeated for each residue. Therefore, the
average distance between the two structures under various
alignments can be calculated as the loss value.

Lmain Omain,Rmain( ) � 1
N2

∑
i,j

����T−1
o,iOmain,j − T−1

R,iRmain,j

����, (1)

where N is the number of residues in the structure, T−1
o,i and T−1

R,i are
transformation vectors to the new coordinate system, which are built
by the ith residue’s atoms inOmain and Rmain, andOmain,j and Rmain,j

are the jth residues in Omain and Rmain, respectively.
Lside is dependent on the distance matrices of the atoms in the

side chains and is calculated similarly to the local-distance difference
test results (Mariani et al., 2013). The corresponding distance

matrices of precise structures and Oside are named Dr and Dc,
respectively. We set different distance error thresholds, e.g., 0.5,
1.0, 2.0, and 4.0 Å, and also set a 25% proportion for each of the four
thresholds. The specific calculation is shown in Formula 2. In the
matrix obtained by subtracting the matrix Dr from the matrix Dc,
the more elements whose absolute values are less than the threshold,
the lower the loss value, and the two structures present more
similarities. The segment-wise calculation of the difference
between the two structures is possible in this approach. Since
atoms in the side chains can interact with those of non-adjacent
residues, Lside is a suitable choice that can reveal the global
interaction of atoms.

Lside Dc,Dr( ) � ∑4
k�1

pk ×

∑
i< j

ReLu Drij − Dcij
∣∣∣∣ ∣∣∣∣ − tk( )∑

i< j
Drij − Dcij
∣∣∣∣ ∣∣∣∣ , (2)

where the distance thresholds tk are set to 0.5, 1.0, 2.0, and 4.0 Å and
pk is 0.25.

Finally, in order to avoid the atoms of the main chain being
too far away from the atoms of the side chain in a single residue,
the 3D coordinates of entire structures are processed, which are
composed of Omain and Oside by a two-layer LSTM, and the 3D
coordinates of the entire structures Oall after correction are
output. To measure the loss value of the final result, Lall is
calculated using Formula 3. It consists of two parts: the first
part is computed in the same way as Lmain (Formula 1), while the
second part uses the L1 norm to restrict the length and angle of
the peptide bonds and to measure the rationality of structures
(Schulz and Schirmer, 1979).

Lall � Lmain Oall,Rall( ) +∑N
i�1

αci − αri| | +∑N
i�1

lci − lri| |, (3)

where αci and αri are the bond angles of the ith residue in the
corrected and precise structures and lci and lri are the bond lengths
of the ith residue in the corrected and precise structures,
respectively.

2.2 Binding prediction module

The eight characteristics of the atoms are extracted from the
TCR–peptide structures using RDKit, including element type,
charge information, whether the atom is an aromatic atom,
whether the atom is on the ring, hybridization mode, explicit
valence of the atom, implicit valence of the atom, and total
valence of the atom. To generate the potential negative samples
for binding prediction, we replaced the corresponding peptide in
positive samples with other peptides. The TCR–peptide samples are
stored in .hdf files. Each input sample comprises a list of atoms,
which consists of their 3D coordinates and eight characteristics.

In this work, 3DCNN is used to process TCR–peptide structures
since it can vividly describe the location and relationships among
atoms. The TCR–peptide input structures are represented by the 3D
coordinates and the eight atomic characteristics (Figure 1E). The
dimensions of input tensors are 48*48*48*8, where the number of
channels is 8, the voxel grid size in each axis is 48, and each voxel size
is 1 Å.
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The binding prediction module consists of four
convolutional layers with one residual block (Figure 1). The
residual block enables pass gradients to be passed to the next
layers without nonlinear activation (He et al., 2016), and it can
help model training. Batch normalization was used to normalize
each feature output, and the ReLU activation was employed for
nonlinearity.

2.3 Performance evaluation

The performance of the correction was evaluated by the RMSD
over atoms between the precise TCR–peptide structures and the
corrected structures (Kufareva and Abagyan, 2012). Formula 4 is the
calculation of RMSD scores. A lower RMSD score indicates a greater
similarity between the two structures.

RMSD �

������
1
N

∑N
i�1
d2
i

√√
, (4)

where N is the number of atoms and di is the distance between two
corresponding atoms in the precise and corrected structures.

We used accuracy (ACC), recall (REC), precision (PRE),
F1 score (F1), and area under the receiver operating
characteristic curve (AUC) as the criteria of performance
evaluation on binding prediction. Formulas 5–8 are the
calculation methods of ACC, REC, PRE and F1 scores.

ACC � TP + TN

P +N
� TP + TN

TP + FN + TN + FP
, (5)

REC � TP

P
� TP

TP + FN
, (6)

PRE � TP

TP + FP
, (7)

F1 � 2 ×
PRE × REC

PRE + REC
. (8)

3 Results

We examined the performance of TCRcost in terms of structure
correction and binding prediction. We also illustrated the
shortcomings of the existing protein structure predictor in
predicting TCR–peptide structures.

3.1 Datasets

A total of 121 precise TCR–peptide structures in the Protein
Data Bank (.pdb) format were downloaded from the ATLAS dataset
(Rose et al., 2011; Borrman et al., 2017). Since the CDR3 region plays
an important role in the recognition of antigens and
CDR3 sequences are far more abundant than the entire TCR
sequences, only CDR3A, CDR3B, and peptide segments were
kept. When generating the predicted structures, the
corresponding CDR3A: CDR3B: peptide sequences were given to
AlphaFold2.

During the experiments, the training sets and test sets were
randomly split, according to the ratio of 8:2, and the ratio of positive
and negative samples of binding prediction was set to the ratio of 1:1.
In addition, a five-fold cross-validation was conducted to assess the
performance of TCRcost in the experiments.

3.2 Predicting structures by AlphaFold2

We used AlphaFold2 to generate predicted TCR–peptide
structures consisting of CDR3A: CDR3B: peptide segments. The
quality of the predicted structure was assessed by using the predicted
local-distance difference test (pLDDT) scores (Tunyasuvunakool
et al., 2021). Since the pLDDT score of each residue was almost less
than 50, the predicted TCR–peptide structures were more or less of
low quality and low confidence (Figure 2A). Additionally, we
predicted the entire TCRs, and AlphaFold2 showed lower
pLDDT scores in CDR3 regions than in other adjacent regions
(Figures 2B, C).

We also measured the degree of similarity between the predicted
structures and the precise structures according to the RMSD scores.
The average RMSD score was 12.753 Å, implying that some of them
were significantly different. Compared to the performance on the
main chains, AlphaFold2 performed worse on the side chains, as the
average RMSD score was 11.379 Å for the main chains and the score
was 13.411 Å for the side chains.

3.3 Corrected structures were more precise

3.3.1 Ablation experiments
To test the potential advantages of processing the main chains

and side chains independently, in terms of the accuracy of the
correctionmodel, we designed three models for comparison: LSTM_
MAIN, LSTM_SIDE, and LSTM_ALL. LSTM_MAIN only
processed the main chain atoms independently using Lmain and
Lall for training; LSTM_SIDE only processed the side-chain atoms
independently using Lside and Lall for training; LSTM_ALL
processed all atoms and only used Lall for training.

All models in the experiments were valid for correcting
structures, and the RMSD scores decreased to varying degrees
compared to the predicted structures (Table 1). The results
revealed that LSTM_MAIN and LSTM_SIDE produced better
intermediate results Omain and Oside, respectively. TCRcost
produced the best entire structures for the final results between
them. It revealed that a preliminary correction was quite necessary
for the main chains and side chains.

In the training process of the LSTM_ALL model, the unrelated
atoms might interfere with each other, leading to a relatively low-
quality correction. The LSTM_MAIN and LSTM_SIDE models
could capture the precise prior knowledge of the main or side
chains in the early stage. However, in the subsequent joint
training process of all atoms, the other incorrect atoms that had
not been initially corrected might affect the others, resulting in entire
structures with relatively low quality. Getting more accurate
distributions of the main and side-chain atoms was suggested to
obtain better correction effects.
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3.3.2 Results of different models
We compared the performance of different kinds of models,

including 1DCNN, 2D convolutional neural network (2DCNN), and
LSTM. In the 1DCNN model, we set the 3D coordinates as three
channels (features). We encoded the 3D coordinates of a
TCR–peptide structure as a two-dimensional vector and then fed
it into the 2DCNN model, which only contained one feature
channel. TCRcost relied on the LSTM model.

The results showed that TCRcost outperformed the other two
models (Table 2). For the intermediate results Omain and Oside, the
CNN sometimes performed slightly better than TCRcost. For the

final results Oall, LSTM was better than the others, as it clearly
presented lower RMSD scores. In addition, the RMSD score of Oall

was slightly higher than those of the Omain and Oside based on the
CNN, but TCRcost showed the exact opposite results.

The CNN model was able to capture the relationships between
adjacent atoms, which were greatly affected by the order of the input
atoms. The LSTM model could capture the relationships between
both the adjacent and non-adjacent atoms, and thus it achieved
better correction effects. Since the majority of the relationships
existed between the adjacent atoms, especially when the main
chains and side chains were considered separately, the CNN and

FIGURE 2
Performance of AlphaFold2 on TCR–peptide structure predictions. (A)The pLDDT score of the predicted structures of the complexes composed of
CDR3B, CDR3A, and peptides, which are represented in blue, gray, and yellow, respectively. (B) The pLDDT score of the predicted structures of TCRB
containing CDR3B. The dark blue areas correspond to the CDR3B regions. (C) The pLDDT scores of the predicted structures of TCRA containing CDR3A.
The dark gray areas correspond to CDR3A regions.
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LSTM models presented similar performance. The positional
relationships between all the atoms were difficult for the CNN
models to learn, which lost the underlying global relationships,
while the LSTM model could capture such relationships between
pairs of atoms in the main chains and side chains, which occurred
alternately throughout the entire structures. Thus, the LSTM model
outperformed the CNN ones on the entire structure. Moreover,
because of the folding and winding of the peptides in the
TCR–peptide structure, there might be more cases where the
atoms are spatially close but far apart in the sequence. The
LSTM model was suggested as more suitable in this scenario.

3.3.3 Results on different loss functions
In order to confirm the effectiveness of the designed loss

functions, four experiments with different loss functions were
carried out. Four different loss functions were set as follows: 1)
MSE was used as the loss function that could measure the similarity
between the corrected structure and the precise structure; 2) only
Lmain was used as the loss function; 3) only Lside was used as the loss
function; 4) the loss functions were used in TCRcost.

For Oall, the best correction was done using the TCRcost model,
whereas the worst result was produced by using the MSE loss
function (Table 3). Lmain_model performed better on Omain and
Oside. However, due to the enormous computations of Lmain, the
running times were much longer than those of the Lside and MSE

runs. The TCRcost model ran faster than the Lmain_model but
obtained better corrections as well. By using Lmain_model, Lside_
model, and TCRcost, the RMSD scores of Oall were lower than those
of Omain and Oside. The RMSD score of Oall was higher than that of
Omain by using the MSE_model.

3.4 Corrected structures improved the
accuracy of TCR–peptide binding prediction

First, we predicted TCR–peptide binding using the precise
TCR–peptide structures. The ACC of the results was 0.947,
which was higher than that of the methods based on the
sequences only. The results demonstrated that TCR–peptide
structures should contain more interaction-related information
and could conduct better performances than the sequences in the
binding prediction task.

By adding varying amounts of the predicted structures
(generated by AlphaFold2), the accuracy of the binding
predictions decreased. The greater the number of predicted
structures involved, the greater the decreases observed (Table 4).
Comparing the accuracies between the models trained on the precise
structures and the corresponding predicted structures, it was shown
that the accuracy of binding predictions by the predicted structures
was lower than that of the precise structures (Figure 3). These results
suggest that, although significant improvements have been made in
AI-based protein structure prediction, more work should be done in
more nuanced areas.

By using the structure correction module, proposed in this work,
it was possible to correct the predicted structures and produce
corrected structures that were more similar to the precise
structures. The performance of predicting the TCR–peptide
binding using the corrected structures improved (Table 5). We
randomly selected TCR–peptide sequences from the McPAS-TCR
dataset, which were five times as many as the precise structures, and
obtained corresponding predicted structures and corrected
structures. In addition, we obtained the training and test sets
from the corrected structures without the corresponding precise
structures in the way described in Section 3.1. On the dataset of the
corrected structures without the corresponding precise structures,
the prediction accuracy was also improved and reached a level
comparable to that of the dataset of the corrected structures with the
precise structures.

The existing sequence-based methods, NetTCR-2.0 and
TCRPrediction, which only predict the binding based on the
sequences of the CDR3A, CDR3B, and peptide regions, were also
involved in comparisons (Montemurro et al., 2021; Koyama et al.,
2023). We compared TCRcost to NetTCR-2.0 and TCRPrediction on
corrected structures and the corresponding residue sequences,
respectively (Table 6). The TCRcost model was trained and tested
on the dataset of the corrected structures without the corresponding
precise structures. The models of NetTCR-2.0 and TCRPrediction were
trained on the McPAS-TCR dataset and tested on the same dataset
using the TCRcost model. TCRcost outperformed the other two
sequence-based methods in TCR–peptide binding prediction. These
results suggest that it is more accurate and feasible to use the structures,
irrespective of how the existing models process the sequences.

TABLE 1 Results of correction module ablation experiments measured by
RMSD (Å).

Omain Oside Oall

AF_T 11.379 13.411 12.753

LSTM_ALL — — 9.183

LSTM_SIDE — 11.002 8.945

LSTM_MAIN 9.296 — 8.957

TCRcost 9.925 11.049 8.785

AF_T represents the comparison between precise structures and predicted structures

generated by AlphaFold2. The LSTM_ALL model processed all atoms together and only

used Lall for training; the LSTM_SIDE model only processed the side-chain atoms

independently using Lside and Lall for training; the LSTM_MAIN model only processed the

main-chain atoms independently using Lmain and Lall for training. Omain and Oside were the

intermediate results comprising atoms in main chains and atoms in side chains,

respectively, and Oall was the final result comprising all atoms in entire structures.

TABLE 2 Correction results of different models measured by RMSD (Å).

Omain Oside Oall

AF_T 11.379 13.411 12.753

1DCNN 9.384 10.441 10.462

2DCNN 9.304 10.586 10.593

TCRcost 9.925 11.049 8.785

AF_T represents the comparison between precise structures and predicted structures

generated by AlphaFold2. 1DCNN , 2DCNN , and TCRcost models were constructed using

1DCNN, 2DCNN, and LSTM, respectively. Omain and Oside were the intermediate results

comprising all main-chain atoms and all side-chain atoms, respectively, and Oall was the

final result comprising all atoms in complete structures.
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4 Discussion

Overall, TCRcost can predict TCR–peptide binding based on
TCR–peptide structures and achieve better accuracy than
predictions based on TCR–peptide sequences. Due to the scarcity
of precise structures and the inaccuracy of the predicted structures
by AlphaFold2, one contribution is to design the structure
correction module. It obtains high-quality TCR–peptide

structures from the original predicted structures. The loss
function is designed based on the characteristics of the
TCR–peptide structures, which guides the effective correction of
the structures. With corrected structures, TCRcost accurately
predicts binding by using the 3DCNN model. Here, we discuss
the difficulties in obtaining TCR–peptide structures, the
effectiveness of the loss functions, and the feasibility of using
TCR–peptide structures for binding prediction.

Since the precise structures are limited, it is necessary to generate
the structures using the AI-based protein structure predictors.We chose
AlphaFold2 to predict TCR–peptide structures from TCR–peptide
sequences. We only focused on CDR3A, CDR3B, and peptide
segments. Due to the short length (11–18 residues) of the
CDR3 region (Xu et al., 2022a), it is difficult for the deep learning
model to obtain the information from adjacent residues. In addition, the
CDR3 region has much higher diversity and variability, which further
makes it harder to accurately predict the structure of the CDR3 region
(Rudolph et al., 2006; Mora andWalczak, 2016). In the entire structure,
themain chains and side chains can interfere with each other, andmore
operations are performed on the main chains when generating the
predicted structures inAlphaFold2. These designs, we believe, should be
the potential reasons leading to low quality on the entire predicted
structures and differences in the quality between the main and side
chains in predicted structures. Thus, we believe that the correction
module, which corrects the main and side chains independently, is
reasonable.

The loss functions in TCRcost are compared to several loss
functions, including MSE, Lmain, and Lside. MSE is a common loss
function in machine learning. It presented the worst performance

TABLE 3 Correction results under different loss functions.

Omain (Å) Oside (Å) Oall (Å) Time (s)

AF_T 11.379 13.411 12.753 —

MSE_model 10.127 11.351 11.116 0.007

Lmain_model 9.852 9.539 9.494 5.877

Lside_model 10.603 10.876 10.514 1.740

TCRcost 9.925 11.049 8.785 5.358

AF_T represents the comparison between precise structures and predicted structures generated by AlphaFold2. MSE_model, Lmain_model, and Lside_model shared the same model architecture

as TCRcost but had different loss functions during training, trained with the MSE loss function, the Lmain, and the Lside, respectively.Omain andOside were the intermediate results comprising all

main-chain atoms and all side-chain atoms, respectively;Oallwas the final result comprising all atoms in complete structures, and they were measured by RMSD (Å). In addition, “Time”was the

time taken for one epoch during training, which was measured in seconds (s).

TABLE 4 Binding prediction results of using the precise structures and predicted structures.

Real R_1AF R_2AF R_3AF R_4AF R_5AF

ACC 0.947 0.720 0.590 0.580 0.500 0.579

AUC 0.974 0.832 0.704 0.663 0.641 0.626

REC 1.000 0.707 0.525 0.642 0.650 0.661

PRE 0.905 0.725 0.604 0.571 0.512 0.567

F1 0.950 0.716 0.561 0.605 0.565 0.611

“Real” denotes the dataset consisting of precise TCR–peptide structures, R_xAF is the dataset consisting of precise structures and predicted structures by AlphaFold2, and x indicates that the

number of predicted structures is x times the number of accurate structures (x was 1, 2, 3, 4, and 5). Abbreviations: ACC, accuracy; AUC, area under the receiver operating characteristic curve;

REC, recall; PRE, precision; F1, F1 score.

FIGURE 3
ACC scores of binding prediction using precise structures and
predicted structures. “Real” denotes the dataset consisting of precise
TCR–peptide structures, R_xAF is the dataset consisting of precise
structures and predicted structures by AlphaFold2, and x
indicates that the number of predicted structures is x times the
number of accurate structures (x was 1, 2, 3, 4, and 5).
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between the four loss functions. A possible reason is that MSE is
too strict and inflexible, which greatly influences the rotation and
translation of the structures. Lmain should be a good measure of
protein structure similarity without being affected by the protein
rigidity transformation. However, the calculation of Lmain is a
difficult and costly task: it requires building a coordinate system
centered on each residue in the protein and calculating the
coordinates of each atom in that coordinate system. For a
small number of atoms in main chains, Lmain is an acceptable
loss function. Instead of focusing on specific position
coordinates, Lside is more concerned with the relative distance
between atoms. The number of atoms in side chains is quite large,
and their distances from each other are greatly influenced by
protein interactions. During the training process, Lside globally
captures the features of side chains and is independent of the
rigid transformation of structures. Lall integrates Lmain and adds
restrictions on structures to ensure rationality, which works for
the entire structure.

The prediction performance has demonstrated the advantages of
using structure information. The 3DCNN model effectively
describes the structures and is able to extract useful information.
However, due to the limited confidence in the predicted structures,
the binding prediction model should be designed to be robust to the
quality of the TCR–peptide structures. The structure correction
module has the potential to handle the various qualities of structures
and obtain stable performance on the predictions. A possible idea is
to train the model to learn the commonality in TCR–peptide
structures. Further work should be considered and improve the
deep learning models by integrating a noise-tolerant
learning framework.

5 Conclusion

TCR–peptide binding prediction is an important
computational problem to solve, but it is still extremely
challenging because of the diversity of TCRs, the highly
cross-reactive TCRs, and peptides. Many deep learning
methods extracted information from sequences (Grazioli
et al., 2023; Weber et al., 2021; Xu et al., 2022a; Xu et al.,
2022b), but these pieces of information were limited. Since
the application of protein structures enhanced the prediction
of protein–protein interaction, we suggest that predicting
TCR–peptide binding based on structures would improve the
accuracy even more. Some existing issues, including the lack of
TCR–peptide structure data, the imprecision of protein
structure predicting tools, and the inapplicability of existing
binding prediction models to structure data, led us to develop
this framework TCRcost. To obtain enough structures with high
quality, we proposed a structure correction module, which is
able to correct the structures generated by AI-based structure
predictors. We designed a binding prediction module to extract
information from the corrected structures and predict
TCR–peptide binding accurately. To the best of our
knowledge, TCRcost is one of the first methods to accurately
predict TCR–peptide binding from protein structures. We also
propose to further integrate the information from both
TCR–peptide sequences and their structures. A multi-modal
model may be suitable for solving this scenario. In addition,
the AI-based protein structure predictor should further consider
the specific scenario, such as CDR3 loops, to better meet the
clinical needs.

TABLE 5 Binding prediction results using the predicted structures and corrected structures.

R_AF R_AF_COR 5AF 5AF_COR

ACC 0.375 0.762 0.475 0.760

AUC 0.379 0.762 0.445 0.760

REC 0.410 0.857 0.680 0.870

PRE 0.384 0.720 0.482 0.713

F1 0.396 0.783 0.564 0.784

R_AF and R_AF_COR are the datasets consisting of predicted structures and corrected structures, respectively, corresponding to precise TCR–peptide structures. 5AF and 5AF_COR were

datasets consisting of predicted structures and corrected structures, respectively, which are without corresponding precise structures and were five times as many as precise structures.

Abbreviations: ACC, accuracy; AUC, area under the receiver operating characteristic curve; REC, recall; PRE, precision; F1, F1 score.

TABLE 6 Binding prediction results of using TCR–peptide sequences and structures.

ACC AUC REC PRE F1

NetTCR-2.0 0.667 0.640 0.792 0.641 0.708

TCRPrediction 0.701 0.786 0.850 0.661 0.744

TCRcost 0.760 0.760 0.870 0.713 0.784

Different TCR–peptide binding prediction methods were compared, among which NetTCR-2.0 and TCRPrediction are based on residue sequences, and TCRcost is based on corrected

structures. Abbreviations: ACC, accuracy; AUC, area under the receiver operating characteristic curve; REC, recall; PRE, precision; F1, F1 score.

Frontiers in Genetics frontiersin.org09

Li et al. 10.3389/fgene.2024.1346784

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1346784


Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

Author contributions

FL: data curation, methodology, validation, visualization, and
writing–original draft. XQ: data curation, methodology, validation,
and writing–review and editing. XiZ: supervision and
writing–review and editing. XL: writing–review and editing. XuZ:
writing–review and editing. JW: funding acquisition, supervision,
and writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by Shaanxi’s Natural Science Basic Research
Program, grant number 2020JC-01. The APC was funded by

Shaanxi’s Natural Science Basic Research Program, grant number
2020JC-01.

Acknowledgments

The authors would like to thank all faculty members and graduate
students who discussed themathematical and statistical issues in seminars.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors, and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Borrman, T., Cimons, J., Cosiano, M., Purcaro, M., Pierce, B. G., Baker, B. M., et al.
(2017). ATLAS: a database linking binding affinities with structures for wild-type and
mutant TCR-pMHC complexes. Proteins 85, 908–916. doi:10.1002/prot.25260

Chakrabarti, P., and Pal, D. (2001). The interrelationships of side-chain and main-
chain conformations in proteins. Prog. biophysics Mol. Biol. 76 (1–2), 1–102. doi:10.
1016/s0079-6107(01)00005-0

Chiffelle, J., Genolet, R., Perez, M. A., Coukos, G., Zoete, V., and Harari, A. (2020).
T-cell repertoire analysis and metrics of diversity and clonality. Curr. Opin. Biotechnol.
65, 284–295. doi:10.1016/j.copbio.2020.07.010

Das, R., and Baker, D. (2008). Macromolecular modeling with rosetta. Annu. Rev.
Biochem. 77, 363–382. doi:10.1146/annurev.biochem.77.062906.171838

Davis, M. M., and Bjorkman, P. J. (1988). T-cell antigen receptor genes and T-cell
recognition. Nature 334 (6181), 395–402. doi:10.1038/334395a0

Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen,
M. Y., et al. (2006). Comparative protein structure modeling using Modeller. Curr.
Protoc. Bioinforma. Chapter 5, 5–6. doi:10.1002/0471250953.bi0506s15

Evans, R., O’Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., et al. (2021).
Protein complex prediction with AlphaFold multimer. bioRxiv. doi:10.1101/2021.10.04.
463034

Grazioli, F., Machart, P., Mösch, A., Li, K., Castorina, L. V., Pfeifer, N., et al. (2023).
Attentive variational information bottleneck for TCR-peptide interaction prediction.
Bioinforma. Oxf. Engl. 39 (1), btac820. doi:10.1093/bioinformatics/btac820

Greiff, V., Yaari, G., and Cowell, L. (2020). Mining adaptive immune receptor
repertoires for biological and clinical information using machine learning. Curr.
Opin. Syst. Biol. 24, 109–119. doi:10.1016/j.coisb.2020.10.010

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, June 27–30, 2016 (IEEE), 770–778.

Henikoff, S., and Henikoff, J. G. (1992). Amino acid substitution matrices from
protein blocks. Proc. Natl. Acad. Sci. U. S. A. 89 (22), 10915–10919. doi:10.1073/pnas.89.
22.10915

Huang, Y., Wuchty, S., Zhou, Y., and Zhang, Z. (2023). SGPPI: structure-aware
prediction of protein-protein interactions in rigorous conditions with graph
convolutional network. Briefings Bioinforma. 24 (2), bbad020. doi:10.1093/bib/bbad020

Jisna, V. A., and Jayaraj, P. B. (2021). Protein structure prediction: conventional and
deep learning perspectives. protein J. 40 (4), 522–544. doi:10.1007/s10930-021-10003-y

Joglekar, A. V., and Li, G. (2021). T cell antigen discovery. Nat. methods 18 (8),
873–880. doi:10.1038/s41592-020-0867-z

Jones, D. T., and Thornton, J. M. (2022). The impact of AlphaFold2 one year on. Nat.
Methods 19, 15–20. doi:10.1038/s41592-021-01365-3

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al.
(2021). Highly accurate protein structure prediction with AlphaFold. Nature 596,
583–589. doi:10.1038/s41586-021-03819-2

Koyama, K., Hashimoto, K., Nagao, C., and Mizuguchi, K. (2023). Attention network
for predicting T-cell receptor-peptide binding can associate attention with interpretable
protein structural properties. Front. Bioinform 3, 1274599. doi:10.3389/fbinf.2023.
1274599

Kufareva, I., and Abagyan, R. (2012). Methods of protein structure comparison.
Clifton, N.J. 857, 231–257. doi:10.1007/978-1-61779-588-6_10

La Gruta, N. L., Gras, S., Daley, S. R., Thomas, P. G., and Rossjohn, J. (2018).
Understanding the drivers of MHC restriction of T cell receptors.Nat. Rev. Immunol. 18
(7), 467–478. doi:10.1038/s41577-018-0007-5

Mahajan, S., Vita, R., Shackelford, D., Lane, J., Schulten, V., Zarebski, L., et al. (2018).
Epitope specific antibodies and T cell receptors in the immune epitope database. Front.
Immunol. 9, 2688. doi:10.3389/fimmu.2018.02688

Mariani, V., Biasini, M., Barbato, A., and Schwede, T. (2013). lDDT: a local
superposition-free score for comparing protein structures and models using distance
difference tests. Bioinformatics 29 (21), 2722–2728. doi:10.1093/bioinformatics/btt473

Marshall, J. S., Warrington, R., Watson,W., and Kim, H. L. (2018). An introduction to
immunology and immunopathology. Allergy, asthma, Clin. Immunol. official J. Can.
Soc. Allergy Clin. Immunol. 14 (Suppl. 2), 49. doi:10.1186/s13223-018-0278-1

Montemurro, A., Schuster, V., Povlsen, H. R., Bentzen, A. K., Jurtz, V., Chronister, W.
D., et al. (2021). NetTCR-2.0 enables accurate prediction of TCR-peptide binding by
using paired TCRα and β sequence data. Commun. Biol. 4 (1), 1060. doi:10.1038/
s42003-021-02610-3

Mora, T., and Walczak, A. M. (2016). Quantifying lymphocyte receptor diversity.
bioRxiv [Preprint]. doi:10.48550/arXiv.1604.00487

Ovchinnikov, S., and Huang, P. S. (2021). Structure-based protein design with deep
learning. Curr. Opin. Chem. Biol. 65, 136–144. doi:10.1016/j.cbpa.2021.08.004

Pandey, M., Radaeva, M., Mslati, H., Garland, O., Fernandez, M., Ester, M., et al.
(2022). Ligand binding prediction using protein structure graphs and residual graph
attention networks. Molecules 27, 5114. doi:10.3390/molecules27165114

Pham, M. N., Nguyen, T. N., Tran, L. S., Nguyen, Q. B., Nguyen, T. H., Pham,
T. M. Q., et al. (2023). epiTCR: a highly sensitive predictor for TCR-peptide
binding. Bioinforma. Oxf. Engl. 39 (5), btad284. doi:10.1093/bioinformatics/
btad284

Frontiers in Genetics frontiersin.org10

Li et al. 10.3389/fgene.2024.1346784

https://doi.org/10.1002/prot.25260
https://doi.org/10.1016/s0079-6107(01)00005-0
https://doi.org/10.1016/s0079-6107(01)00005-0
https://doi.org/10.1016/j.copbio.2020.07.010
https://doi.org/10.1146/annurev.biochem.77.062906.171838
https://doi.org/10.1038/334395a0
https://doi.org/10.1002/0471250953.bi0506s15
https://doi.org/10.1101/2021.10.04.463034
https://doi.org/10.1101/2021.10.04.463034
https://doi.org/10.1093/bioinformatics/btac820
https://doi.org/10.1016/j.coisb.2020.10.010
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1093/bib/bbad020
https://doi.org/10.1007/s10930-021-10003-y
https://doi.org/10.1038/s41592-020-0867-z
https://doi.org/10.1038/s41592-021-01365-3
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.3389/fbinf.2023.1274599
https://doi.org/10.3389/fbinf.2023.1274599
https://doi.org/10.1007/978-1-61779-588-6_10
https://doi.org/10.1038/s41577-018-0007-5
https://doi.org/10.3389/fimmu.2018.02688
https://doi.org/10.1093/bioinformatics/btt473
https://doi.org/10.1186/s13223-018-0278-1
https://doi.org/10.1038/s42003-021-02610-3
https://doi.org/10.1038/s42003-021-02610-3
https://doi.org/10.48550/arXiv.1604.00487
https://doi.org/10.1016/j.cbpa.2021.08.004
https://doi.org/10.3390/molecules27165114
https://doi.org/10.1093/bioinformatics/btad284
https://doi.org/10.1093/bioinformatics/btad284
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1346784


Rose, P. W., Beran, B., Bi, C., Bluhm, W. F., Dimitropoulos, D., Goodsell, D. S., et al.
(2011). The RCSB Protein Data Bank: redesigned web site and web services. Nucleic
acids Res. 39 (Database issue), D392–D401. doi:10.1093/nar/gkq1021

Roy, A., Kucukural, A., and Zhang, Y. (2010). I-TASSER: a unified platform for
automated protein structure and function prediction. Nat. Protoc. 5 (4), 725–738.
doi:10.1038/nprot.2010.5

Rudolph, M. G., Stanfield, R. L., and Wilson, I. A. (2006). How TCRs bind MHCs,
peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466. doi:10.1146/annurev.
immunol.23.021704.115658

Schulz, G. E., and Schirmer, R. H. (1979). Principles of protein structure. New York:
Springer.

Shokrani, H., Shokrani, A., Seidi, F., Kucińska-Lipka, J., Makurat-Kasprolewicz, B.,
Saeb, M. R., et al. (2023). Artificial intelligence for biomedical engineering of
polysaccharides: a short overview. Curr. Opin. Biomed. Eng. 27, 100463. doi:10.
1016/j.cobme.2023.100463

Shugay, M., Bagaev, D. V., Zvyagin, I. V., Vroomans, R. M., Crawford, J. C., Dolton,
G., et al. (2018). VDJdb: a curated database of T-cell receptor sequences with known
antigen specificity. Nucleic Acids Res. 46 (D1), D419–D427. doi:10.1093/nar/gkx760

Siva Shanmugam, N. R., Jino Blessy, J., Veluraja, K., and Gromiha, M. M. (2021).
Prediction of protein-carbohydrate complex binding affinity using structural features.
Briefings Bioinforma. 22 (4), bbaa319. doi:10.1093/bib/bbaa319

Song, Y., DiMaio, F., Wang, R. Y., Kim, D., Miles, C., Brunette, T., et al. (2013). High-
resolution comparative modeling with RosettaCM. Structure (London, England: 1993)
21 (10), 1735–1742. doi:10.1016/j.str.2013.08.005

Tickotsky, N., Sagiv, T., Prilusky, J., Shifrut, E., and Friedman, N. (2017). McPAS-
TCR: a manually curated catalogue of pathology-associated T cell receptor sequences.
Bioinformatics 33 (18), 2924–2929. doi:10.1093/bioinformatics/btx286

Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Žídek, A., et al.
(2021). Highly accurate protein structure prediction for the human proteome. Nature
596, 590–596. doi:10.1038/s41586-021-03828-1

Wang, W., Peng, Z., and Yang, J. (2022). Single-sequence protein structure prediction
using supervised transformer protein language models. Nat. Comput. Sci. 2, 804–814.
doi:10.1038/s43588-022-00373-3

Weber, A., Born, J., and Rodriguez Martínez, M. (2021). TITAN: T-cell receptor
specificity prediction with bimodal attention networks. Bioinforma. Oxf. Engl. 37
(Suppl. 1), i237–i244. doi:10.1093/bioinformatics/btab294

Winge-Main, A. K., Wälchli, S., and Inderberg, E. M. (2020). T cell receptor therapy
against melanoma-Immunotherapy for the future?. Scand. J. Immunol. 92 (4), e12927.
doi:10.1111/sji.12927

Wu, R., Ding, F., Wang, R., Shen, R., Zhang, X., Luo, S., et al. (2022). High-resolution
de novo structure prediction from primary sequence. bioRxiv [Preprint]. doi:10.1101/
2022.07.21.500999

Xu, Y., Qian, X., Tong, Y., Li, F., Wang, K., Zhang, X., et al. (2022a). AttnTAP: a
dual-input framework incorporating the attention mechanism for accurately
predicting TCR-peptide binding. Front. Genet. 13, 942491. doi:10.3389/fgene.
2022.942491

Xu, Y., Qian, X., Zhang, X., Lai, X., Liu, Y., and Wang, J. (2022b). DeepLION:
deep multi-instance learning improves the prediction of cancer-associated T cell
receptors for accurate cancer detection. Front. Genet. 13, 860510. doi:10.3389/
fgene.2022.860510

Zhang, P., Bang, S., and Lee, H. (2023). PiTE: TCR-epitope binding affinity prediction
pipeline using transformer-based sequence encoder. Pac. Symposium Biocomput. Pac.
Symposium Biocomput. 28, 347–358. doi:10.1142/9789811270611_0032

Zhang, Y., Ye, T., Xi, H., Juhas, M., and Li, J. (2021). Deep learning driven drug
discovery: tackling severe acute respiratory syndrome coronavirus 2. Front. Microbiol.
12, 739684. doi:10.3389/fmicb.2021.739684

Zvyagin, I. V., Tsvetkov, V. O., Chudakov, D. M., and Shugay, M. (2020). An overview
of immunoinformatics approaches and databases linking T cell receptor repertoires to
their antigen specificity. Immunogenetics 72 (1–2), 77–84. doi:10.1007/s00251-019-
01139-4

Frontiers in Genetics frontiersin.org11

Li et al. 10.3389/fgene.2024.1346784

https://doi.org/10.1093/nar/gkq1021
https://doi.org/10.1038/nprot.2010.5
https://doi.org/10.1146/annurev.immunol.23.021704.115658
https://doi.org/10.1146/annurev.immunol.23.021704.115658
https://doi.org/10.1016/j.cobme.2023.100463
https://doi.org/10.1016/j.cobme.2023.100463
https://doi.org/10.1093/nar/gkx760
https://doi.org/10.1093/bib/bbaa319
https://doi.org/10.1016/j.str.2013.08.005
https://doi.org/10.1093/bioinformatics/btx286
https://doi.org/10.1038/s41586-021-03828-1
https://doi.org/10.1038/s43588-022-00373-3
https://doi.org/10.1093/bioinformatics/btab294
https://doi.org/10.1111/sji.12927
https://doi.org/10.1101/2022.07.21.500999
https://doi.org/10.1101/2022.07.21.500999
https://doi.org/10.3389/fgene.2022.942491
https://doi.org/10.3389/fgene.2022.942491
https://doi.org/10.3389/fgene.2022.860510
https://doi.org/10.3389/fgene.2022.860510
https://doi.org/10.1142/9789811270611_0032
https://doi.org/10.3389/fmicb.2021.739684
https://doi.org/10.1007/s00251-019-01139-4
https://doi.org/10.1007/s00251-019-01139-4
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1346784

	TCRcost: a deep learning model utilizing TCR 3D structure for enhanced of TCR–peptide binding 
	1 Introduction
	2 Methods
	2.1 Structure correction module
	2.2 Binding prediction module
	2.3 Performance evaluation

	3 Results
	3.1 Datasets
	3.2 Predicting structures by AlphaFold2
	3.3 Corrected structures were more precise
	3.3.1 Ablation experiments
	3.3.2 Results of different models
	3.3.3 Results on different loss functions

	3.4 Corrected structures improved the accuracy of TCR–peptide binding prediction

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


