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Vascular diseases pose major health challenges, and understanding their
underlying molecular mechanisms is essential to advance therapeutic
interventions. Cellular senescence, a hallmark of aging, is a cellular state
characterized by cell-cycle arrest, a senescence-associated secretory
phenotype macromolecular damage, and metabolic dysregulation. Vascular
senescence has been demonstrated to play a key role in different vascular
diseases, such as atherosclerosis, peripheral arterial disease, hypertension,
stroke, diabetes, chronic venous disease, and venous ulcers. Even though
cellular senescence was first described in 1961, significant gaps persist in
comprehending the epigenetic mechanisms driving vascular senescence and
its subsequent inflammatory response. Through a comprehensive analysis, we
aim to elucidate these knowledge gaps by exploring the network of epigenetic
alterations that contribute to vascular senescence. In addition, we describe the
consequent inflammatory cascades triggered by these epigenetic modifications.
Finally, we explore translational applications involving biomarkers of vascular
senescence and the emerging field of senotherapy targeting this
biological process.
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1 Introduction to cellular senescence

By definition, cellular senescence is the state of the cell induced
by stress signals characterized by cell-cycle arrest, senescence-
associated secretory phenotype (SASP), metabolic dysregulation,
and macromolecular damage (Gorgoulis et al., 2019). Cellular
senescence was first formally described in 1961 by Hayflick and
Moorhead (Hayflick and Moorhead, 1961). They observed that
cultured human diploid fibroblasts exhibited a finite number of
divisions (40–60 population doublings), a phenomenon attributed
to intrinsic factors, which were later identified as telomere
shortening. Different external and internal stress and
developmental signals trigger cellular senescence in response to
cellular damage, including telomere shortening, DNA damage,
oncogenic activation, radiation, oxidative and genotoxic stress,
epigenetic changes, perturbed proteostasis, mitochondrial
dysfunction, inflammation, nutrient deprivation and mechanical
stress (Kuilman et al., 2010; Muñoz-Espín et al., 2013; Storer
et al., 2013; Hernandez-Segura et al., 2018; Kumari and Jat, 2021;
Huang et al., 2022; Zhou et al., 2023).

On the one hand, cellular senescence displays diverse
physiological roles, mainly in embryonic development, wound
healing, and prevention of tumor development (Muñoz-Espín
et al., 2013; Rhinn et al., 2019; Wilkinson and Hardman, 2020;
Yang et al., 2021). On the other hand, cellular senescence is a
hallmark of aging due to the accumulation of senescent cells in
old tissues compared to young tissues (Tuttle et al., 2020; López-
Otín et al., 2023). Senescent cells signal to be removed by
immune cells from the tissues, triggering both innate and
adaptive responses (Kale et al., 2020). However, with age, the
cell-intrinsic damage and the failure of immune clearance
increase the number of senescent cells in the tissues and
contribute to the development and progression of aging-
related diseases such as cancer, neurodegenerative diseases,
atherosclerosis, osteoarthritis or pulmonary fibrosis (Burton
and Stolzing, 2018; Ovadya et al., 2018; Mylonas and
O’Loghlen, 2022).

Senescence is characterized by a cell-cycle arrest that can occur
in the G1 or G2 phase (Gire and Dulic, 2015). The cell-cycle
withdrawal is generally irreversible, although under certain
circumstances senescent cells can re-entry the cell-cycle, such as
tumor cells, or be reprogrammed into induced pluripotent stem cells
(Lapasset et al., 2011; Saleh et al., 2019). Senescence differs from
quiescent and terminally differentiated cells, which also withdraw
from the cell-cycle, at the level of signaling pathways, and SASP and
neither shows macromolecular damage (Terzi et al., 2016; Fujimaki
et al., 2019). The cell-cycle arrest is achieved through different tumor
suppressor pathways, especially p53/p21WAF1/CIP1 and p16INK4A/pRB
tumor suppressor pathways (Kumari and Jat, 2021). p53 acts as a
transcription factor (TF), which is activated in response to DNA
damage caused by factors like telomere attrition, oxidative stress, or
oncogenic stress, and orchestrates a genetic response that leads to
the induction of cellular senescence and inhibits other alternatives
such as apoptosis (Childs et al., 2014; Sheekey and Narita, 2023). Of
the downstream effectors, the key role is predominantly played by
p21CIP1, which is an inhibitor of cyclin-dependent kinase (CDK)-
cyclin complex activity leading to cell-cycle withdrawal (Herranz
and Gil, 2018). On the other hand, activation of p16 through

epigenetic regulation leads to the inhibition of the formation of
cyclin D–CDK4/6 complexes, which prevents the phosphorylation
of the retinoblastoma protein (pRb) (Rayess et al., 2012).
Hypophosphorylated pRb maintains in the cytoplasm in complex
with the TF E2F and cell-cycle genes are not transcribed. Moreover,
the two pathways present an extensive crosstalk. The hypothesis is
that while the p53/p21WAF1/CIP1 signaling pathway contributes to the
onset of cellular senescence, the p16INK4A/pRB pathway is in charge
of maintaining this state (Kohli et al., 2021).

Almost all somatic cell types and tissues can undergo cellular
senescence. The evidence of cellular senescence in the vasculature is
termed vascular senescence and plays a critical role in the
development of vascular diseases, including atherosclerosis,
peripheral arterial disease, hypertension, stroke, diabetes, chronic
venous disease and venous ulcers (Yamazaki et al., 2016; Katsuumi
et al., 2018; Shakeri et al., 2018; McCarthy et al., 2019; Ortega et al.,
2021b; Lim et al., 2021).

Epigenetics regulates cellular senescence through chromatin
remodeling, DNA methylation, and the involvement of non-
coding RNAs (Sidler et al., 2017; Crouch et al., 2022). Senescent
cells undergo chromatin restructuring, altering DNA packaging
around histones, which impacts gene accessibility through
modifications such as methylation and acetylation (Roger et al.,
2021). DNA methylation contributes to establishing and
maintaining the senescent state by silencing specific genes related
to cell proliferation (Sakaki et al., 2017). In addition, non-coding
RNAs, such as microRNAs and long non-coding RNAs, modulate
fundamental pathways in senescence by targeting genes related to
cellular aging, DNA repair, and the cell cycle (Puvvula, 2019).
Together, these epigenetic modifications coordinate the transition
to cellular senescence by regulating genes related to cell cycle arrest,
DNA damage response, SASP, and inflammation, thus shaping the
phenotype of senescent cells.

Inflammation is a protective mechanism, essential for the
immune system to detect and eliminate harmful agents while
initiating the healing process. Inflammatory responses can manifest
as acute or chronic, each serving different purposes (Li et al., 2023).
However, not all inflammatory processes benefit the body; in some
cases, diseases trigger harmful inflammation, in which the immune
system inadvertently attacks the body’s cells. In this sense, senescent
cells often release several inflammatory substances, such as matrix
metalloproteinases (MMPs), growth factors (GFs), and cytokines
(CKs), which form the SASP (Giacconi et al., 2015; Lee et al.,
2021). This paracrine signaling contributes to a variety of adverse
outcomes, such as cancer development, persistent inflammation called
“inflammaging” and tissue restructuring (Olivieri et al., 2018).
Moreover, senescent cells are indeed a strong nexus between
cellular aging and development of cancer (Campisi, 2013; Schmitt
et al., 2022; López-Otín et al., 2023). Pharmacological removal of
senescent cells expressing p16INK4A in aging mice delayed
tumorigenesis and mitigated age-related decline in multiple organs,
showing no apparent adverse effects (Baker et al., 2016).

In this comprehensive review, we aim to understand the
interplay between epigenetic modifications and immune
activation mechanisms underlying vascular senescence. First,
we present an overview of the histology of the vascular wall and
vascular senescence. Then, we explore the epigenetic alterations
identified in the context of vascular senescence and elucidate the
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critical role played by immune activation. Subsequently, we
sought to synthesize the connections between epigenetic
modifications, the immune response, and the phenomenon of
vascular senescence. Finally, we describe the translational
implications arising from the fields of epigenetics,
inflammation, and cellular senescence in the context of
vascular disorders, including biomarkers and senotherapeutics.

2 Histology of vascular wall and
vascular senescence

The vascular wall, a complex structure comprising three distinct
layers, the intima, media, and adventitia, exhibits diverse histological,
biochemical, and functional characteristics essential for maintaining
vascular homeostasis and modulating the vascular response to stress
or injury. From a histological point of view, the differences in thickness
and composition of them distinguish the different types of blood vessels.
In general, the tunica intima is formed by a single layer of endothelial
cells (ECs) or endothelium, which surrounds the internal vascular lumen
acting as a functional barrier (Taylor and Bordoni, 2023). The
endothelium is supported by a basement membrane composed of
collagen, proteoglycans, and glycoproteins (Halper, 2018). The
subendothelial layer is composed of loose connective tissue, and
sometimes harbors vascular smooth muscle cells (VSMCs), and an
internal elastic lamina in arteries and some veins (Mazurek et al., 2017).
The tunica media is stabilized by an elastic external lamina, in arteries,
and an extracellular matrix composed mainly of elastin and collagen
fibers (Munjal and Bordoni, 2023). The tunica media houses
predominantly VSMCs arranged in circumferentially organized layers
with elastin, reticular fibers, and proteoglycans between them
(Frismantiene et al., 2018). The outermost layer, the adventitia, has

myofibroblasts and fibroblasts as the main cellular constituents,
responsible for generating the fibroelastic extracellular matrix that
defines the appearance of this layer (Stenmark et al., 2013). In
addition, in larger vessels, the adventitia harbors a network of small
blood vessels and nerves, which provide irrigation and innervation to the
vascular wall, respectively. Figure 1 illustrates the histological
representation of these layers in both arteries and veins, as well as
their main differences.

Cellular senescence in blood vessels plays a critical role in vascular
aging, and the elimination of senescent cells is a promising approach to
prevent or mitigate age-related vascular diseases (Figure 2) (Ungvari
et al., 2020). Manifestations of vascular aging include arterial and
capillary stiffness, endothelial dysfunction, increased oxidative stress,
decreased capacity for angiogenesis, early signs of atherosclerosis, and
low-grade chronic inflammation (Ghebre et al., 2016). Vascular aging
constitutes a progressive decline in both the structural integrity and
functional capacity of blood vessels, which contributes to damage to the
heart, brain, kidneys, and other organs (Climie et al., 2023; Ya and
Bayraktutan, 2023). It is important that, while there is extensive
literature on arterial aging and related diseases, there is a significant
knowledge gap on venous aging. However, research on the role of
venous aging is of great importance in the understanding of the
development of venous conditions prevalent among older adults,
such as varicose veins, chronic venous insufficiency, and deep vein
thrombosis (Ortega et al., 2021a; Ortega et al., 2021b; Molnár et al.,
2021; Mühlberger et al., 2022).

The main cellular populations of the blood vessels that can
undergo cellular senescence due to various stressors like oxidative
stress, DNA damage, and signaling from nearby cells are ECs,
VSMCs, adventitial fibroblasts, immune cells and endothelial
progenitor cells (EPCs) (Katsuumi et al., 2018; Vellasamy et al.,
2022; Suda et al., 2023).

FIGURE 1
Representation of the histological structure of the vascular wall of arteries and veins. Arteries present a relatively thick tunica media and more
VSMCs, whereas veins show a larger tunica adventitia. The internal elastic lamina appears in arteries and only in the median veins, where is thinner and
discontinuous. The external elastic lamina of arteries is a layer composed of elastin that separates the tunica media and the adventitia. Finally, venous
valves are folds of the tunica intima composed of dense connective tissue present in the middle veins, especially abundant in the lower extremities,
to prevent the backflow of blood.
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2.1 Endothelial cell senescence

EC senescence is a key feature of the aging process in blood
vessels. These cells, which are vital for vascular homeostasis,
undergo senescence during aging or due to stimuli such as
reactive oxygen species (ROS), chronic inflammation, altered
blood flow patterns, metabolic influences such as glucose, insulin
and specific lipid subfractions (Khan et al., 2017; Hwang et al.,
2022), while molecules like polyphenols, amino acids, and
omega-3 fatty acids display senescence-inhibiting effects
(Sakai et al., 2017; Furuuchi et al., 2018; Tsuboi et al., 2018).
This transition confers prooxidant, prothrombotic,
proinflammatory, vasoconstrictive, and barrier dysfunction
properties on ECs, altering their crucial role in maintaining
healthy blood flow and vessel integrity (Ramírez et al., 2022; Han
and Kim, 2023). Senescent ECs show the typical enlarged and
flattened morphology of senescence. Senescence in ECs shows
changes in molecular profiles and contributes to the distinctive
endothelial SASP, including higher expression of fibronectin,
intercellular adhesion molecule 1 (ICAM-1), matrix
metalloproteinases (MMPs), NADPH oxidase 2 (NOX2),
inducible nitric oxide synthase (iNOS), interleukins 1α 1β, 6,
and 8, and decreased production of nitric oxide (NO) (Hayashi
et al., 2006; Zhou et al., 2006; Yin and Pickering, 2016; Rojas
et al., 2017). Interestingly, exercise counteracts EC senescence by
modulating oxidative stress and inflammatory pathways,
preserving vascular function during aging, and offering a
promising avenue to counteract age-related vascular
complications (Rossman et al., 2017; Meng et al., 2023). Also,
circulating endothelial progenitor cells in patients with coronary
artery disease exhibited reduced telomere length and telomerase

activity via oxidative DNA damage, which may be related to EC
senescence (Satoh et al., 2008).

2.2 Vascular smooth muscle cells
senescence

Aged blood vessels show decreased compliance, elasticity, and
distensibility, as well as increased stiffness (Kohn et al., 2015). These
alterations contribute to higher systolic blood pressure and lower
diastolic blood pressure. This is explained by the accumulation of
collagen and decay of elastin in the layers of the arterial wall
(Mitchell, 2021).

However, senescent VSMCs switch from a contractile to a
synthetic state. This alteration involves dysregulated transforming
growth factor-β (TGF-β) signaling, increased iNOS activity, and
increased expression of ICAM-1 and angiotensinogen under stress
conditions (Gorgoulis et al., 2005; Lakatta, 2015; You et al., 2019).
Particularly, senescent VSMCs tend to accumulate in atherosclerotic
plaques, contributing to inflammation, extension and vulnerability
of the plaque by different mechanisms: reduced collagen production,
secretion ofMMPs, proinflammatory cytokines (IL-1α,-6 and,-8 and
MCP1), chemotaxis of monocytes/macrophages, acquisition of an
“osteoblast-like” phenotype (Nakano-Kurimoto et al., 2009;
Gardner et al., 2015; Lacolley et al., 2017). Recent findings
indicate that senescent VSMCs in atherosclerotic plaque have
decreased levels of telomeric repeat-binding factor-2 (TRF2), a
protein crucial for telomere protection (Wang et al., 2015; Uryga
et al., 2021). In vivo studies with transgenic mice confirm that
inhibition of VSMC senescence, by modulating TRF2, has the
potential to prevent atherosclerotic disease progression.

FIGURE 2
Pathogenic influence of cellular senescence in vascular aging. The figure illustrates the pathogenic impact of cellular senescence in vascular aging,
depicting the main cellular and molecular entities associated with senescence in this context. Throughout the three main layers that compose the
vascular wall, distinct senescent cell types, predominantly endothelial cells (ECs), vascular smoothmuscle cells (VSMCs), and fibroblasts, are distinguished
from the inside out. Due to their decreased functionality and secretion of SASP factors, these cells collectively contribute to vascular dysfunction,
altered permeability, increased inflammation and oxidative stress, and the onset of atherogenesis in arteries.
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2.3 Fibroblasts senescence

Senescent vascular fibroblasts, found in the adventitia of blood
vessels, secrete proinflammatory molecules and contribute to
vascular remodeling. Their secretion of bioactive substances, such
as GFs and ROS, creates a pro-oxidant environment that may favor
age-related vascular pathologies, such as pulmonary hypertension
(Li et al., 2021). Furthermore, it has been demonstrated in fibroblasts
that senescent cells can influence intact neighboring cells through a
bystander effect, which induces a DNA damage response,
propagating senescence in the vascular microenvironment
(Nelson et al., 2012). Additionally, it was demonstrated in A 3D
tissue model-on-a-chip, that senescent fibroblasts also exert
excessive traction stress on the surrounding extracellular matrix
(ECM) (Pauty et al., 2021). In particular, senescent fibroblasts also
promote tumor vascularization by inducing increased expression of
vascular endothelial growth factor (VEGF), showing a relevant
influence on the tumor microenvironment (Coppe et al., 2006).

2.4 Immune cells senescence

Immunosenescence is a phenomenon in which the immune
system gradually declines with age (Wang Y. et al., 2022). The
senescence of immune cells plays a pivotal role in the development
of atherosclerosis (Figure 3) (Vellasamy et al., 2022). The cellular

senescence of monocytes and macrophages changes their
functionality, contributing to chronic inflammation and
pathological processes associated with atherosclerosis, which
ultimately impact plaque development and stability and the risk
of cardiovascular events. All three monocyte subsets, classical
(CD14++CD16−), intermediate (CD14++C, D16+), and non-
classical (CD14+CD16++), show characteristics of senescence,
particularly the nonclassical subset, which increases with age
(Ong et al., 2018). This subset had markedly elevated levels of
TNF-α, CCL3, and CCL4, whereas IL-6, IL-8, IL-1β, and CCL5 were
secreted at comparatively high levels in both the intermediate and
non-classical subsets. This subset also expresses membrane-bound
IL-1α and exhibits increased NF-kB signaling (Zawada et al., 2011).
Senescent monocytes, especially the non-classical subset, express
proatherogenic chemokine receptors (CCR2, CCR5, CCR7, and
CX3CR1) and endothelial adhesion molecules (VCAM-1 and
ICAM-1), which increases their adherence to vascular walls and
contributes to the development of atherosclerotic plaque (Merino
et al., 2011).

In the case of senescent macrophages, they adopt pro-
inflammatory (M1) and pro-angiogenic phenotypes characterized
by the secretion of SASP factors, such as TNF-α, IL-6, IL-1β, CCL2,
and MMP-3, -9 and -13, which also lead to degradation of ECM,
fibrous cap thinning, plaque progression, and instability (Sun et al.,
2022; Zhu et al., 2023). They also present a disruption in cholesterol
efflux due to downregulation of the ABCA1 and ABCG1 genes (Sene

FIGURE 3
Role of senescent immune cells in atherosclerotic plaque. The senescence of immune cells, including monocytes, macrophages, foam cells, and T
lymphocytes, plays a critical role in the formation, development and rupture of atherosclerotic plaque. Altered cellular functionality due to
immunosenescence results in the secretion of proinflammatory cytokines, amplifying plaque inflammation and facilitating the recruitment of additional
immune cells. Taken together, immunosenescence has a major impact on plaque stability, interactions, and potential therapeutic approaches
targeting these senescent immune components.
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et al., 2013; Lin et al., 2018). Lastly, senescent foam cells accumulate
in the subendothelial space and work in a very similar way to
macrophages contributing to atherosclerosis (Childs et al., 2016).

Lastly, senescence in T cells presents implications for vascular
disorders. Senescence is induced after oxidative stress leads to a
reduction in telomerase activity, and consequently, telomere
shortening, and the acquisition of a proinflammatory phenotype,
with the secretion of IFN-γ and TNF-α (Mittelbrunn and Kroemer,
2021; Shirakawa and Sano, 2021). They have activated the
p38 mitogen-activated protein kinase (p38-MAPK) signaling
pathway (Reustle and Torzewski, 2018). Different subsets of
senescent T cells appear also within the atherosclerotic plaque,
such as CD4+/CD8+ TEMRA, CD8+/CD4+CD28− or
CD8+CD57+CD27−CD28null T cells, where they promote
inflammation and present a defective response to oxidized low-
density lipoproteins (oxLDL) antigen presenting cells (APCs)
(Kaplan et al., 2011; Yu et al., 2016).

3 Epigenetic modifications and vascular
senescence

Epigenetic mechanisms are fundamental drivers of cellular
senescence (Nacarelli et al., 2017; Crouch et al., 2022).
Expression of the “Yamanaka factors” demonstrates their
potential to restore cellular pluripotency by effectively eliminating
epigenetic memory in differentiated cells through loss of
heterochromatin and reducing the levels of repressive histones
H3K9me2, H3K9me3, and 5-methylcytosine (Takahashi and
Yamanaka, 2006; Wang K. et al., 2022). Furthermore, epigenetic
alterations are also a hallmark of aging (López-Otín et al., 2023).
Therefore, it is of great interest to study their connection with
cellular senescence, with a special focus on vascular senescence in
this review. The epigenetic alterations include DNA methylation,
histone modifications, non-coding RNA-based gene regulation, and
remodeling of chromatin landscape, and are correlated with
cardiovascular risk factors and vascular aging (Ding et al., 2018;
Zhang et al., 2018; Lin et al., 2022). To deepen our understanding of
the importance of epigenetic regulation, cellular senescence can be
induced in vitro by epigenetic modifiers, which activate the
corresponding molecular pathways, based on the upregulation of
p16INK4A (Petrova et al., 2016). These include DNA
methyltransferases inhibitors (5-aza-2- deoxycytidine), histone
deacetylases inhibitors (sodium butyrate, trichostatin A), histone
acetyltransferases inhibitors (curcumin, C646) or histone
methyltransferases inhibitors (e.g., BRD4770).

DNA methylation is an important regulator of gene expression
in vascular senescence (Ding et al., 2020; Xu et al., 2021).
Environmental signals influence the activity of DNA
methyltransferases (DNMT1) 1, 3a, and 3b (Denis et al., 2011).
For instance, the deficiency of folic acid, a DNMT inhibitor, is
correlated with an increased risk of cardiovascular disease (CVD),
including coronary heart disease, atherosclerosis, and anemia (Glier
et al., 2014; Voelter-Mahlknecht, 2016). The folic acid
supplementation delays atherosclerotic lesion development by
modulating MCP1 and VEGF DNA methylation levels (Cui et al.,
2017). DNMT1 has been identified as an essential factor in the
formation of senescence-associated heterochromatin foci (SAHF)

through the upregulation of HMGA2 (Sati et al., 2020). SAHF are
domains of facultative heterochromatin in senescent cells that
repress the expression of genes related to proliferation and are
another biomarker of cellular senescence (Aird and Zhang, 2013).
Abnormal DNA methylation patterns, prevalent in aging cells, have
been widely associated with various age-related vascular diseases,
hence their importance in vascular senescence (Tabaei and Tabaee,
2019; Xu et al., 2021).

Histone acetylation stands as a critical epigenetic regulator in
vascular senescence, modulating chromatin accessibility and
gene expression. The regulation of histone acetylation involves
histone deacetylases (HDACs) and histone acetyltransferases
(HATs). Regarding EC senescence, HDAC3 activated by
laminar flow and VEGF through the VEGF receptor 2/protein
kinase B pathway, stimulates EPC proliferation and EC
differentiation (Zeng et al., 2006). In contrast, suppression of
HDAC3 disrupts VEGF-induced EPC function. Furthermore,
shear stress increases HAT activity, driving differentiation of
the mouse embryonic stem cells into EC lineage (Illi et al., 2005).
On the other hand, the interaction of Sirt1 with the PAI-1
promoter inhibits the acetylation of lysine 16 of histone H4,
exerting a protective effect against vascular endothelial cell
senescence (Wan et al., 2014). Also, Ang II induced protein
kinase B-mediated phosphorylation and lysine acetylation of
PGC-1 through the general control histone acetyltransferase
nonderepressible 5, resulting in reduced PGC-1 activity and
catalase expression in vascular cells (Xiong et al., 2010).
Different studies have highlighted specific histone methylation
markers, such as H4K20me3, H3K9me3, and H3K27me3,
associated with the aging process (Yi and Kim, 2020).
Decreased expression of H3K27me3 has been observed in aged
hematopoietic stem cells (HSCs), whereas decreased expression
of H3K9me3 has been observed in mesenchymal stem cells
(MSCs) from aged individuals (Cakouros and Gronthos, 2019;
Wang K. et al., 2022).

Non-coding RNAs, microRNAs (miRNAs), and long non-
coding RNAs (lncRNAs, play important regulatory roles in
vascular senescence. The miRNAs, approximately 25 nucleotides
in length, play a key role in regulating EC senescence and vascular
aging (Lee et al., 2015; Lin et al., 2016; Nikolajevic et al., 2022).
Several miRNAs are involved in processes such as vascular growth,
angiogenesis, inflammation, and fibrosis (Table 1). In addition,
miRNAs may play a role in senescence distinct from their
traditional functions. For example, Argonaute 2 (AGO2) forms a
complex with pRB in the nucleus by binding to let-7f, resulting in
restrictive chromatin at the CD2 and CDCA8 promoters (Benhamed
et al., 2012). lncRNAs also influence vascular diseases by regulating
ECs and VSMCs. Loss of lncRNA H19 increases p21 and
p16 expression, leading to EC senescence (Hofmann et al., 2019).
LncRNA MEG3, elevated in the aged atrium and human umbilical
vein endothelial cells (HUVECs), suppresses the proliferation of ECs
through interaction with miR-9 and has a regulatory role on
angiogenesis through the notch signaling pathway (Jayasuriya
et al., 2022). Exosomal lncRNA GAS5 is shown to regulate the
apoptosis of macrophages and ECs in atherosclerotic plaques (Chen
et al., 2017).

Nuclear lamins are structural proteins of the nuclear envelope
and are classified as V-type intermediate filaments. These lamins are
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divided into two main types based on their isoelectric points: A-type
(which includes lamins A and C) and B-type (B1 and B2). Among
these, lamin B1 is of particular importance in ensuring
organogenesis and survival of the organism (Kim et al., 2011).
Research indicates that cellular senescence, observed in both
human and mouse cells, leads to a depletion of lamin B1 (Freund
et al., 2012). Interestingly, this depletion occurs due to direct
stimulation of the p53 or pRB pathway, independent of several
typical cellular markers of senescence, such as p38, NF-κB, DNA
damage response, or ROS. In contrast to apoptosis, in which
caspases cleave lamins, senescent cells do not show lamin
B1 cleavage products. Furthermore, inhibition of caspases does
not affect the loss of lamin B1 during senescence (Shah et al.,
2013). Instead, decreased stability of lamin B1 mRNA contributes
to reduced levels of lamin B1 mRNA during the senescence process.
Thus, lamin B1 depletion emerges as a robust indicator of cellular
senescence, applicable both in vitro and in vivo.

4 Connecting inflammation with
vascular senescence

A significant aspect of the changes in gene expression associated
with aging is the increased activation of genes related to
inflammation and immune responses. Indeed, chronic
inflammation is another hallmark of aging and increases with
age, known as inflammaging (Li et al., 2023). This phenomenon
is related to the interaction between inflammation and cellular
senescence, which favors the pathogenesis of numerous age-
related vascular diseases (Del Pinto and Ferri, 2018; Liberale
et al., 2022). This interaction is bidirectional, as inflammation
spreads cellular senescence and senescent cells promote
inflammation by secreting SASP factors (Stojanovic et al., 2020;
Zhu et al., 2021). In addition, the function of the immune system
decreases with age, termed immunosenescence, and thus the
elimination of senescent cells, which promotes senescence-

induced inflammation. The relationship between inflammation
and vascular senescence can be explained by the involvement of
specific biomarkers and signaling pathways.

IL-6 is emerging as a member of the interleukin family showing
promise as a biomarker for aging and a reliable indicator of low-
grade inflammation (Puzianowska-Kuźnicka et al., 2016). It is
correlated with markers of aging such as carotid intima-media
thickness (cIMT) and plaque progression (Huang et al., 2016).
Moreover, IL-6 has been implicated in hypertension as its levels
decrease with angiotensin II receptor blockade therapy suggesting a
link to blood pressure in hypertensive patients (Stevenson et al.,
2018). C-reactive protein (CRP), an acute phase reactant regulated
by IL-6 and IL-1, does not act as a general marker of inflammation
but also poses a significant risk factor for age-related conditions.
Elevated CRP levels have been associated with declines in physical
abilities. They are correlated with conditions such as CVD,
hypertension, diabetes mellitus, and kidney disease (Tang et al.,
2017). GDF 15, a member of the superfamily transforming growth
factor β (TGF β), stands out particularly due to its controversial
association with age and EC senescence. On the one hand,
GDF15 can promote EC senescence through a p16 ROS-
mediated pathway and contribute to atherosclerosis through pro-
senescent activity (Park et al., 2016). On the other hand, the
paracrine effects of GDF15 in non-senescent ECs showed that
GDF15 increased proliferation, migration, and NO production
and activated several signaling pathways such as AKT, ERK1/,2,
and SMAD2 without triggering any oxidative stress, and therefore,
preventing the endothelial dysfunction (Ha et al., 2019).

The SASP comprises a set of various substances released by
senescent cells, which play a key role in maintaining tissue balance
or precipitating dysfunction. This phenomenon is one of the main
ones responsible for the adverse effects associated with senescent
cells. Within the SASP, these cells release an array of substances,
such as growth factors, metalloproteinases, cytokines, chemokines,
and extracellular vesicles (EVs), which profoundly influence
immune signaling and cell-cell communication (Ohtani, 2022;

TABLE 1 Role of different miRNAs with impact on vascular senescence.

miRNAs Target
genes

Role in vascular senescence References

miR-504 p53 Lowers p53 activity and abundance and promotes VSMC dysfunction Reddy et al. (2016)

miR-122 CPEB Reduces translation and polyadenylation of p53 mRNA in fibroblasts Burns et al. (2011)

miR-605 MDM2 Activates p53-mediated senescence and downregulates p21WAF1/Cip1 in HMECs and regulates
secretion of CXCL5 in ECs

Borgdorff et al. (2010), Pande et al.
(2021)

miR-17–3p Par4 Negative modulator of cardiac aging and cardiac fibroblast cellular senescence Du et al. (2015)

miR-126–5p Dlk1 Promotion of the proliferation of ECs Schober et al. (2014)

miR-21 PTEN Abnormal proliferation of VSCMs Hutcheson et al. (2014)

miR-206 VEGF Regulation of CAD progression Wang et al. (2016a)

miR-23a EGFR Inhibition of cell migration and vasculogenesis of CAD Wang et al. (2016b)

miR-361–5p VEGF Antiangiogenic effect in acute coronary syndrome Wang et al. (2014)

miR-574–5p ZDHHC14 Proliferation of VSMCs and inhibition of apoptosis in CAD Lai et al. (2018)

miR-33 ABCA1/ABCG1 Inhibition of cholesterol efflux in aged macrophages Ono (2016)
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Sun et al., 2022). We have reviewed, i.e., section 2 the main SASP
factors secreted by senescent cells affecting the vascular wall, which
contribute to inflammation, and oxidative stress and lead to vascular
dysfunction and disease. Mechanisms such as the NF-κB, C/EBPbd
GATA4, mTOR, p38 MAPK, and cGAS-STING pathways and
cytoplasmic chromatin fragments contribute to SASP activation
(Salminen et al., 2012; Kang et al., 2015; Cuollo et al., 2020;
Miller et al., 2021). Interactions of senescent cells with the
microenvironment occur through cytoplasmic bridges, exosomes,
NOTCH/JAG1 signaling, and ROS release, reflecting the complexity
and importance of their impact on tissue function and health
outcomes (Coppé et al., 2010; Biran et al., 2014; Takasugi
et al., 2017).

5 Translational applications derived
from epigenetics, inflammation, and
cellular senescence in
vascular disorders

5.1 Biomarkers of cellular senescence.
Relevance in vascular aging

The study of cellular senescence has expanded considerably in
recent years due to the discovery of numerous novel roles that this
phenomenon plays in physiology and disease. The cell-cycle
withdrawal is just one of the hallmarks of cellular senescence,
which can be triggered by several stressors, such as telomere

TABLE 2 Biomarkers of cellular senescence and their respective functions.

Senescent
trait

Biomarkers Functional
implications

Relevance in vascular
senescence

References

Cell-cycle arrest p53/p21CIP1 Inhibition of cell-cycle OIS, DDR-induced senescence, ROS-induced
senescence, replicative senescence

Chen (2016)

The onset of cellular senescence

p16INK4A/pRB Inhibition of cell-cycle ROS-induced senescence, OIS, and replicative
senescence

Grosse et al. (2020)

Maintenance of cellular
senescence

p38/CDKIs
p15 and p27

Mitogenic activity Role not clearly defined Russo et al. (2020)

Metabolic
dysregulation

SA-β-Gal Lysosomal protein activity in
senescent cells

Hydrolytic enzyme implication in β-
galactosidase conversion to monosaccharide

Evidence of increased lysosomal mass

Debacq-Chainiaux et al. (2009)

Macromolecular
damage

Lipids of membrane Altered levels Increase in EPA, 7-HOCA, malonate, and 1-
stearoylglycerophosphoinositol

James et al. (2015)

Decrease in dihomo-linoleate, linoleate, and
10-heptadecenoate

Lipofuscin Accumulation in senescent cells Emerging as a hallmark of senescence. Role not
clearly defined

Georgakopoulou et al. (2013),
Evangelou and Gorgoulis (2017),

Brickute et al. (2022)

ROS Cellular damage ROS-induced senescence Korovila et al. (2017)

Telomeres Telomere shortening Replicative-induced senescence

Lamin B1 Loss of lamin B1 Disruption of the nuclear membrane and
induction of senescence

Freund et al. (2012)

Epigenetic regulation CpG Sites Accumulation associated with
histone variant H3.3

Links to DNA methylation alterations and
chromatin accessibility

Cheng et al. (2017)

Histone modifications Gene expression regulation Influences SASP, proliferation arrest, and gene
enhancer activation

Salama et al. (2014)

L1 retrotransposons Activates cGAS-STING pathway Induces type 1 interferon response, genomic
instability, and SASP

Criscione et al. (2016)

miRNAs Targeted actions on various
genes/proteins

Implicated in diverse vascular functions and
pathogenic mechanisms

Menghini et al. (2014), Nikolajevic et al.
(2022)

AGO2 Complex formation with RB1 Facilitates CD2 and CDCA8 expression Benhamed et al. (2012)

Inflammation
(SASP)

IL-6 Implicated in hypertension Strong correlation with hypertension; Lowered
by angiotensin II-receptor blockade therapy

Passacquale et al. (2016), Stevenson
et al. (2018)

C-reactive protein Triggered by inflammatory
mediators

Aging risk factors and Inflammatory
biomarker

Tang et al. (2017)

GDF-15 Secreted by senescent endothelial
cells

Impacts angiogenesis, apoptosis, and
inflammation

Ha et al. (2019)
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shortening, oxidative stress, DNA damage, and, oncogene activation
(Muñoz-Espín and Serrano, 2014). Accordingly, cellular senescence
has been reinterpreted as the process by which a dividing cell, in
response to a stressful or damaging stimulus, enters a stable cell cycle
arrest and usually secretes a complex mixture of substances that
affect the surrounding tissue, while maintaining metabolic activity
and resisting the signals of mitosis and apoptosis. Among other
things, senescent cells have an enlarged and flattened shape, an
expanded lysosomal compartment, and certain chromatin and
epigenetic alterations (Beck et al., 2020). To accurately delineate
cellular senescence in tissues and cell cultures, an optimal
multifactorial approach requires meticulous organization and
compilation of previously published methodologies and diverse
approaches (González-Gualda et al., 2021). Senescence invites
investigation of its involvement in diverse cellular
pathophysiological processes, thus elucidating its four
distinguishing features. Recently, single-cell time-lapse imaging
revealed us that cell cycle withdrawal occurs gradually and not in
a clear binary step (Ashraf et al., 2023). In addition, the intensity
levels of senescence biomarkers appear to integrate the duration of
earlier cell cycle withdrawal. The biomarkers related to epigenetic
mechanisms and inflammation/SASP that regulate vascular
senescence have been discussed in the previous sections.
However, now we will take a look at the more general senescence
biomarkers (Table 2).

The cell-cycle arrest is one of the most distinctive features of
cellular senescence and is indicated by a decrease in phosphorylated
pRB and the protein markers p16, p21, and p53 (González-Gualda
et al., 2021). As we have reviewed in the Introduction, the two main
pathways that control this are the p53/p21CIP1 and p16INK4A/pRB
axes. The former is observed in different pathways, such as
oncogene-induced senescence (OIS), DNA damage response
(DDR)-induced senescence, reactive oxygen species (ROS)-
induced senescence, and replicative senescence. Following a
DNA-damaging stimulus, p53 is activated through
phosphorylation (p-p53), which then increases the temporary
expression of the CDKI p21CIP1. After that, p21CIP1 suppresses
CDK2-cyclin E, enabling pRB dephosphorylation and E2F
sequestration to stop the cell cycle (Chen, 2016). On the other
hand, the p16INK4A/pRB pathway is assumed to bemore important in
maintaining the quiescent state because it is normally engaged
during ROS-induced senescence, OIS, and replicative senescence,
meanwhile, it is not expressed during DDR-induced senescence. In
this case, the protein p16lnk4a directly inhibits the CDK4-Cyclin D
complex upon activation of the INK4a/ARF genetic locus. This
allows dephosphorylation and stability of the pRB-E2F complex,
and consequently the inhibition of the cell cycle (Grosse et al., 2020).
In both networks, pRB is the ultimate downstream target because, in
its hypophosphorylated state, it binds E2F, a transcription factor
that facilitates cell-cycle progression and entry into S-phase.
Furthermore, the MAPK p38 and the CDKIs p15INK4b and
p27KIP1 can also be used as markers, however, their role in the
senescent program is not as clear or widespread (Zhao et al., 2016;
Russo et al., 2020).

To confirm the senescence phenotype or type of senescence,
several markers associated with cell cycle arrest and SASP are usually
analyzed along with other biomarkers. The presence of decreased
expression of cyclins CCNA2, CCNE2, and LMNB1, a,s well as

increased expression of a selection of SASP genes and the cyclin-
dependent kinase inhibitors CDKN1A (p21WAF1/Cip1), CDKN2A
(p16INK4A) and CDK2B (p15INK4B) need to be identified (Casella
et al., 2019). These gene signatures are likely to be modified in the
coming years due to the current lack of transcriptome datasets and
the availability of further single-cell research to assess
intrapopulation heterogeneity.

Secondly, there is a metabolic dysregulation. About this
hallmark, the pathway that is most affected is the β-galactosidase
(SA-β-Gal) (Cai et al., 2020; de Mera-Rodríguez et al., 2021). It is a
hydrolase enzyme that catalyzes the conversion of β-galactosidase
into monosaccharide in the lysosomes. The most frequent substrates
for SA-β-Gal activity are galactose and 5-bromo-4-chloro-3-
hydroxyindole-1. This enzyme assay, which uses X-Gal as a
chromogenic substrate, tracks the elevated expression and activity
of this lysosomal protein in senescent cells and provides evidence of
an increase in lysosomal mass (Debacq-Chainiaux et al., 2009;
Valieva et al., 2022). The senescent cells differ in several ways
from normal in terms of mitochondrial dynamics, function, and
appearance. Senescent cells have fewer functioning mitochondria,
which exhibit reduced membrane potential higher proton leakage,
decreased rates of fusion and fission, increased bulk, and a greater
quantity of metabolites related to the tricarboxylic acid cycle (TCA
cycle) (Kaplon et al., 2013). Also, it can be brought on by damaging
elements of mitochondrial biology, like the electron transport chain
(ETC.), complex I assembly, and/or mitochondrial sirtuins (Correia-
Melo et al., 2016). On the other hand, senescent cells frequently
create higher levels of ROS, which can lead to telomere shorting
DDR activation in addition to the protein and lipid degradation
covered in earlier sections. SASP regulation is also associated with
mitochondrial dysfunction during senescence (Martini and Passos,
2023). Senescent cells appear to reduce the SASP by mitophagy, or
mitochondrial clearing. Even when cells do not express important
proinflammatory SASP factors like IL-6 and IL-8, senescence can
still be induced by genetic or pharmacological suppression of the
ECT (Wiley et al., 2016; Wiley and Campisi, 2021).

The macromolecular damage in cellular senescence comprises
lipids, proteins, and nucleic acids affecting the cellular structures.
Regarding the plasma membrane, both its integrity and signal
transduction depend on the lipid content. Changes in lipid
profiles result from altered lipid metabolism, a characteristic of
several age-related illnesses (Ademowo et al., 2017). Senescent
fibroblasts exhibit an increase in fatty acids, their precursors, and
phospholipid catabolites, such as eicosapentaenoic (EPA), 1-stear-
oylglycerophosphoinositol, malonate, and 7-alpha-hydroxy-3-oxo-
4-cholestenoate (7-HOCA), whereas dihomo-linoleate, linoleate,
and 10-heptadecenoate decrease (James et al., 2015). ROS is a
well-known cause of protein damage because it oxidizes cysteine
and methionine residues, changing the way proteins fold and
function (Korovila et al., 2017). Threonine, proline, lysine, and
arginine residues are carbonylated. Protein carbonylation makes
hydrophobic surfaces visible, which causes unfolding and
aggregation. Furthermore, carbonyl residues can contribute to
protein aggregation by reacting with amino groups to create
Schiff bases. After further cross-linking with lipids and
carbohydrates, lipofuscin insoluble aggregate is created
(Evangelou et al., 2017). It accumulates as a byproduct of
senescence in senescent cells and ought to be regarded as a new
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TABLE 3 Senolytics: effects in vascular cells and clinical trials for vascular diseases. BPTES [bis-2-(5-phenyl- acetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide].

Compound Mechanism of
action

Outcomes References

In vitro In vivo Clinical trials
(study phase,
identifier)

Dasatinib +
quercetin (D + Q)

Tyrosine kinase
inhibition (Dasatinib)
PI3K and Bcl-2 family
members inhibition

(Quercetin)

-D + Q afforded selective
killing of both senescent
preadipocytes and ECs

-Improved cardiac function
and carotid vascular reactivity

in aged mice

Epigenetic Aging (Phase 2,
NCT04946383) Chronic
Kidney Disease (Phase 2,

NCT02848131)
Alzheimer’s disease (Phase
2, NCT04063124) (Phase 2,
NCT04785300) (Phase 2,
NCT05422885) Idiopathic
pulmonary fibrosis (Phase

1, NCT02874989)
Accelerated aging in

mental disorders (Phase 2,
NCT05838560)

Zhu et al. (2015), Parvizi
et al. (2021), Lin et al.

(2023)

-Administration of D + Q
could selectively clear

senescent cells and preserve
the caveolar CaV3.2-RyR axis

in aging VSMCs

-Attenuation of the
enlargement of the

abdominal aorta induced by
angiotensin II in aged mice

ABT-263
(Navitoclax)

Bcl-2/Bcl-XL family
member inhibitor

-Senolytic activity in
senescent HUVECs

Reduction of atherosclerosis
in mice

- Childs et al. (2016), Zhu
et al. (2016), Garrido et al.

(2022)
-Selective cell death of murine

senescent VSMCs

UBX-1967 Inhibition of BCL-xL Elimination of senescent cells
and suppression of

neovascularization while
enhancing vascular repair in a

model of retinopathy

The same results in the mouse
model of retinopathy

- Crespo-Garcia et al.
(2021)

UBX-1325
(Fuselutoclax)

Inhibition of BCL-xL Selective elimination of
senescent cells

Inhibited retinal
neovascularization and
reduced vascular leakage

Diabetic macular edema
(Phase 2, NCT06011798)
(Phase 2, NCT04857996)
Neovascular age-related
macular degeneration

(Phase 2, NCT05275205)

Hassan and Bhatwadekar
(2022)

STA-9090
(Ganetespib)

Hsp90 inhibitor Senolytic activity in senescent
HUVECs

- - Fuhrmann-Stroissnigg
et al. (2017a)

FOXO4-DRI Disruption of FOXO4-
p53 interaction

Selective induction of cell
death of senescent fibroblasts

- - Baar et al. (2017)

P5091, P22077 USP7 inhibitors Induction of apoptosis in
senescent fibroblast cell lines
and senescent HUVECs

- - He et al. (2020)

Fisetin Diverse signalling
pathways, including BCL-
2, PI3K/AKT, p53, NF-kB

Induction of apoptosis in
senescent, but not in
proliferating HUVECs

Reduction of senescence
markers in multiple tissues,

restoration of tissue
homeostasis, reduction of
age-related pathology, and
extension of lifespan of
progeroid and old mice

Osteoarthritis (Phase 2,
NCT04210986)

Inflammation and frailty
(Phase 2, NCT03675724)
(Phase 2, NCT03430037)
COVID-19 Inflammation
(Phase 2, NCT04476953),
(Phase 2, NCT04771611)
Improvement of vascular
function in older adults
(Phase 2, NCT06133634)

Fuhrmann-Stroissnigg
et al. (2017b), Yousefzadeh

et al. (2018)

Piperlongumine
and analogues

Induction of proteasomal
degradation of OXR1 and
increased production

of ROS

Induction of cell death in
senescent fibroblast cells

- - Liu et al. (2018)

Cardiac glycosides Targeting autophagy or
through inhibition of
Na+/K + -ATPase

-Proscillaridin A, Ouabain,
and Digoxin showed specific
senolytic activity in human BJ

fibroblasts induced to
senescence by Bleomycin

treatment

- - Triana-Martínez et al.
(2019), L’Hôte et al. (2021)

-Ouabain triggers senolysis in
a cell line of BRAF-senescent

human fibroblasts

(Continued on following page)

Frontiers in Genetics frontiersin.org10

Fraile-Martinez et al. 10.3389/fgene.2024.1345459

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1345459


“hallmark” of senescence (Georgakopoulou et al., 2013). It is
commonly recognized that the Sudan-Black-B (SBB)
histochemical stain will only react with lipofuscin, which is a
mixture of oxidized proteins, lipids, and metals (Evangelou and
Gorgoulis, 2017). It has also been observed to build up in senescent
cells. It is demonstrated that the use of SBB staining yields very
specific results when it comes to senescent cell imaging (Brickute
et al., 2022). This offers special benefits for understanding the
physiological mechanism and the pathophysiology of different
age-related diseases as well as for predicting how well treatment
approaches will work.

5.2 Senotherapy

Given the great importance that scientific evidence has given to
senescence in the development of age-related pathological processes,
the field of senotherapy has experienced exponential growth
throughout the last decade. At first, two big groups of
senotherapeutic compounds were identified: senolytics and
senomorphics. Senolytics selectively induce cell death of
senescent cells, mostly by targeting elements of anti-apoptotic
and pro-survival pathways of the cell (tyrosine kinases, Bcl-2
protein family, MDM2, FOXO4, HDACs) (Table 3), while
senomorphics modulate the SASP, responsible of many of the
deleterious effects associated to senescence (by targeting
telomerase, sirtuins, mTOR, NF-kB, ATM JAK/STAT, p38/
MAPK) (Table 4) (Ya and Bayraktutan, 2023).

Over time, new senotherapeutic approaches emerged,
addressing some of the limitations that senolytics or
senomorphics compounds presented. For example, the
development of galactose-modified senolytic prodrugs allowed
guiding the action of these molecules more specifically toward
senescent cells (Zhang et al., 2022). It consists of conjugating the
senolytic compound with a galactose moiety, which would be
cleaved by the senescent cells, given the increased β-galactosidase
activity displayed by these cells; this way, the active compound
would be released, selectively killing the senescent cell. This strategy
has been already tested with some senolytics such as Navitoclax
(González-Gualda et al., 2020). Other approaches involve the use of
small peptides targeting surface molecules of these cells, like CD47,
implicated in the inhibition of phagocytosis of these cells by the
immune system, and therefore restoring the clearance of senescent
cells (Jatal et al., 2022). Also worth mentioning is the development of

senescence immunotherapy. One example of this is the use of
functionalized nanoparticles with antibodies to CD9, a surface
cell protein upregulated in endothelial cell senescence, to deliver
rosuvastatin, a senomorphic agent, to these cells (Pham et al., 2021).
Lastly, it is important to highlight the potential of therapeutic
strategies that attempt to induce senescence, particularly
interesting to enhance the effectiveness of other treatments, such
as anti-cancer therapy. Certain studies provide evidence that
inducing senescence of endothelial cells in a preclinical model
leads to the production of pro-inflammatory and angiogenic
factors by these cells, stimulating the immune response and
sensitizing unresponsive tumors to immunotherapy (Ruscetti
et al., 2020).

However, it is important to mention that senotherapy has still
numerous challenges to confront. Firstly, senescent cells are
heterogeneous between species, and cell types, even within the
same cell type, and rely on different senescence-mediating
pathways from 1 cell to another (Zhang et al., 2023). Secondly,
not all senescence-associated metabolic alterations are cell-specific,
which may lead to undesired off-target events of senotherapeutics,
like rapamycin, which apart from its senomorphic properties, has
been shown to accelerate the progression of cultured endothelial
progenitor cells to a senescent state or cause impaired vasorelaxation
by dysregulation of superoxide and NO production (Imanishi et al.,
2006; Jabs et al., 2008). Added to this is the important role that
senescent cells play in processes such as tissue renewal, wound
healing, tumor suppression, and others, which is why
senotherapeutics must allow beneficial senescent cell populations
to persist (Zhang et al., 2023). Indiscriminate elimination of
senescent cells in some situations and conditions may have
harmful effects, as described in this study where elimination of
senescent pulmonary endothelial cells by FOXO4-DRI worsened
pulmonary hemodynamics in a murine model of pulmonary
hypertension (Born et al., 2023).

Nevertheless, a multitude of pathologies can potentially be
alleviated by the use of senotherapeutics, as shown by the
favorable results of many current clinical trials. Many of these
are vascular diseases such as fibrotic conditions, atherosclerotic
disease, pulmonary arterial hypertension, or peripheral artery
disease, among others (Suda et al., 2023). Table 3 and Table 4
list some of the most studied senolytic and senomorphic compounds
in pathologies related to vascular alterations, as well as their
mechanisms of action, main outcomes of the studies performed,
and clinical trials carried out.

TABLE 3 (Continued) Senolytics: effects in vascular cells and clinical trials for vascular diseases. BPTES [bis-2-(5-phenyl- acetamido-1,3,4-thiadiazol-2-yl)
ethyl sulfide].

Compound Mechanism of
action

Outcomes References

In vitro In vivo Clinical trials
(study phase,
identifier)

BPTES Glutaminase 1 inhibitor BPTES exerted senolytic
activity in senescent fibroblast

cell lines

Reduction of atherosclerosis
of thoracic aorta and plaque

lesions and senescence
markers in abdominal aorta

in mice

- Johmura et al. (2021)
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TABLE 4 Senomorphics: effects in vascular cells and clinical trials for vascular diseases. COPD: chronic obstructive pulmonary disease.

Compound Mechanism of action Outcomes References

In vitro In vivo Clinical trials (study
phase, identifier)

Rapamycin/
sirolimus

mTORC1 inhibitor mTOR inhibition by low-
dose rapamycin prevented
cell senescence and inhibited
the SASP in cultured cells
derived from patients with

COPD

Significant reduction in
atherosclerotic lesions area
and improved neurovascular

measures in mice

Immune, Cognitive, and
Functional Consequences of
mTOR inhibition in the

elderly (including assessment
of cardiac function) (Phase 2,
NCT04742777) (Phase 2,

NCT02874924)
Angiofibromas in Tuberous

sclerosis (Phase 2,
NCT01526356) Alzheimer’s
and Cognitive Health (Phase

2, NCT04629495)

Houssaini et al.
(2018), Jahrling
et al. (2018)

Metformin Numerous cellular targets. Some
related to SASP inhibition are:
IKK inhibition, upregulation of
Nrf2-mediated glutathione
peroxidase 7 (GPx7), or
downregulation of the

STAT3 pathway

Metformin decreased the
secretion of SASP factors
and adhesion molecules, as
well as LPS-triggered hyper-

inflammation, in
doxorubicin-induced

senescent ECs

Metformin reduced pro-
inflammatory markers such
as CCL2 and also improved
oxidative stress, nitric oxide

bioavailability, and
endothelial dysfunction in
general in a murine model of
non-obese type 2 diabetes

Treatment of frailty in obese
seniors (Phase 3,

NCT04221750) Peripheral
Arterial Calcification in Type

1 Diabetes (Phase 3,
NCT04583462) Peripheral
artery disease (Phase 3,

NCT05132439)

Sena et al. (2011),
Abdelgawad et al.

(2023)

Aspirin Unknown Inhibition of astrocyte-
driven inflammation by
targeting cGAS in a brain
organoid model of ataxia-

telangiectasia

Normalization of vascular
remodeling of renal and
carotid arteries, and

reversion of the increment in
systolic blood pressure on a

model of metabolic
syndrome

Cerebral Small Vessel Disease
(Phase 4, NCT01932203)
Primary prevention of

cardiovascular events in the
elderly (Phase 4,

NCT00225849) Secondary
prevention of CVD in the

elderly (Phase 3,
NCT02596126)

Renna et al. (2009),
Aguado et al. (2021)

Statins HMG-CoA reductase inhibitor Atorvastatin, pravastatin,
and pitavastatin inhibited
senescence in a cell line of
senescent HUVECs, by

targeting the Akt pathway

- - Ota et al. (2010)

Ruxolitinib JAK 1/2 inhibitor Reduction of the levels of
some key SASP components

in senescent HUVECs,
including IL-6, IL-8, and

MCP-1

Reduction of systemic
inflammation in aged mice

- Xu et al. (2015)

Oridonin p38 and NF-κB inhibitor Inhibition of the secretion of
IL-8 and IL-6 in a cell line of
human senescent fibroblasts

- - Yasuda et al. (2022)

Curcumin Unknown, probably by
downregulation of Nrf2 and NF-

kB pathways

Senescent HUVECs induced
to exert a pro-inflammatory

response significantly
reduced the expression of
pro-inflammatory markers

such as MCP-1

- Chronic Kidney Disease
(recruiting, NCT04413266)

Matacchione et al.
(2022)

Resveratrol SIRT-1 and AMPK activator Prevention of the onset of
senescence in cultured

endothelial progenitor cells,
and also an increase of the
proliferation and migration

of these cells

Protective effects against
arterial aging by reducing the

aorta media thickness,
inflammation, fibrosis, and

oxidative stress and
reduction of the number of
senescent VSMCs in mice

Cardiovascular Health in the
Elderly (Phase 2,
NCT01842399)

Xia et al. (2008),
Kim et al. (2018)

Inhibitor of the NF-kB pathway Vascular system and lipid
metabolism disorders in
Women and Men Aged

55–65 Years (NCT01668836)

Apigenin IRAK1/IkBa/NF-kB inhibition Reduction of the levels of
SASP factors (IL-1α, IL-1β,

IL-6, IL-8, GM-CSF,
CXCL1, MCP-2 and MMP-
3) detected in a cell line of

senescent fibroblasts

The same outcomes in the
kidneys of aged rats

Improvement of Organ
Function by Apigenin in

Elderly Patients with Sepsis
(Phase 2, NCT05999682)

Lim et al. (2015)
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6 Conclusion

Cellular senescence is a state in which the cell leaves the cell cycle in
response to damage signals or developmental cues to prevent tumor
proliferation and promote cell survival. The senescent cell remains viable
despite macromolecular damage and dysregulated metabolism and
acquires a SASP. Cellular senescence is a hallmark of aging because
its accumulation in tissues is detrimental to tissue and organismal
homeostasis. Some studies that selectively eliminate these cells in
animal models manage to prolong their lifespan. In this regard, we
have reviewed the impact of cellular senescence on the vascular wall,
termed vascular senescence, which appears to be one of the most
important drivers of vascular aging. The best characterized and
studied cell types that become senescent and contribute to vascular
dysfunction are endothelial cells, vascular smooth muscle cells,
adventitial fibroblasts, and immune cells. In general, they produce
oxidative stress and secretion of proinflammatory factors that
damage the vascular wall. This has been found in age-related
vascular diseases such as atherosclerosis, peripheral artery disease,
hypertension, chronic venous disease, or venous ulcers.

Multiple epigenetic mechanisms are activated during the senescence
state, including the expression of microRNAs, chromatin remodeling,
DNA methylation, histone modification, and loss of nuclear integrity.
This implies upregulation in the expression of inflammation-related
genes, mainly those that promote SASP, such as proinflammatory
cytokines, chemokines, chemokine receptors, and endothelial
adhesion molecules. Of interest is the investigation of specific
biomarkers of vascular senescence in different blood vessel types and
cell types. Identifying unique signatures in different cell types and blood
vessels can improve disease detection and response to treatments of
vascular diseases. Moreover, exploring the inflammatory response
activated during vascular senescence may reveal new therapeutic
targets to treat age-related vascular diseases. In addition,
understanding this complex process allows us the application of a
promising therapeutic approach, senotherapy. Further research is
needed to better characterize the different senotherapeutic options,
senolytics and senomorphics, and to translate the results of research
in preclinical models and clinical trials into clinical practice, improving
diagnostic accuracy, prognostic ability, and therapeutic interventions for
vascular senescence-related conditions.
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