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Background: Alcohol use disorder (AUD) is a complex condition associated with
adverse health consequences that affect millions of individuals worldwide.
Epigenetic modifications, including DNA methylation (5 mC), have been
associated with AUD and other alcohol-related traits. Epigenome-wide
association studies (EWAS) have identified differentially methylated genes
associated with AUD in human peripheral and brain tissue. More recently,
epigenetic studies of AUD have also evaluated DNA hydroxymethylation
(5 hmC) in the human brain. However, most of the epigenetic work in
postmortem brain tissue has examined bulk tissue. In this study, we
investigated neuronal-specific 5 mC and 5 hmC alterations at CpG sites
associated with AUD in the human orbitofrontal cortex (OFC).

Methods: Neuronal nuclei from the OFC were evaluated in 34 human
postmortem brain samples (10 AUD, 24 non-AUD). Reduced representation
oxidative bisulfite sequencing was used to assess 5 mC and 5 hmC at the
genome-wide level. Differential 5 mC and 5 hmC were evaluated using the
methylKit R package and significance was set at false discovery rate < 0.05
and differential methylation > 2. Functional enrichment analyses were performed,
and gene-level convergence was evaluated in an independent dataset that
assessed 5 mC and 5 hmC of AUD in bulk cortical tissue.

Results: We identified 417 5 mC and 363 5hmC significant differential CpG sites
associated with AUD, with 59% in gene promoters. Some of the identified genes
have been previously implicated in alcohol consumption, including SYK, DNMT3A
for 5 mC, GAD1, DLX1, DLX2, for 5 hmC and GATA4 in both. Convergence with a
previous AUD 5mC and 5 hmC study was observed for 28 genes. We also
identified 5 and 35 differential regions for 5 mC and 5 hmC, respectively.
Lastly, GWAS enrichment analysis showed an association with AUD for
differential 5 mC genes.
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Discussion: This study reveals neuronal-specific methylome and
hydroxymethylome dysregulation associated with AUD, identifying both
previously reported and potentially novel gene associations with AUD. Our
findings provide new insights into the epigenomic dysregulation of AUD in the
human brain.
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1 Introduction

The detrimental effects of alcohol use disorder (AUD) are
substantial, resulting in more than 150,000 deaths globally (GBD,
2019 Risk Factors Collaborators, 2020). AUD is characterized by
persistent, uncontrollable, and excessive alcohol consumption
despite its negative consequences. Although genome-wide
association studies (GWAS) have identified genetic risk factors of
AUD (Gelernter et al., 2019; Zhou et al., 2020; 2021; 2023), these
only account for a portion of the variation observed.

Epigenetic mechanisms, such as DNA methylation (5mC), have
been implicated in AUD and alcohol-related traits in human studies
evaluating various tissues, including saliva, blood, and brain
(Longley et al., 2021; Clark et al., 2022; Montalvo-Ortiz et al.,
2022; Zillich et al., 2022). The 5mC mechanism involves the
addition of a methyl group to the carbon 5 position of the
nucleotide, which is catalyzed by DNA methyltransferases
(DNMTs) (Gibney and Nolan, 2010). DNA hydroxymethylation
(5hmC) occurs when this methyl group is removed through
oxidation catalyzed by a family of ten-eleven translocase proteins
(TET1, TET2, and TET3) during the DNA demethylation process.
Recent work from our group and others has shown that 5hmC is
functionally distinct from 5mC. This epigenetic mark is associated
with transcriptional activation and highly prevalent in the brain
(Rompala et al., 2022). Several studies have implicated 5hmC in
anxiety-related behaviors (Papale et al., 2017), schizophrenia,
bipolar disorder (Guidotti et al., 2014; Madrid et al., 2016),
autism (Papale et al., 2015), and Alzheimer’s disease (Kuehner
et al., 2021). Interestingly, a recent study evaluating 5mC and
5hmC in bulk tissue from the human postmortem brain
identified a role for 5hmC in AUD (Clark et al., 2022).

Epigenetic patterns, such as 5mC and 5hmC, are tissue- and cell-
type specific, and particularly 5hmC is highly enriched in the brain
and abundant in neuronal cells, underscoring the need to investigate
this epigenetic mark in brain tissue, particularly in neurons
(Kriaucionis and Heintz, 2009; Szulwach et al., 2011; Mellén
et al., 2012). However, most epigenetic studies have used bulk
brain tissue, which can mask cell-type specific biological signals,
highlighting the need for a cell-type-specific approach when
evaluating the epigenetic landscape of AUD in the human brain.

The orbitofrontal cortex (OFC) has been implicated in decision
making andmotivated reward-related behavior (Morisot et al., 2019;
Lohoff et al., 2021), and recent neuroimaging studies have associated
alterations in this brain region with AUD (Shields and Gremel, 2020;
Bracht et al., 2021; Atmaca et al., 2023). Individuals diagnosed with
AUD exhibit a reduction in the OFC volume, accompanied by a
decrease in gray matter, and an impact on dopaminergic pathways
(Volkow et al., 2007; Coleman et al., 2011; Le Berre et al., 2014;

Nimitvilai et al., 2017; Moorman, 2018; Morisot et al., 2019;
Hernandez and Moorman, 2020). Recent 5mC studies from our
group and others have revealed a role of epigenetic mechanisms in
OFC in the context of substance use disorders (SUDs) (Kozlenkov
et al., 2017; Rompala et al., 2022).

In this study, we examined neuronal-specific 5mC and 5hmC
profiles in the OFC of AUD (n = 10) and non-AUD (n = 24) groups
to identify epigenetically dysregulated genes and evaluate the
differences between 5mC and 5hmC marks in the OFC. We also
identify the functional pathways enriched by these epigenetically
dysregulated genes, evaluate replication in an independent dataset,
and assess its relationship with GWAS studies.

2 Materials and methods

2.1 Study cohort

Our study cohort comprised 34 postmortem brain samples
obtained from the National posttraumatic stress disorder (PTSD)
Brain Bank51 (NPBB) (Friedman et al., 2017), a brain tissue
repository at the U.S. Department of Veterans Affairs (VA).
Consisting of European American and African American men
with a mean age of 41 (s.d ± 12) (Friedman et al., 2017). The
tissue samples were collected after obtaining informed consent from
the next-of-kin and processed as described by (Friedman et al.,
2017). The clinical diagnosis followed the antemortem assessment
protocol (AAP) and postmortem diagnostic assessment protocol
(PAP) based on the DSM-IV criteria (Friedman et al., 2017). The
samples were categorized into AUD and non-AUD groups. The
AUD group included 10 donors with alcohol use disorder (AUD)
history, which refers to those diagnosed with alcohol dependence or

TABLE 1 Demographic and clinical information of the study cohort.

Cases (10) Controls (24)

Ancestry EA 7 20

AA 3 4

Male 10 24

Age of death 34.18 (+-6.79) 41.35 (+-12.17)

PTSD 10 11

OUD 4 4

Smoking 9 10

PMI 28.65 (+-5.42) 30.34 (+-8.67)
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alcohol abuse. The non-AUD group included 24 donors without an
AUD diagnosis. AUD and non-AUD groups were matched by
(PTSD), opioid use disorder (OUD), and current smoking.
Table 1 presents the demographic and clinical characteristics of
the study cohort.

2.2 Neuronal nuclei isolation and DNA
extraction

Neuronal nuclei isolation was performed using fluorescence-
activated nuclei sorting (FANS), described by Rompala and
Nagamatsu et al. (2022) (Rompala et al., 2022), obtaining
0.5–1 M NeuN + nuclei for DNA extraction. Sorted nuclei were
centrifuged at 1,500 × g for 15 min at 4°C to obtain a pellet. Next,
500 μL and 50 µL proteinase K (Cat. #69504, Qiagen, Valencia, CA)
and 20 mg/mL RNAse A (Cat. #12091021; Thermo-Fischer,
Waltham, MA) were used to refloat the pellet. TheDNeasy Blood
and Tissue Kit (Cat. #69504, Qiagen) manufacturer’s protocol was
used to process the samples. Finally, eluted samples were
concentrated to a final volume of 20 µL with the Zymo Genomic
DNA Clean and Concentrator-10 kit (Cat. #D4010, Zymo Inc.,
Irving CA) and stored at −80°C.

2.3 High-throughput bisulfite sequencing
and data processing

Sequencing data were obtained by reduced representation
oxidative bisulfite-sequencing (RRoxBS), carried out at the Weill
Cornell Epigenomics Core (New York, NY). The library
preparations for 5mC and 5hmC were made using Mspl
digestion for 400 ng of gDNA with the Ovation RRoxBS
Methyl-Seq library preparation kit (TrueMethyl oxBS; Tecan,
Switzerland). Bisulfite conversion was followed by a single-end
1 × 50 bp sequencing with the Illumina NovaSeq6000 system
(mean depth of 42.7 ± 1.5 (µ ± SEM) million reads per library).
The hg38 genome reference was used for adapter trimming,
alignment information, and mapping efficiency of the
sequencing data using an in-house BiSeq pipeline (Garrett-
Bakelman et al., 2015).

2.4 Differential methylation analysis

The MethylKit R package (Akalin et al., 2012) was used to
conduct differential methylation (5mC) and hydroxymethylation
(5hmC) analyses at CpGs. The samples were filtered using a read
coverage above ×10 and under the 99.9th percentile.
Normalization was performed using the median method, where
the mean was used to calculate the scaling factor to reduce coverage
bias in the statistical analysis. Differential 5mC and differential
5hmC analyses were performed using logistic regression with
correction for overdispersion and chi-squared significance
testing (Akalin et al., 2012). The covariates included in the
model were ancestry, age of death, PTSD, OUD, smoking, and
postmortem interval (PMI). The sliding linear model (SLIM) was
used to fit the p-values to q-values (Wang et al., 2011). The

significance level for differential 5mC and 5hmC was defined as
q-value < 0.05 and a greater than 2% difference of 5mC and 5hmC
between AUD and non-AUD groups. Genome-wide significant
(GWS) sites were used for annotation. We used the Genomation R
package (Akalin et al., 2015) to annotate CpGs in promoters,
introns, exons, and intragenic regions as well as CpG island, CpG
islands shores, CpG shelves, and open sea (Akalin et al., 2015).
Gene name annotation was performed using Ensembldb (Rainer
et al., 2019).

Differentially methylated regions (DMR) and differentially
hydroxymethylated regions (DhMR) with a window of
1,000 bases and at least 10 CpG sites covering the region were
also examined for both 5mC and 5hmC epigenetic marks,
respectively. Significant DMRs and DhMR were defined based on
a q value < 0.05.

2.5 Functional enrichment analysis

Genomation R package was used to perform genomic feature
annotation (Akalin et al., 2015). Functional enrichment analysis
was made using the gene annotation obtained by scan_region.pl
perl tool and the UCSC genome browser annotation databases.
Genes with a distance greater than 1,500 bp were not considered
for the enrichment analysis (Kuhn, Haussler and James Kent,
2013). To conduct functional enrichment analysis we used
Metascape (Zhou et al., 2019), Enrichr (Kuleshov et al.,
2016), and WebGestalt (Liao et al., 2019), which integrates
databases such as NCA TS BioPlanet (Huang et al., 2019),
Panther (Mi et al., 2013), Gene Ontology Consortium (Gene
Ontology Consortium, 2015), and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000). As the
enriched terms across all databases may share relationships or
exhibit redundancy, we also performed enrichment analysis
networks using Metascape to visualize the interaction among
the enriched terms (biological pathways). For this, we calculate
the Kappa-test score of the enriched terms and hierarchically
cluster them into non-redundant groups. This process involves
selecting the most significant terms of each cluster and
determining connections among them, guided by a Kappa
similarity threshold above 0.3. Each node is color-coded for
distinction based on the biological pathway they belong to.
Protein–protein interaction (PPI) enrichment analysis was
also conducted to examine interaction across genes mapping
significant 5mC/5hmC CpG sites. The molecular code detection
(MCODE) algorithm was used to cluster enrichment ontology
terms to identify neighborhoods where proteins are densely
connected in the following databases: STRING, BioGrid, and
OmniPath (Türei et al., 2016; Oughtred et al., 2019; Szklarczyk
et al., 2023).

2.6 GWAS enrichment analysis

The software Multi-marker Analysis of GenoMic Annotation
(MAGMA) v1.10 (de Leeuw et al., 2015) was used to conduct gene-
level association analysis for 5mC and 5hmC using the GWAS
summary statistics of alcohol use disorder (AUD) (Zhou et al.,
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2020), problematic alcohol use (PAU) (Zhou et al., 2020), cannabis
use disorder (CUD) (Johnson et al., 2020), opioid use disorder
(OUD) (Polimanti et al., 2020), (PTSD) (Nievergelt et al., 2019),

anxiety (Otowa et al., 2016), anorexia nervosa (Anorexia Nervosa
Genetics Initiative et al., 2019), bipolar disorder (Mullins et al.,
2021), and schizophrenia (Lam et al., 2019). The analysis was based

FIGURE 1
5mC differential CpG sites associated with AUD. (A) Volcano plot shows the 5mC differential CpG sites associated with AUD. (B) Pie chart depicts the
gene location of the GWS CpG sites identified.

FIGURE 2
5hmC differential CpG sites associated with AUD. (A) Volcano plot shows the 5hmC differential CpG sites associated with AUD. (B) Pie chart depicts
the gene location of the GWS CpG sites identified.
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on genetic variants in the 1000 Genomes Project dataset available on
the MAGMA website (g1000_eur.bim). Gene annotation for the
analysis was performed using the MAGMA NCBI37.3. gene.loc file.

A gene-level overlap between Clark et al. (2022) (Clark et al.,
2022) reported genes (p < 1 × 10−5) and our significant findings was
assessed. For this, we employed the liftOver tool to convert genome
coordinates from hg37 to hg38. Fisher’s exact test was applied using
the GeneOverlap 1.38.0 R package (Li Shen and Shenli, 2017) to
evaluate whether the gene-level overlap is statistically significant.

3 Results

3.1 AUD-associated 5mC and 5hmC
differential CpG sites

After QC, 1908163 and 1707251 CpG sites were included for 5mC
and 5hmC differential analyses, respectively. For 5mC, we identified
417 CpG sites after multiple testing corrections with a difference in the
percentage of methylation between AUD and non-AUD groups higher
than 2. Of these, 137 were hypomethylated and 280 were
hypermethylated (Figure 1). For 5hmC, we identified 363 CpG sites

after multiple testing corrections, with 213 hypo- and 150 hyper-
methylated CpG sites (Figure 2). Tables 2, 3 list the top GWS
differential 5mC and 5hmC CpG sites. The 5mC GWS annotation
showed that 59% of them were located at the promoter region, 21% at
the intragenic region, 14% at introns, and 6% at exons. For the 5hmC
GWS, 66% were located at the promoter region, 17% at the intragenic
region, 11% at introns, and 6% at exons.

3.2 Q-Q plot

The quantile–quantile (QQ) plots (Supplementary Figure S1) for
the 5mC and 5hmC differential analyses are shown. The lambda
values were λ = 1.21 for 5mC and λ = 1.46 for 5hmC. Regarding the
DMR and DhMR analyses, lambda values were λ = 0.91 and λ = 1.00,
respectively.

3.3 5mC and 5hmC-enriched pathways

For 5mC, we found significant enrichment (using 0bp
annotation) for 30 pathways after multiple testing correction

TABLE 2 Top GWS differential methylated (5mC) CpG sites.

Gene Chr BP Strand meth.diff p value q value

GNPNAT1 chr14 52791636 − 2.73 3.93E-12 7.12E-06

CYP26B1 chr2 72147339 + 2.02 3.17E-11 2.87E-05

PCDH8P1 chr13 53201122 − 2.21 9.86E-11 5.95E-05

SNORA57 chr11 62665457 + 3.04 2.46E-10 7.42E-05

FAM163B chr9 1.34E+08 + 2.55 2.03E-10 7.42E-05

KEAP1 chr19 10503028 − 3.88 1.33E-09 0.000142

STAM2 chr2 1.52E+08 + 2.55 1.20E-09 0.000142

ARX chrX 25013092 − 3.48 1.22E-09 0.000142

AL033528.1 chr1 25922969 − 2.70 1.76E-09 0.000162

TABLE 3 Top GWS differential hydroxymethylated (5hmC) CpG sites.

Gene chr BP Strand meth.diff p value q value

SLC12A8 chr3 125141732 + 5.48 0.000104 0.049906

TFAP2A chr6 10419244 + −3.16 0.000104 0.049906

TLX1 chr10 101135137 − −4.18 0.000103 0.049903

SOX17 chr8 54453592 + −3.17 0.000103 0.049903

MAFA chr8 143431381 + 3.19 0.000103 0.049903

ZIC2 chr13 99989614 − 11.33 0.000102 0.049745

RP11-570J4.2 chr21 9592720 − 6.70 0.000102 0.04968

ARL6IP4 chr12 122981331 − −3.29 0.000101 0.049664

PHOX2A chr11 72244124 + −3.20 0.0001 0.049519

NID2 chr14 52068116 + −3.41 0.0001 0.049519
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(Supplementary Figure S2; Supplementary Table S4). Top-level gene
ontology (GO) pathways enriched included cellular process (GO:
0009987), developmental process (GO:0032502), regulation of
biological process (GO:0050789). The most significantly enriched
pathways were cell-cell adhesion (GO:0098609), homophilic cell
adhesion via plasma membrane adhesion molecules (GO:0007156),
cell-cell adhesion via plasma-membrane adhesion molecules (GO:
0098742), positive regulation of nervous system development (GO:
0051962), regionalization (GO:0003002), and anterior/posterior
pattern specification (GO:0009952). The enrichment of 5mC
using the 1500bp annotation included 66 pathways
(Supplementary Figure S3; Supplementary Table S5), with top-
level GO pathways including cellular process (GO:0009987),
developmental process (GO:0032502), and biological regulation
(GO:0065007). The most significant enriched pathways were cell-
cell adhesion (GO:0098609), homophilic cell adhesion via plasma
membrane adhesion molecules (GO:0007156), cell-cell adhesion via
plasma-membrane adhesion molecules (GO:0098742), anterior/
posterior pattern specification (GO:0009952), regionalization
(GO:0003002), pattern specification process (GO:0007389), and
regulation of nervous system development (GO:0051960).

For 5hmC, enrichment using the 0bp annotation was found for
260 pathways (Supplementary Figure S4; Supplementary Table
S6), including the top-level GO pathways of cellular process (GO:
0009987), developmental process (GO:0032502), regulation of
biological process (GO:0050789). After multiple testing
correction, 158 pathways remained significant, including
homophilic cell adhesion via plasma membrane adhesion
molecules (GO:0007156), cell-cell adhesion via plasma-
membrane adhesion molecules (GO:0098742), pattern
specification process (GO:0007389), and cell-cell adhesion (GO:
0098609). The enrichment analysis using the 1500bp annotation
identified 164 significant pathways (Supplementary Figure S5;
Supplementary Table S7), including top-level GO pathways
enriched for 5hmC of cellular process (GO:0009987),
developmental process (GO:0032502), growth (GO:0040007).
The most significant enriched pathways were homophilic cell
adhesion via plasma membrane adhesion molecules (GO:
0007156), cell-cell adhesion via plasma-membrane adhesion
molecules (GO:0098742), pattern specification process (GO:
0007389), regionalization (GO:0003002), and cell-cell adhesion
(GO:0098609).

3.4 Protein-protein interaction analysis

The PPI network analysis of the differential 5mC genes showed
as significant pathways cell-cell adhesion (GO:0098609), homophilic
cell adhesion via plasma membrane adhesion molecules (GO:
0007156), cell-cell adhesion via plasma-membrane adhesion
molecules (GO:0098742). The MCODE cluster algorithm
identified GO pathways related to neurogenesis, chromatin
organization, and cell adhesion (Supplementary Figures S6, S7;
Supplementary Tables S10, S11).

For the 5hmC marks, the significant pathways identified in the
PPI network analysis were cell-cell adhesion homophilic cell
adhesion via plasma membrane adhesion molecules (GO:
0007156), embryonic organ development (GO:0048568), and

cell–cell adhesion via plasma-membrane adhesion molecules
(GO:0098742). The MCODE cluster algorithm identified GO
pathways implicated in neurogenesis, cell adhesion, calcium ion
transport, and Wnt signaling (Supplementary Figures S8, S9;
Supplementary Tables S12, S13).

3.5 GWAS enrichment analysis

A significant enrichment was identified between genes with
differential 5mC and GWAS signals of AUD (p = 0.0022) and
PAU (p = 0.019) using the summary stats from Zhou et al., 2020. No
significant enrichment was observed for 5mC in CUD (p = 0.96),
OUD (p = 0.30), PTSD (p = 0.27), anxiety (p = 0.36), anorexia
nervosa (p = 0.86), bipolar disorder (p = 0.69), and schizophrenia
(p = 0.69). For 5hmC, no significant enrichment was observed for
AUD (p = 0.11), PAU (p = 0.66), CUD (p = 0.75) OUD (p = 0.49),
PTSD (p = 0.72), anxiety (p = 0.71), anorexia nervosa (p = 0.55),
bipolar disorder (p = 0.11), or schizophrenia (p = 0.06) (Figure 3)
(Supplementary Table S3).

3.6 Gene overlap analysis

We compared our findings with those reported by (Clark et al.,
2022), which evaluated AUD-associated 5mC and 5hmC in bulk
tissue from the human postmortem PFC. For 5mC, we found an
overlap of 14 genes with their reported 576 (Figure 4A;
Supplementary Table S8). Fisher’s exact test showed that the
overlap is significant (p = 8.5e-25, odds ratio = 124.00). Similarly,
for 5hmC, we found a significant overlap of 14 genes with their
reported 1,023 genes (Figure 4B; p = 3.9e-22, odds ratio = 79.80;
Supplementary Table S9).

3.7 Differentially methylated and
hydroxymethylated regions (DMR/
DhMR) analysis

After QC, a total of 38757 and 37316 regions were examined in
the 5mC and 5hmC analyses, respectively. With a q value < 0.05, a
total of 5 DMRs (Supplementary Table S14) and 35 DhMRs
(Supplementary Table S15) were significantly associated with
AUD. One of the DhMR maps to the TDP1 gene (chr14:
89954001-89955000–hg38), a gene also observed with differential
5hmC and nominally associated with AUD in the (Clark
et al., 2022).

4 Discussion

This study presents a neuronal-specific epigenomic
investigation of AUD in the human brain. We profiled 5mC and
5hmC at the genome-wide scale and revealed differential CpG sites
associated with AUD that map genes previously reported with this
disorder. Our analysis identified 417 and 363 GWS AUD-associated
CpG sites for 5mC (Supplementary Table S1) and 5hmC
(Supplementary Table S2), respectively.
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Our 5mC findings revealed genes related to AUD or other alcohol
traits reported in previous studies. For example, SYK, this gene has been
previously associated with alcohol metabolism in the liver and its
inhibition is linked to reduced liver inflammation (Qu et al., 2018;
Kurniawan et al., 2020). Furthermore, previous studies have found that
binge drinking can induce SYK activation, and pharmacological
inhibition of SYK significantly decreases alcoholic liver disease in a
mouse model of binge drinking (Bukong et al., 2016).

Another differential 5mC gene with prior alcohol-related evidence
is the DNMT3A, which encodes for an enzyme involved in de novo
DNA methylation (Pino et al., 2017; Fischer et al., 2021). Ethanol

exposure can induce a prolonged upregulation ofDNMT3A in neuronal
precursor cell lines and primary mouse embryonic fibroblasts (Miozzo
et al., 2018). Similarly, Dnmt3a has been found upregulated in the
nucleus accumbens of alcohol-preferring rats exposed to intermittent
ethanol exposure (Niinep et al., 2021).

For 5hmC, one of the identified differential CpG sites previously
linked to AUD mapped to GAD1, a gene that encodes for one of the
glutamate decarboxylases that catalyze the conversion of glutamate
to Gamma-aminobutyric acid (GABA). Chronic alcohol exposure
has been linked to a decrease in GABA levels and an increase in
GABA receptors (Sytinsky et al., 1975; Tran et al., 1981; Dodd et al.,

FIGURE 3
Generalized Gene-Set Analysis of GWAS for 5mC and 5hmC. The bar plot shows the gene-set analysis of GWAS for 5mC and 5hmC, including
alcohol use disorder (AUD), problematic alcohol use (PAU), cannabis use disorder (CUD), opioid use disorder (OUD), and post-traumatic stress
disorder (PTSD).

FIGURE 4
Overlapped differential 5mC and 5hmC genes in human brain tissue. (A) shows the overlap between our 5mC GWS hits and 5mC reported findings
from Clark et al. (2022), where 14 genes overlap between both results. (B) shows the overlap between our 5hmC findings from OFC and 5hmC reported
findings from Clark et al. (2022), where 14 genes overlap between both results.
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1996; Behar et al., 1999). GAD1 has also been found to be
upregulated in the dorsomedial thalamus of human subjects in
individuals with AUD (Hade et al., 2021). However, a recent
study did not find a difference in GAD1 mRNA levels in OFC
between individuals with AUD and the non-alcoholic group AUD
(Edenberg et al., 2010; Underwood et al., 2019). More research is
needed to fully elucidate the role of these genes in AUD.

Additional AUD-associated CpG sites with differential 5hmC
were those mapped to DLX1 and DLX2, which are also implicated
GABA signaling, specifically in interneuron GABA synthesis (Le
et al., 2017; Pla et al., 2018) and play a role in interneuron
synaptogenesis and dendritogenesis (Pla et al., 2018). Moreover,
these genes are suggested to directly promote the expression of
Grin2b, a gene previously reported in human stem-cell-derived
cortical neurons exposed to chronic alcohol consumption and
also reported in the prefrontal cortex and hippocampus of mice
treated with chronic alcohol consumption followed by withdrawal
(Endele et al., 2010; Xiang et al., 2015; Pla et al., 2018; Myers et al.,
2019). In the current study, both DLX1 and DLX2 showed hyper-
5hmC and were located in the exon region. DLX2 CpG site was
located in the promoter region, suggesting that it could be directly
impacting gene expression regulation in individuals with AUD. The
effect of 5hmC in the exon region is not well understood; however, in
the case of 5mC, it is suggested that the density of 5mC in the exon
can enhance gene expression (Li et al., 2018).

GATA4 was identified in both 5mC and 5hmC differential
analyses and has been previously associated with alcohol
dependence (Treutlein et al., 2009; Edenberg et al., 2010; Karpyak
et al., 2014). GATA4 encodes the GATA-motif binding protein type
4, a transcription factor that controls the expression of proteins
involved in drug metabolism (Karpyak et al., 2014). In addition, high
doses of alcohol increase its expression (Zhong et al., 2010). In our
study, this gene was hypomethylated and hypo hydroxymethylated
(5mC location at 11697675bp, 5hmC location at 11703255). The
differential 5mC CpG site was located in the intronic region,
suggesting chromosomal instability. The 5hmC CpG sites were
located in the promoter and intronic regions. The presence of
5hmC at the promoter region has been associated with
protection of gene transcription in regions where 5mC is present
(Ehrlich and Ehrlich, 2014). This suggests an interaction of these
epigenetic mechanisms in the modulation of GATA4 expression
in the OFC.

In addition to differential analysis at CpG sites, we also assessed
differential 5mC and 5hmC regions.We found 5GWSDMRs, but none
of the genes mapping to these regions have been previously linked to
AUD or related psychiatric traits. Among the GWS DhMR identified,
chr1:65265001-65266000, mapped to intron 1 of DNAJC6, a gene
highly expressed in the brain and involved in synaptic vesicle
uncoating. When comparing the identified regions with the
differential CpG analysis, we observed an overlap between DMR
and differential 5mC CpGs with the OSBP2 gene. The EWAS
catalog (www.ewascatalog.org) have reported CpG sites in this gene
associated with chronic obstructive pulmonary disease and type
2 diabetes based on a blood-based EWAS in the Generation
Scotland cohort (n = 18,413). For 5hmC, we found an overlap for
RP11-44N22.3, but its functionality is unknown. Lastly, when
comparing the identified regions with Clark et al., 2022, we
observed an overlap with the LRRC1 and TDP1 gene. CpG sites at

the TDP1 were also identified in the differential 5hmC analysis. This
gene participates in DNA repair of neuronal cells and disruptions on
this gene cause a neurodegenerative disorder known as spinocerebellar
ataxia with axonal neuropathy. More research is needed to understand
the role of these genes in AUD.

The findings of our enrichment analysis are consistent with
previous AUD-related studies identifying development and
neurogenesis. For instance, in a previous report examining fetal
alcohol syndrome (FAS), these pathways were found to be highly
significant (Fischer et al., 2021). Moreover, studies have also
reported that AUD impacts cell adhesion and neurogenesis, which
involves the development of new neurons and their integration into
functional neural networks (Ramanathan, 1996; Arevalo et al., 2008;
Pino et al., 2017; Poulose et al., 2017; Lees et al., 2020; Wooden et al.,
2021). The effects on developmental processes and neurogenesis may
contribute to the cognitive impairment reported in individuals with
AUD and may also be linked to brain dysfunction in various regions,
including the OFC (De Wilde et al., 2007; Arevalo et al., 2008).

GWAS enrichment analysis showed enrichment of differential
5mC genes with AUD and PAU GWASes (Zhou et al., 2020). No
enrichment was identified with GWAS of other SUDs, suggesting a
specificity of our differential 5mC marks with alcohol-related traits.
When comparing our findings with those reported by Clark et al.
(2022), we observed 14 overlapping genes for each epigenetic mark,
5mC and 5hmC. Several overlapping genes with differential 5hmC have
been previously linked to SUDs. For instance, KCNQ1, a gene encoding
a potassium ion channel, was identified in a GWAS of alcohol
dependence (Edenberg et al., 2010; Feng et al., 2022). Similarly,
APBB2 has been associated with opioid and amphetamine
dependence (Gelernter et al., 2014; Liu et al., 2018). Among the
5mC overlapping genes, ASIC2 has been linked to addiction-related
behavior in mice (Kreple et al., 2014). These findings underscore the
importance of evaluating both 5mC and 5hmC to fully investigate the
role of epigenetic mechanisms on AUD, at least in the brain where
5hmC is highly prevalent and enriched in neurons. Future studies
should explore these genes in greater depth to better understand their
involvement in AUD.

The limitations of this study are that the donors of the study cohort
present heterogeneous comorbidities. All individuals in the OUD group
were also diagnosed with PTSD.We controlled this by using PTSD as a
covariate in the differential 5mC and 5hmC analyses. In addition, we
conducted a GWAS enrichment analysis of our 5mC and 5hmC
annotated genes to determine whether the reported genes were
enriched for the comorbidity traits, including PTSD and other
SUDs. In addition, the cohort size is limited; however, it is
comparable to other recently published postmortem brain studies.
Another limitation is that all samples are male, limiting to identify
the effect of sex in our results. The analyses were only carried out on
CpGs sites and it would be important to conduct a study on non-CpGs
sites, because of the role of 5mC at non-CpGs on neuropsychiatric
diseases from our group and others (Jang et al., 2017; Nagamatsu et al.,
2022). Further, since the technologies to assess 5mC and 5hmC in our
study and Clark et al., 2022 are different, we were only able to evaluate
the convergence between the two studies at the gene-level, not at the
CpG level, which limits the interpretation in gene regulatory processes
of the differential epigenetic marks identified. To determine if the
epigenetic marks in the reported genes of this study are a cause of AUD
or an effect, research in model organisms is warranted.
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Our study characterized the methylome and hydroxymethylome
profiles of AUD in neurons from the human OFC. Our results
replicate previous findings in certain genes and highlight new
findings for both 5mC and 5hmC. This study reveals new
insights into the epigenomic dysregulation of AUD in the human
brain and pinpoints potential drug targets for the treatment of
individuals suffering from AUD.
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