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Background: Squamous cell carcinomas (SCCs) across different anatomical
locations possess common molecular features. Recent studies showed that
stromal cells may contribute to tumor progression and metastasis of SCCs.
Limited by current sequencing technology and analysis methods, it has been
difficult to combine stroma expression profiles with a large number of clinical
information.

Methods: With the help of transfer learning on the cell line, single-cell, and bulk
tumor sequencing data, we identified and validated 2 malignant gene patterns
(V1 and V5) expressed by stromal cells of SCCs fromhead and neck (HNSCC), lung
(LUSC), cervix (CESC), esophagus, and breast.

Results: Pattern V5 reflected a novel malignant feature that explained the mixed
signals of HNSCC molecular subtypes. Higher expression of pattern V5 was
related to shorter PFI with gender and cancer-type specificity. The other
stromal gene pattern V1 was associated with poor PFI in patients after surgery
in all the three squamous cancer types (HNSCC p = 0.0055, LUSC p = 0.0292,
CESC p = 0.0451). Cancer-associated fibroblasts could induce HNSCC cancer
cells to express pattern V1. Adjuvant radiotherapy may weaken the effect of high
V1 on recurrence and metastasis, depending on the tumor radiosensitivity.

Conclusion: Considering the prognostic value of stromal gene patterns and its
universality, we suggest that the genetic subtype classification of SCCs may be
improved to a new system that integrates both malignant and non-malignant
components.
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Background

Squamous cell carcinomas (SCCs) are among the most prevalent forms of solid cancers,
originating from epithelia of multiple organs, such as head and neck, esophagus, lung, skin,
and cervical. SCCs across different anatomical locations possess common histopathological
and molecular features (Schwaederle et al., 2015; Chai et al., 2020), showing a high tendency
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to relapse and metastasize. Although there has been substantial
progress in surgery, radiotherapy, and targeted therapy of these
tumors, the prognosis remains stagnant due to locoregional
recurrences, second primary tumors, and distant metastases.

There is increasing evidence that tumors result from disordered
organ homeostasis rather than malignant single cell (or cells). A
landmark study on SCCs of head and neck (HNSCC) first put
forward the theory of field cancerization (Slaughter et al., 1953) to
explain the surprisingly high frequency of multifocality and second
primary tumors in epithelial cancers (Rahal et al., 2022). In the first step
of field cancerization, genetically altered epithelial proliferate to form a
field lesion without any histological changes. Then certain cells within
this field got further critical changes and transformed into malignant
cells, resulting in multi-foci primary tumors (changes occur at the same
time) or second primary tumors (changes occur in sequence)
(Baumeister et al., 2021). The theory has been accepted in numerous
epithelial cancers, drawing attention to normal-appearing adjacent tissue
surrounding the tumor. However, in this model, changes of the
epithelium are primary determinants, while the stromal alterations
received relatively less attention. As researches on cancer drivers
shifting from cancer cells to tumor microenvironment (TME),
alteration in tumor stroma has been found to play a primary role in
carcinogenesis (Bhowmick et al., 2004; Dotto, 2014). Many cancer driver
mutations can be found in tumor stroma (Guan et al., 2020), which
shows different structures from normal stroma (Plava et al., 2019; Xu
et al., 2022). Hypotheses have been proposed that stroma could
contribute to field cancerization (Cox, 2021), and researches have
shown the contribution of stromal alteration to cancer progression
and metastasis (Hanahan and Weinberg, 2011; Valkenburg et al.,
2018; Chhabra and Weeraratna, 2023).

Although the deconvolution technique and single-cell sequencing
are under rapid development, it is still hard to illustrate cancer stromal
alterations across different types of transcriptomic data. Previous
researches on the relationship between the genetic features and
tumor prognosis of SCCs were limited to single anatomical locations,
focusing on cancer cells (or mixed signals) rather than stromal cells. One
reason is that bulk sequencing loses the signal complexity within a tumor
while single-cell sequencing compromises on the number of tumors
sequenced, therefore it has been hard to combine stroma expression
profiles with a large number of prognostic information. Therefore,
previous sequencing-based studies on cancer stroma focused on
stromal cell proportion rather than gene alteration of stromal cells.
To solve this problem, we designed a series of analytical approaches
based on matrix factorization, transfer learning and deconvolution for
cell line, single-cell, and bulk tumor sequencing data. We recognized
squamous malignant gene patterns across different organs and projected
the patterns to specific datasets to explore the relationship between gene
patterns and phenotypes. Focusing on the cancer stroma, we explored
the prognostic value of the stromal-expressed malignant gene patterns
and their contribution to subtype classification of SCCs.

Methods

Datasets

The microarray gene expression profiles of the 63 squamous
cancer cell lines were selected from the Sanger Cell Line Affymetrix

Gene Expression Project (GSE68950) (NCHBI, 2015). The single-
cell RNA sequencing (scRNA-seq) data of head and neck squamous
cancer (HNSCC) has been published previously (Puram et al., 2017).
Single-cell transcriptomes for 5,902 cells from 18 HNSCC patients
with both more than 2,000 detected genes and an average
housekeeping expression level above 2.5 passed initial quality
controls. RNA-seq, DNA methylation, and clinical data of TCGA
HNSCC, lung squamous cell carcinoma (LUSC), and cervical
squamous cell carcinoma (CESC) datasets were obtained from
Genomic Data Commons Data Portal (National Cancer Institute,
2024). The 303 reference methylation profiles of the known cell
types used for deconvolution were gathered from the Gene
Expression Omnibus (GEO) (NCHBI, 2023). The microarray
gene expression profiles of five HNSCC cell lines grown without
and with patient-matched cancer-associated fibroblasts (CAFs) were
obtained from GSE178153 (NCHBI, 2021). The 98 paired normal
and HNSCC tumor samples used in Figure 3H were selected from
(Smetana et al., 2020).

Pattern identification and transfer learning

The nonnegative matrix factorization (NMF) has been applied
for multiple purposes including image processing, language
modeling, and genomic feature extraction (Devarajan, 2008). This
approach uses a limited number of basic components to interpret the
target data as accurately as possible. We performed NMF algorithm
(Gaujoux and Seoighe, 2010) in a relatively heterogeneous dataset of
multiple squamous cancer types to recognize patterns associated
with squamous malignancy. Then we projected the patterns to
specific datasets to explore the relationship between gene patterns
and phenotypes. For example, we transferred the learned patterns to
a single cell transcriptome to explore their distribution in different
cell types. This transfer learning process was performed using the R
package “projectR” (23). Pattern expression levels was defined as
projection score.

Deconvolution and cell-type gene
expression estimation

Deconvolution technology for bulk tissue sequencing aims to fill
the gap where bulk sequencing loses the signal complexity within a
tumor while single-cell sequencing compromises on the number of
tumors sequenced. In many cases where a sufficient number of
patients is needed to satisfy the statistical test, deconvolution is the
best way if we want to keep the sequencing accuracy at the level of
cell types rather than bulk tissue.

The Edec R package (Onuchic et al., 2016) was used for
deconvolution. A total of 303 GEO DNA methylation profiles of
known cell types (cancer cells, stromal cells, and immune cells,
Supplementary Table S1) were collected as reference (Li et al., 2021).
First, we identified 400 DNA loci from the 450 k methylation profile
which allowed us to accurately distinguish the three reference cell
types (Supplementary Figure S1A). Based on the 400 loci, we
deconvoluted the TCGA HNSCC methylation profile into three
subtypes. The three parts showed a high correlation with cancer,
stroma, and immune reference profiles, respectively (Supplementary
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Figure S1B). We validated the deconvolution result by comparing
the cancer cell type proportion with the cancer purity calculated by
the ABSOLUTE method (Carter et al., 2012) using somatic copy-
number. The cancer proportion estimated by the two methods
showed a high correlation (Cor = 0.81, p < 0.0001,
Supplementary Figure S1C). Then we estimated the cell type
gene expression through a constrained least squares fit (Onuchic
et al., 2016) based on the cell type proportions obtained by
deconvolution.

Statistical analysis

All the statistical analyses were performed under R software
version 4.1.0. Cox regression and survival analysis were performed
using the R package ‘‘survival”. Cutoffs were identified using the R
package “survminer”. Differentially expressed genes were
identified using the R package “edgeR”. Gene set enrichment
analysis was performed using the online tool Metascape (Zhou
et al., 2019).

Results

Identification of six squamous malignant
patterns across multiple cancer types

To explore the malignant gene patterns of squamous cancer
cells, we studied 63 squamous cancer cell lines from a Sanger cell line
Affymetrix gene expression project (GSE68950). These squamous
cancer cell lines are derived from different parts of the body,
including head and neck, lung, esophagus, cervix, and breast
(Supplementary Table S2). We applied nonnegative matrix
factorization (NMF) (Brunet et al., 2004) to identify molecular
patterns of the cell line gene expression matrix. The algorithm
recognized six patterns (V1-V6) across 63 cell lines, with the
consensus matrix shown in Figure 1 A. We used Kim and Park’s
gene scoring schema (Kim and Park, 2007) to extract the most
relevant genes for each pattern (Supplementary Table S3).
Enrichment analysis of these marker genes reflects the biological
function of the pattern they belong to. As shown in Figure 1B,
V1 contains many epithelial-mesenchymal transition (EMT)
markers and it is also linked to other terms known to facilitate
cancer progression, such as inflammatory response, hypoxia,
positive regulation of cell migration, and angiogenesis. V2 is
mainly associated with several growth and synthesis functions
(Figure 1C); V3 is mainly related to metabolic functions
(Figure 1D); V4 reflects cancer cell response to IFN-γ and TNF-
α (Figure 1E); V5 seems to participate in multiple morphogenesis
and cell differentiation processes (Figure 1F); and V6 restricts G
protein-coupled receptor signaling pathway and regulates cell
adhesion (Figure 1G). It is worth noting that the enrichment
analysis was based on prior curated gene sets with known
functions (KEGG, GO and HALLMARK), while the NMF
patterns were identified using matrix factorization without
reference. Therefore, the function of a pattern is likely to be
more complicated than a GO or KEGG term, and it is difficult to
summarize a pattern using one known term.

Stromal expressed malignant patterns
contribute to HNSCC subtype classification

Although the six squamous malignant patterns were identified
in cancer cell lines, they may be shared by other non-malignant
cells in TME. The cancer-associated stromal cells in TME share
multiple features with the cancer cells in solid tumors, many of
which have been proven to affect prognosis. To illustrate the
distribution of the 6 NMF patterns among different cell types
in squamous tumors, we projected the patterns to a single-cell
RNA sequencing (scRNA-seq) dataset (Puram et al., 2017) using
transfer learning (Sharma et al., 2020). The scRNA-seq dataset
includes 5,902 cells from 18 head and neck squamous (HNSCC)
tumors after initial quality controls. We selected 1,136 cancer cells
and 113 stromal cells with all six projection p values less than 0.05.
As shown in Figure 2A, patterns V2, V3, and V4 are mainly
expressed by cancer cells, while V1 and V5 are mainly expressed by
stromal cells. Although the distribution of V6 is more inclined to
stromal cells, the difference is not as big as the other five
patterns showed.

Puram et al. have previously identified six meta-signatures
(partial EMT, Epithelial differentiation one and 2, Stress,
Hypoxia, and Cell cycle) that reflect common expression
programs of malignant cells in this HNSCC scRNA-seq
dataset (Puram et al., 2017). In addition, the TCGA HNSCC
subtypes (Cancer Genome Atlas Network, 2015) (Atypical,
Mesenchymal, Basal, and Classical) derived from bulk tumor
sequencing were also projected to this single-cell dataset. It is
worth noting that the Mesenchymal subtype has been validated as
a non-malignant cell contributed signature in bulk tumor
sequencing, rather than an independent cancer cell subtype.
The other three subtypes have been validated by scRNA-seq
(Puram et al., 2017). We evaluated the correlation of V1-V6
with these two groups of signatures in the 1,136 cancer cells and
113 stromal cells (Figure 2B). Pattern V1 was correlated to the
partial EMT (p-EMT) signature (Figure 2B), which was identified
as an independent predictor of nodal metastasis, grade, and
adverse pathologic features (Puram et al., 2017). The marker
genes of pattern V1 such as SERPINE1, ITGA5, TNC, EMP3,
VIM, FN1 and THBS2 are also key genes related to p-EMT.
However, pattern V1 could not be caused by EMT process
because it was expressed in mesenchymal cells. This is also the
key difference between pattern V1 and the p-EMT signature
expressed by cancer cells. Pattern V1 also showed a high
correlation with the Mesenchymal subtype signature, which is
consistent with the high expression in stromal cells mentioned in
Figure 2A. Therefore, we would like to explain V1 as a stromal-
dominated pattern that coincides with the expression of EMT
markers (Vellinga et al., 2016).

However, the other stromal-dominated pattern V5 showed almost
no correlation with the Mesenchymal subtype signature, but a strong
correlation (cor = 0.70) with the Classical subtype signature and a
moderate correlation (cor = 0.45) with the Atypical subtype signature. It
indicated that the Mesenchymal subtype signature did not capture all
the features expressed by the stroma, and the cancer-associated stromal
cells also contributed to the Classical and Atypical subtype signal from
bulk tissue sequencing. As shown in Figure 2C, the stromal cells
expressed an extremely low Basal signal but a relatively higher
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Atypical andClassical signal. The expression differences of Classical and
Atypical signatures between the cancer cells vs. stromal cells are less
than those of Basal and Mesenchymal subtypes. The correlation
between Classical (Atypical) subtype signature and the stromal
pattern V5 may explain this phenomenon. This finding validated
that the Mesenchymal signature is derived from the stromal
compartment and the Basal signature is derived from the cancer
cells, while the Classical and Atypical signatures are mixed signals
from both cancer cells and stromal cells.

As for cancer-dominated patterns, V2 and V4 were correlated to
Basal subtype and Epithelial differentiation signature. Pattern
V2 may contribute to the cell cycle signature while pattern
V4 may participate in hypoxia. Pattern V3 only showed a
moderate correlation with Atypical subtype.

Stromal expressed malignant patterns are
associated with poor PFI across different
cancer types

To verify the influence of these squamous associated patterns on
tumor progression and metastasis, we projected the six patterns to
TCGA HNSCC, lung squamous cell carcinoma (LUSC), and cervical
squamous cell carcinoma (CESC) datasets using transfer learning.
Curated progression-free interval (PFI) recommended by the Pan-
Cancer TCGA Atlas (Liu et al., 2018) was selected as the endpoint.
In all the three TCGA cohorts, most patients received surgery alone
before the first PFI event. In HNSCC cohort, surgery with radiotherapy
was also common, while in CESC cohort, nearly half of the patients
received surgery with radiochemotherapy. We found that high

FIGURE 1
Pattern recognition and functional annotation. (A) Consensus matrix showing the 6 patterns identified by NMF. (B-G) The Hallmark, GO, and KEGG
enrichment annotation on marker genes of the patterns V1-V6.
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expression of pattern V1 was associated with significantly poor PFI in
patients who received surgery alone before the first PFI event, and this
phenomenon was observed in all the three squamous cancer types
(Figures 3A–C).

Although pattern V1wasmainly expressed by stromal cells (mainly
fibroblast), we also explored whether the high V1 expression observed
in poor PFI tumors was attributed to stromal cells or cancer cells, or
both. To achieve this goal, we deconvoluted the TCGA HNSCC bulk
sequencing profiles to obtain the cell type transcription profiles. We
divided tumors into V1 high and V1 low groups according to
V1 expression in bulk tissue sequencing. Then we compared the
V1 marker genes expressed by each cell type between the V1 high

and V1 low groups. The result showed that in V1 high bulk tumors,
both the stromal cells and the cancer cells expressed higher V1 marker
genes than those in V1 low bulk tumors (Figure 3D). This result also
indicated that the V1 expression in cancer cells and stromal cells might
be interactive. To further verify this finding, we projected pattern V1 to
five HNSCC cell lines grown without and with patient-matched cancer-
associated fibroblasts (CAFs) (GSE178153). All the five cell lines
showed higher V1 expression grown with CAFs than grown without
CAFs (Figure 3E), indicating that pattern V1 expressed in cancer cells
could be induced by CAFs. Although pattern V1 is mainly expressed by
non-malignant cells, it does play a role in tumor malignancy. Evidence
to this hypothesis is that the normal tissue in TCGA HNSCC dataset

FIGURE 2
Pattern exploration in single-cell transcriptomes. (A) Pattens expressions in cancer cells and stromal cells. (B) Pearson correlation of the NMF
patterns and previous signatures that has been broadly used. (C) The previous HNSCC subtype signature expression in cancer cells and stromal cells.
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expressed lower V1 compared to their paired tumor (p = 0.0047,
Figure 3F). We observed the same phenomenon in another cohort
(E-MTAB-8588) with 98 paired normal and HNSCC tumor samples
(p < 0.0001, Figure 3G).

In the TCGA LUSC cohort, most patients received surgery alone
before the PFI event, while in the HNSCC cohort, surgery with
radiotherapy is quite common. We selected 80 HNSCC patients
who received surgery (margin negative) and full course adjunctive
radiotherapy before the PFI event to perform the univariate cox
analysis. The result showed that V1 expression had no influence on
the PFI after surgery plus radiotherapy (p = 0.3073). However, when we
used a well-validated radiosensitivity score RSI (Eschrich et al., 2009) to
divide those patients into radiosensitive (RS) and radioresistant (RR)
groups, we found in the RS group V1 expression did not affect the PFI,
while in the RR group high V1 was related to worse PFI after surgery
plus radiotherapy, although with a p-value of 0.0532. Therefore we
assume that SCCs with high V1 expression show a high tendency to
recurrence andmetastasis even after surgery with a negativemargin, but
radiation delivered to the tumor bed and high-risk areas after surgery
may weaken the effect of high V1, depending on the tumor
radiosensitivity. We did not further investigate the effect of V1 on
PFI after chemotherapy because there was large heterogeneity in the

application of chemotherapy, and in most cases, chemotherapy was
implemented with radiotherapy simultaneously.

Unlike the general prognostic value of pattern V1, we found that
pattern V5 affected the PFI after surgery only in the CESC dataset
(Figure 4A). Since CESC is special because it is female-only, we
continued to study whether gender limits the prognostic value of
pattern V5. After setting gender subgroups, we re-examined the
effect of V5 on PFI after surgery (median V5 was used as cutoff).
Interestingly, higher V5 did show a worse PFI in HNSCC females (p =
0.0369, Figure 4B) rather than in males (Figure 4C). In HNSCC males,
the curves even showed an opposite tendency. The reason why
V5 showed such a different effect on different sex was not clear. But
we did identify 315 upregulated genes in female HNSCCs compared
with male HNSCCs (FDR<0.05, fold change>2), and half of them
(152 in 315) were also upregulated in high V5 females compared with
low V5 females (Figure 4D), which partially explains the gender bias of
high-V5 effect. However, in the LUSC dataset, we did not observe a
significant difference (Figures 4E,F): the survival curves of high V5 and
low V5 showed a crossover in females. As shown in Figure 4G, the
overall expression of V5 marker genes in LUSC is quite different from
that in HNSCC and CESC, indicating an expression-dependent cancer-
type specificity of V5’s prognostic ability.

FIGURE 3
The prognostic value of the stromal expressed malignant pattern V1. (A-C) Survival analysis of pattern V1 in HNSCC, LUSC, and CESC patients after
surgery. (D) The V1marker genes expressed by each cell type between the V1 high and V1 low groups. (E) V1 expression in cancer cells grownwithout and
with CAFs. (F) V1 expression in TCGA HNSCC normal samples and their paired tumor samples. (G), V1 expression in E-MTAB-8588 HNSCC normal
samples and their paired tumor samples.
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Discussion

The study aimed to explore the malignant role of stroma in
SCCs across different sites. We choose NMF for pattern
recognition not only because of its excellent performance on
the transcriptome but also because it considers all genes in the
transcriptome without any reference or functional annotation. The
algorithm always finds the most significant patterns and makes
sure the combination of the patterns accurately reflects the target.
That explains why the NMF algorithm often identifies cell type
features when it is run in bulk sequencing data, since cell type
usually contributes to the most significant differences within
tumor tissue. To get the gene patterns reflecting the biological
characteristics at the cell level, we performed NMF in sequencing
data of the same cell type (cell line RNA-seq). Since NMF may not
recognize malignant patterns from numerous non-malignant

features in stromal cells and cancer stroma shares many genetic
features with cancer cells, we performed NMF in squamous cancer
cell lines and proved that two malignant patterns are mainly
expressed in cancer stroma.

The four-subtype classification of HNSCC based on bulk
analyses (Atypical, Mesenchymal, Basal, and Classical) had been
widely accepted until Puram et al. proved that nomalignant cells in a
scRNA-seq dataset mapped to the Mesenchymal subtype. They
found the Mesenchymal signature in bulk sequencing was
actually a stromal signal coming from the Basal subtype tumors.
They also validated that the malignant cells of each tumor did map
exclusively to one of the other three subtypes (Atypical, Basal, and
Classical), even after control for TME. However, there have been no
signatures describing the stromal composition of the Atypical and
Classical bulk subtypes. In this study, we found a stroma-dominated
pattern V5 showing a high correlation with the Classical signature,

FIGURE 4
The prognostic value of the stromal expressed malignant pattern V5. (A) Survival analysis of pattern V5 in CESC patients after surgery. (B-C) Survival
analysis of pattern V5 in HNSCC females andmales after surgery. (D) Female-upregulated genes expression in V5-high and V5-low female HNSCCs. (E-F)
Survival analysis of pattern V5 in LUSC females and males after surgery. (G) V5 marker genes expression in different cancer types.
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moderate correlation with the Atypical signature, but no correlation
with theMesenchymal signature (Figure 2B). This pattern reflected a
new malignant feature expressed by stromal cells of Classical and
Atypical HNSCC tumors. Our results validated that the HNSCC
Mesenchymal signature is derived from the stromal compartment
and the Basal signature is derived from the cancer cells, while the
Classical and Atypical signatures are mixed signals from both cancer
and stromal cells. In TCGA CESC and HNSCC females, high
expression of pattern V5 was associated with poor PFI. Further
study may focus on the gender-biased prognostic mechanism
of pattern V5.

Another stroma-dominated pattern V1 is associated with poor PFI
across different cancer types (HNSCC, LUSC, and CESC). The marker
genes of pattern V1 were enriched in the Hallmark EMT gene set.
However, we believe this change is unrelated to EMT because V1 was
mainly expressed bymesenchymal cells. In fact, researches on colorectal
and urothelial cancers have shown that stromal cells are a major source
of EMT-related gene expression in bulk transcriptomes, rather than
epithelial-derived cancer cells (Isella et al., 2015; Wang et al., 2018; Li
et al., 2023; Cañellas-Socias et al., 2024), which seems contrary to the
biological concept of EMT. This phenomenon could be explained by an
activated stromal state that coincides with cancer cell expressed EMT-
related markers (Vellinga et al., 2016). Although these genes are clearly
expressed in cancer cells after EMT, the expression level was far lower
than that in CAFs. In addition, we found that V1 expression in cancer
cells could be induced by co-culturing with CAFs. A similar
phenomenon has been found in colorectal cancer that cancer cells
express mesenchymal genes in a high-stroma context (Vellinga et al.,
2016). Pattern V1 demonstrates the key effect of cancer stroma on the
progression and metastasis of different types of squamous cell
carcinoma. Interestingly, radiation delivered to the tumor bed and
high-risk areas after surgery may weaken the effect of high V1 on
recurrence and metastasis, depending on the tumor radiosensitivity.
Further studymay compare the different outcomes of surgery alone and
surgery plus radiotherapy in radiosensitive tumors with high and low
V1 expression, respectively. The pattern V1may bring a new indication
for postoperative radiotherapy.

Previous theories have been considering cancer stroma as
“dangerous liaisons” interacting with cancer cells and other
components in TME to form a cancer-supportive environment
(Chen and Song, 2019; Gieniec et al., 2019). In this study, we
confirmed the prognostic value of stromal gene features and its
universality in SCCs. Therefore, We suggest that the tumor genetic
subtype classification may be changed to a new system that
integrates both malignant and non-malignant components. There
are potential limitations to this work, given the lack of validation in
cell experiments. Adding this part of the experimental content in the
future may provide evidence for the application of this research in
the clinical field.

Conclusion

In this study, we confirmed the prognostic value of stromal gene
features and its universality. Therefore, we suggest that the tumor
genetic subtype classification may be changed to a new system that
integrates both malignant and non-malignant components.
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