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Gene expression profiling using RNA-sequencing (RNA-seq) and microarray
technologies is widely used in cancer research to identify biomarkers for
clinical endpoint prediction. We compared the performance of these two
methods in predicting protein expression and clinical endpoints using The
Cancer Genome Atlas (TCGA) datasets of lung cancer, colorectal cancer, renal
cancer, breast cancer, endometrial cancer, and ovarian cancer. We calculated the
correlation coefficients between gene expression measured by RNA-seq or
microarray and protein expression measured by reverse phase protein array
(RPPA). In addition, after selecting the top 103 survival-related genes, we
compared the random forest survival prediction model performance across
test platforms and cancer types. Both RNA-seq and microarray data were
retrieved from TCGA dataset. Most genes showed similar correlation
coefficients between RNA-seq and microarray, but 16 genes exhibited
significant differences between the two methods. The BAX gene was
recurrently found in colorectal cancer, renal cancer, and ovarian cancer, and
the PIK3CA gene belonged to renal cancer and breast cancer. Furthermore, the
survival predictionmodel usingmicroarray was better than the RNA-seqmodel in
colorectal cancer, renal cancer, and lung cancer, but the RNA-seq model was
better in ovarian and endometrial cancer. Our results showed good correlation
between mRNA levels and protein measured by RPPA. While RNA-seq and
microarray performance were similar, some genes showed differences, and
further clinical significance should be evaluated. Additionally, our survival
prediction model results were controversial.
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Introduction

Proteins play a critical role in a wide range of biological processes, including cell
differentiation, metabolism, and signaling. Dysregulation of protein expression can
contribute to the development and progression of numerous diseases, including cancer.
Therefore, accurate prediction of protein expression levels is crucial for understanding
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disease mechanisms, identifying potential therapeutic targets, and
developing personalized treatment strategies.

RNA-sequencing (RNA-seq) and microarray are two commonly
used technologies for measuring gene expression levels. However, to
date, a comprehensive comparison of RNA-seq and microarray-
based predictive models is lacking. RNA-seq has become a standard
tool in biological and medical research, providing advantages over
microarrays. This method has been used for a variety of purposes,
including estimating gene expression and discovering novel genes,
alternative transcript variants, chimeric transcripts, expressed
sequence variants, and allele-specific expression (Sultan et al.,
2008; Ozsolak and Milos, 2011; Djebali et al., 2012; Ferreira
et al., 2014; SEQC/MAQC-III Consortium, 2014). Additionally,
RNA-seq data have been used to develop gene expression–based
predictive models in cancer research, and the technique may
outperform microarray-based models for clinical endpoint
prediction due to its ability to decipher global gene expression
patterns (Cancer Genome Atlas Research Network, 2013; Volinia
and Croce, 2013). However, the effectiveness of these technologies in
predicting protein expression has not been thoroughly compared.

Microarray-based gene expression profiling has been applied in
cancer research and is widely used due to its lower cost and the
availability of large and well-maintained repositories (Beer et al.,
2002; Pomeroy et al., 2002; van ’t Veer et al., 2002; Glinsky et al.,
2004; Glas et al., 2005; Barrett et al., 2013; Kolesnikov et al., 2015).
Therefore, while most future gene expression studies will use RNA-
Seq platforms, the available microarray datasets represent a
significant amount of resources.

In this study, we compared the effectiveness of RNA-seq and
microarray-based technologies in predicting protein expression and
clinical endpoints across multiple cancer types. To achieve this goal,
we analyzed global gene expression profiles from The Cancer
Genome Atlas (TCGA), a large cohort of more than 30 human
tumors subjected to large-scale genome sequencing and integrated
multi-dimensional analyses using both RNA-seq and microarrays.
Our specific focus was on cancer samples from six different types.
Our findings will provide valuable guidance on the optimal use of
these technologies in both research and clinical settings.

Methods

Data collection for the prediction model

In this study, we investigated the correlation between gene
expression and protein expression across various cancer types.
We collected data from The Cancer Genome Atlas (TCGA) Data
Portal, encompassing mRNA expression through RNA-seq and
microarray, as well as protein expression via reverse phase
protein array (RPPA). Information on clinical and molecular
data for mRNA and protein expression was collected from
4,747 samples across 14 cancer types (available at TCGA Data
Portal, https://tcgadata.nci.nih.gov/docs/publications/tcga/). For
microarray data, gene level normalization was performed using
the Robust Multi-array Average (RMA) (Irizarry et al., 2003)
algorithm on GenePattern (Reich et al., 2006). The RNAseq gene
expression level 3 data include reads per kilobase per million
mapped reads (RPKM) (Mortazavi et al., 2008), RNAseq by

expectation-maximization (RSEM) (Li and Dewey, 2011), and
read count. The detailed differences between RPKM and RSEM
are described by Li et al. (Li et al., 2010). We used publicly available
data, carefully curated and chose RSEM as the preferred method.
The gene expression profile was measured experimentally using the
Illumina HiSeq 2000 RNA Sequencing platform by the University of
North Carolina TCGA genome characterization center. Level 3 data
was downloaded from TCGA data coordination center. This dataset
shows the gene-level transcription estimates, as in log2 (x+1)
transformed RSEM normalized count. Genes are mapped onto
the human genome coordinates using UCSC Xena HUGO
probeMap. In order to more easily view the differential
expression between samples, we set the default view to center
each gene or exon to zero by independently subtracting the mean
of each gene or exon. The processing protocols are described in
detail in TCGA open access FTP download directories. We adhered
to TCGA publication guidelines (http://cancergenome.nih.gov/
publications/publicationguidelines). Table 1 provide data
descriptions of the multilevel genomic datasets, including sample
distributions across technologies and cancer types.

Comparing the correlation R

First, we measured the Pearson correlation coefficients between
gene expression using RNA seq and protein expression using RPPA
for each gene in each cancer type. Then, we repeated this process
using microarray data instead of RNA seq. Next, we compared the
two correlation coefficients for each gene in each cancer type to
determine significant differences between the two methods.
Furthermore, we conducted additional analysis at the exon level,
employing the method ‘Estimate Genewise Dispersions from Exon-
Level Count Data.’ with comparative analysis on copy number (CN)
such as CN vs protein expression (RPPA), CN vs sequencing data,
CN vs array data, and CN mean.

RandomSurvivalForest

Given the comprehensive transcriptomic information provided
by RNA-seq, we hypothesized its superiority in gene expression-
based survival prediction compared to microarrays. To evaluate this
hypothesis, RNAseq and microarray-based expression data were
used to predict survival. After selecting the top 103 genes related to
survival through cox univariate analysis, we randomly divided the
dataset into training (80%) and test (20%) sets. Next, we developed
survival prediction models using the training set through the
random survival forest (RSF) algorithm in the R package
“RandomSurvivalForest” (Ishwaran and Kogalur, 2010) with the
recommended default reference values.

We applied the trained models to the test set for prediction and
evaluated the prognostic performance by measuring the C-index.
The C-index measures the degree of agreement between the survival
time ranking and the selected model. A C-index of 1 means perfect
discriminatory power, and a C-index of 0.5 means not better than
chance results. To ensure the robustness of the analysis, we repeated
the entire process 103 times for each core set and obtained 103 C-
index values. To compare the performance of different data types,
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we used the Wilcoxon signed-rank test with a significance cutoff
of 0.05 to assess the p-value. Finally, we plotted the box plots of
the C-index values for each testing platform and cancer
type (Figure 1).

Results

TCGA data

To evaluate the accuracy of gene expression-based prediction of
clinical endpoints in different cancer types, we compared the gene
expression determined by RNA-seq and microarray platforms
predicting protein expression in 6 cancer types, using TCGA
data. To ensure a fair comparison, we limited our analysis to
only genes that were available in RPPA in both platforms.

Comparing the correlation R

The correlation coefficients (RRNA-seq and Rmicroarray) between
gene expression and RPPA were measured for RNA-seq and
microarray data. Our analysis found that, for most genes, the
correlation coefficients of gene expression using RNA-seq and
microarray were not significantly different, indicating comparable
results between the two platforms. R difference plot (RRNA-
seq–Rmicroarray) with p-value (Figure 2) identified 16 genes that
showed significant differences in correlation between RNA-seq and
microarray methods (Table 2). These differences can be attributed to
the technological differences in quantifying gene expression between
the two platforms. Among the 16 genes, the BAX gene was identified
three times in colorectal cancer, renal cancer, and ovarian cancer. The
PIK3CA gene was found to have higher correlation in microarray for
renal cancer and breast cancer, while other genes showed better results

TABLE 1 TCGA sample description.

Cancer abbreviation Cancer name No. of samples No. Of genes

RNA seq Array

LUSC Lung squamous cell carcinoma 82 82 103

COAD Colon adenocarcinoma 211 103 25

KIRC Kidney renal clear cell carcinoma 44 44 103

BRCA Breast invasive carcinoma 420 420 103

UCEC Uterine corpus endometrioid carcinoma 102 49 25

OV Ovarian serous cystadenocarcinoma 200 200 103

FIGURE 1
Flow chart of study. RNA-seq and microarray data from TCGA were employed to predict survival. (1) Correlation coefficients between gene
expression (RNA seq) and protein expression (RPPA) were measured for each gene in each cancer type. This process was repeated using microarray data
instead of RNA seq. Subsequently, a comparison of the two correlation coefficients for each gene in each cancer type was conducted to identify
significant differences between the twomethods. (2) Focusing on the top 103 genes, the dataset was randomly split into training (80%) and test (20%)
sets, and random survival forest (RSF) models were developed. The models were tested on the test set, and C-index was calculated 103 times for each
core set to evaluate prognostic performance. TheWilcoxon signed-rank test (p-value cutoff of 0.05) was used to compare performance across different
data types, and box plots of C-index values were generated for each testing platform and cancer type.
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in RNA-seq. Our analysis underscored that the correlation between
gene expression and protein expression was stronger when using RNA
seq data for certain genes or cancer types, whereas microarray data
exhibited stronger correlation in other gene or cancer types. Overall,

our findings emphasize the importance of selecting the appropriate
method for measuring gene expression when investigating its
correlation with protein expression in different cancer types. Our
findings also demonstrated concordance at the gene, transcript, and
exon levels. In-depth comparative analyses, including copy number
(CN) versus protein expression (RPPA), CN versus sequencing data,
CN versus array data, and CN mean, indicated that these factors do
not seem to have a substantial impact on our results. To ensure a
comprehensive understanding, additional investigations are
warranted to thoroughly examine the copy numbers of all genes
(Supplementary Figures S2–S14).

Survival correlation

We selected the top 103 genes predicting survival in each cancer
type using RNA-seq and microarray data and evaluated their
prognostic performance using the random survival forest model.
Our analysis found that, in colorectal cancer, renal cancer, and small
cell lung cancer, the C-index of microarray was higher than that of
RNA-seq (Figure 3). However, in ovarian and endometrial cancers,
RNA-seq-based models performed significantly better than
microarray-based models in predicting survival. Overall, our data
demonstrate that RNA-seq and microarray models perform
similarly well in predicting clinical endpoints. Further studies are
needed to validate these results and elucidate the underlying
mechanisms of gene expression regulation in cancer progression
and survival.

FIGURE 2
Correlation coefficients between RNA-seq and microarray. Most
genes showed similar correlation coefficients between RNA-seq and
microarray; 16 genes showed significant differences between the
two methods.

TABLE 2 Genes that showed significant differences in correlation between
RNA-seq and microarray methods.

Cancer Gene R difference p-value (R difference)

LUSC CCNE1 0.540,395 0.003851

LUSC CCNB1 0.393,845 0.021048

LUSC ERRFI1 0.487,971 0.048153

COAD BAX 0.480,163 0.000002

COAD CDH2 0.300,873 0.012675

COAD BIRC2 0.292,883 0.014629

KIRC KIT 0.154,533 0.019826

KIRC PIK3CA −0.429,780 0.038242

BRCA BAX 0.147,752 0.025992

BRCA SRC 0.112,956 0.019650

BRCA PIK3CA −0.106,080 0.031063

BRCA BCL2L11 0.128,137 0.033394

BRCA PCNA 0.120,537 0.040727

BRCA MAPK9 0.188,264 0.000209

UCEC ACACA 0.27515 0.022054

OV BAX 0.271,574 0.000979

Italics were used specifically to denote a gene symbol as a way to differentiate it from the

gene product.

FIGURE 3
Comparison of C-Index for Survival Prediction between
Microarray and RNA-Seq in Various Cancer Types Comparative
analysis of Concordance Index (C-Index) for survival prediction
between microarray and RNA-Seq data. The top 103 genes
associated with survival were selected using Cox univariate analysis
from RNA-Seq data. The C-Index was calculated using a random
survival forest model. In several cancer types, including colorectal
cancer, renal cancer, and small cell lung cancer, the C-Index derived
from microarray data surpasses that of RNA-Seq, indicating its
superior predictive performance in these contexts.
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Discussion

In this study, we compared the ability of RNA-seq and
microarrays to predict clinical endpoints. Overall, we observed
a strong correlation between mRNA levels and protein
expression measured by RPPA and found comparable
performance of RNA-seq and microarrays in predicting
protein expression. Notably, we identified 14 gene/protein
pairs that showed different correlation coefficients between the
two methods, with RNA-seq showing a higher correlation in
most cases except for PIK3CA gene. The BAX gene had different
correlation coefficients in the three tumor types, while the
PIK3CA gene had different correlation coefficients in two
tumor types. We compared the differences in genetic
characteristics such as molecular weight and function for
genes that showed different correlation, but no significant
differences were found (Supplementary Table S1). The reasons
for these discrepancies require further investigation. In terms of
survival prediction models, microarrays performed better in
COAD, KIRC, and LUSC, while RNA-seq performed better in
ovarian and endometrial cancers. Overall, our results do not
support the hypothesis that the more extensive transcriptomic
information provided by RNA-seq necessarily improves gene
expression–based prediction performances in all cases. Further
studies are needed to explore the underlying factors that
contribute to the observed differences.

Over the past 2 decades, microarrays were the predominant
sequencing technology used for investigating transcriptomics.
However, the emergence of next-generation sequencing (NGS),
particularly RNA sequencing (RNA-Seq), has gradually replaced
microarrays in gene expression analysis (Wang et al., 2009).
RNA-Seq provides a broader dynamic range than microarrays,
rendering it more adept at identifying low-abundance
transcripts and facilitating novel transcript detection and
analysis (Ozsolak and Milos, 2011; Zhao et al., 2014; Rao
et al., 2018). Additionally, RNA-Seq does not necessarily
depend on a reference genome, enabling transcriptome
analysis in organisms lacking such a reference. These
advantages have made RNA-Seq increasingly popular and led
to a reduction in its overall cost. In this context, achieving high
comparability between data from the two platforms has been
crucial for meta-analysis of gene expression across multiple
studies. While the preprocessing and analysis steps of
microarray data are largely standardized, the establishment of
RNA-Seq data analysis methodology and standards is ongoing.
Several studies have compared microarray and RNA-Seq
technologies for transcriptome profiling, each shedding light
on their respective strengths and limitations. L. Chen et al.
concentrated on lung squamous cell carcinoma samples from
TCGA, simultaneously employing RNA-Seq v2 and three
microarray platforms. The analysis revealed a significant
correlation (89.8%) between the two methods for
11,120 genes, emphasizing the reproducibility of results
(Chen et al., 2017). Another study, focusing on the HrpX
regulome in Xanthomonas citri subsp. citri, demonstrated the
complementary nature of RNA-Seq and microarray technologies
in detecting target genes, thereby advancing understanding of
the regulome (Kogenaru et al., 2012). The study, which

systematically compared RNA-Seq and microarray-based
classifiers for clinical endpoint prediction using
neuroblastoma as a model, revealed that RNA-Seq
outperformed in determining transcriptomic characteristics.
However, both methods performed similarly in prediction
models (Zhang et al., 2015). The comparative study using two
microarray platform (Affymetrix one-channel microarray and
Agilent two-channel microarray) and RNA-seq on TCGA data
revealed high correlations (Spearman >0.8) between Affymetrix
microarray and RNA-seq, particularly for highly abundant
genes. However, Agilent microarray and RNA-seq showed
poor correlations (Spearman <0.2), indicating that the
correlation between microarray and RNA-seq expression data
can be influenced by platform differences and abundance levels.
Despite some discrepancies in gene directionality changes
between Agilent microarray and RNA-seq, overall, RNA-seq
proved comparable to microarrays in expression profiling. In
this study, normalization methods RPKM and RSEM showed
similar gene-level results with reasonable concordance at the
exon level, demonstrating better concordance at the longer
exons than shorter ones between the two normalization
methods (Guo et al., 2013). A review article demonstrated the
evolving landscape, acknowledging that microarrays remain
reliable and cost-effective for specific applications, while
RNA-seq, though increasingly routine, complements
microarrays in certain contexts (Mantione et al., 2014).
Another previous showed that background hybridization and
probe saturation in microarrays can limit sensitivity in both low
and high expression levels, despite the correlation values
between microarray and RNA-Seq measurements (Zhao et al.,
2014). As RNA-Seq costs continue to decline, this method is
expected to fully replace microarrays; nonetheless, the existing
microarray data should not be disregarded.

The findings of our study have potential applications in several
areas of cancer research. First, the identification of 14 gene/protein
pairs that showed different correlation coefficients between RNA-
seq and microarray data suggests that caution should be exercised
when comparing data from the two platforms. Future studies should
explore the underlying reasons for these discrepancies and develop
strategies to reconcile the differences. Second, the controversy
surrounding the choice of platform for survival prediction
modeling in different cancer types highlights the importance of
choosing the appropriate technology for each specific research
question. Third, the higher dynamic range and accuracy in low-
abundance measurements of RNA-seq make it a suitable platform
for detecting novel transcripts and analyzing transcriptomics data.
This has implications for the identification of new therapeutic
targets and biomarkers for cancer diagnosis and treatment.
Overall, our study highlights the need for careful consideration of
platform choice and data interpretation in cancer research.

In conclusion, our study demonstrated that RNA-seq and
microarrays showed similar performance in predicting clinical
endpoints, except for a few genes such as PIK3CA and BAX in
certain tumor types. These findings have implications for the
selection of sequencing technologies in future research and
highlight the importance of comparability between platforms
to increase the power of gene expression–based
prediction models.
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