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Channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus furcatus) are two
economically important freshwater aquaculture species in the United States, with
channel catfish contributing to nearly half of the country’s aquaculture
production. While differences in economic traits such as growth rate and
disease resistance have been noted, the extent of transcriptomic variance
across various tissues between these species remains largely unexplored. The
hybridization of female channel catfish with male blue catfish has led to the
development of superior hybrid catfish breeds that exhibit enhanced growth rates
and improved disease resistance, which dominate more than half of the total US
catfish production. While hybrid catfish have significant growth advantages in
earthen ponds, channel catfish were reported to grow faster in tank culture
environments. In this study, we confirmed channel fish’s superiority in growth
over blue catfish in 60-L tanks at 10.8 months of age (30.3 g and 11.6 g in this
study, respectively; p < 0.001). In addition, we conducted RNA sequencing
experiments and established transcriptomic resources for the heart, liver,
intestine, mucus, and muscle of both species. The number of expressed
genes varied across tissues, ranging from 5,036 in the muscle to over
20,000 in the mucus. Gene Ontology analysis has revealed the functional
specificity of differentially expressed genes within their respective tissues, with
significant pathway enrichment in metabolic pathways, immune activity, and
stress responses. Noteworthy tissue-specific marker genes, including lrrc10,
fabp2, myog, pth1a, hspa9, cyp21a2, agt, and ngtb, have been identified. This
transcriptome resource is poised to support future investigations into the
molecular mechanisms underlying environment-dependent heterosis and
advance genetic breeding efforts of hybrid catfish.
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Introduction

Channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus
furcatus) are two native North American catfish species. Blue catfish
are the largest catfish in the US and reach sexual maturity at older
ages than channel catfish (Graham, 1999). Blue catfish grow slower
than channel catfish during the first 2 years. As a result, channel
catfish reach market size before blue catfish. Channel catfish is
traditionally considered the most important and popular species for
catfish farmers and producers in the US. However, channel catfish is
not as resistant as blue catfish to enteric septicemia of catfish (ESC),
which causes an annual economic loss of 50 million dollars (Wolters
and Johnson, 1994; Yeh et al., 2005).

To combat pathogenic infections in channel catfish, genetic
enhancement of catfish was achieved through interspecific
hybridization. The hybrid between female channel catfish and male
blue catfish (I. punctatus × I. furcatus) constitutes more than 50% of the
total US catfish production (Torrans and Ott, 2018), and the hybrid
catfish grow 20%–100% faster than commonly cultured strains of
channel catfish, depending upon the environment (Dunham et al.,
1990; Dunham et al., 2008). The hybrid catfish combines many of the
best traits of their parental species and is a highly desirable fish in
commercial pond culture. It offers improved feed conversion efficiency
(Dunham et al., 2008; Brown et al., 2011), increased carcass yield
(Bosworth, 2012), better low oxygen tolerance (Dunham et al., 1983),
disease resistance (Arias et al., 2012), and enhanced harvestability
(Dunham and Masser, 2012). However, heterosis in growth is
environment-dependent. Catfish fry are typically reared in indoor
tanks, and juvenile catfish will be transferred from indoor tanks to
earthen ponds for aquaculture. Previous studies on the growth trait have
shown that hybrid catfish are not superior in the tank culture
environment, whereas channel catfish had a growth advantage
instead (Dunham et al., 1990). The molecular mechanism of growth
advantage in channel catfish is still poorly understood. Gene expression
research sheds light on the physiology of a set of cells or tissues at a
certain period, including cellular adaptations to different environments
(Singh et al., 2018). Although organism cells carry out similar processes
for key biological functions in their own tissue environment, they
display unique functions that support the definition of their phenotype
(Sonawane et al., 2017). Characterizing gene expression differences
between the two catfish species across various tissues will provide
valuable insights into understanding the phenotypic variations in
growth and disease resistance and serve as the first pass to
investigate molecular mechanisms underlying environment-
dependent heterosis.

RNA sequencing is a transcriptome-wide approach used to
characterize gene expression profiles in various catfish species.
Several studies have recently been conducted to analyze differentially
expressed genes (DEGs) and functional pathways in blue catfish,
channel catfish, and their hybrids. For instance, in the liver
transcriptome, a group of genes associated with fatty acid
metabolism was discovered to be significantly upregulated in
channel catfish compared to blue catfish and hybrids (Wang et al.,
2022a). In another study, a set of DEGs involved in the formation of the
swim bladder were identified between channel catfish and other catfish.
These genes were enriched in the Wnt signaling pathway and the
hedgehog signaling pathway (Yang et al., 2018). Taking advantage of
RNA sequencing, these findings shed light on the distinctive genetic

characteristics and potential functional differences between these catfish
species and their hybrids. However, a broader organ selection is still
needed to better understand the transcriptomes in channel catfish and
blue catfish.

In this study, five organs (heart, liver, muscle, mucus, and intestine)
were selected from channel catfish and blue catfish transcriptome
characterization at the 10.8-month juvenile fish stage. Muscle
development and muscle growth are directly relevant to the overall
quality of fishmeat (Fuentes et al., 2013; Xu et al., 2019). The heart plays
a crucial role in pumping oxygen and nutrients and dealing with
environmental stress (Saetan et al., 2021). The liver is involved in
various metabolic processes that support fish growth, including but not
limited to metabolism, nutrient storage, energy production, and
detoxification (Zhang et al., 2021). Mucus serves as a protective
layer against pathogens, parasites, and environmental toxins, as well
as a barrier to fight infection through its immune-related functions
(Lange et al., 2018). The intestine also has an immune function to
defend against harmful microbes and interact with the gut microbiota.
In addition, it is themajor organ for digestion and nutrient assimilation,
which promotes growth. The comparative transcriptomic analyses
provide insights into gene function differences between the two
species and the molecular basis of the channel catfish’s growth
advantage in the tank culture environment.

Materials and methods

Fish maintenance and tissue sample
collection

The experimental animal protocols regarding animal care and
tissue collections were approved by the Auburn University
Institutional Animal Care and Use Committee (AU-IACUC) with
the approval number PRN-2019-3520. Blue catfish (BB) and
channel catfish (CC) were cultured at the Auburn University Fish
Genetics Research Unit in Auburn, Alabama, United States. Both
catfish species were maintained in the indoor recirculatory
aquaculture system with separate 60-L rectangular tanks (60 cm ×
23 cm × 43.5 cm) at an initial density of 1,000 fry per tank. The fry were
fed with Purina® AquaMax® Fry Starter 100 for the first 3 months. At
2 months old, fry density was adjusted to 100 fry per tank and then to
50 fish per tank at 4 months old. Starting at 4 months, the fry were fed
with Purina® AquaMax® Fry Starter 200 for 3 months and then with
Purina® AquaMax® Fry Starter 300 three times a day. Dissolved oxygen
was maintained above 5 mg/L, with pH levels between 7.0 and 7.5. At
10.8 months of age, three randomly selected fish from each species were
euthanized with 300 ppm tricaine methanesulfonate (MS-222, Syndel
Inc., Ferndale, WA, United States). Muscle, liver, intestine, mucus, and
heart tissues were dissected immediately after euthanasia. All tissue
samples were flash-frozen in liquid nitrogen and stored in a −80°C
freezer until RNA extraction.

RNA extraction, library preparation, and
sequencing

Three replicates were performed for each tissue of the two catfish
species at 10.8 months of age. The total RNA was extracted using the
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Quick RNA Microprep Kit (Zymo Research, Irvine, CA,
United States) following the manufacturer’s protocol. RNA
concentrations were measured using a NanoDrop OneC

Microvolume UV-Vis Spectrophotometer (Thermo Scientific,
Waltham, MA, United States). The library for each tissue sample
was constructed using the NEBNext® Poly(A) mRNA Magnetic
Isolation Module and NEBNext® Ultra™ II RNA Library Prep
Kit (New England BioLabs, Ipswich, MA, United States) with
1 µg of total RNA input. The library PCR amplifications were
conducted using 18 cycles. The concentration of sequencing
libraries was quantified using a Qubit 3.0 Fluorometer (Thermo
Scientific, Waltham, MA, United States), and the average size of
cDNA libraries was evaluated with the D1000 ScreenTape assay
using the TapeStation 4,200 System (Agilent Technologies, Santa
Clara, CA, United States). The libraries were sequenced on an
Illumina NovoSeq6000 sequencer to generate 2 × 150-bp paired-
end reads at Novogene (Novogene Corporation Inc., Sacramento,
CA, United States).

RNA sequencing analysis

The quality of the raw reads was assessed by FastQC (version
0.11.6) (Andrews, 2010). Low-quality bases and adapter sequences were
trimmed using Trimmomatic (version 0.39), and sequencing reads
shorter than 36 bp in length were excluded from subsequent analysis
(Bolger et al., 2014). RNA-seq reads were aligned to the blue catfish (I.
furcatus) reference genome (Wang et al., 2022b) using STAR aligner
version 2.7.5c (Dobin et al., 2013). The gene read counts of each sample
were quantified and summarized usingHTseq version 1.0 (Anders et al.,
2015). Genes with extremely low expression values in all tissues were
excluded, and genes with counts >1 in at least three samples were
retained for subsequent analysis.

Identification of differentially
expressed genes

To determine gene expression levels for each sample, read
counts were normalized using the edgeR package in R (version
3.6.4) (Robinson et al., 2010). The differentially expressed genes
(DEGs) between CC and BB for each tissue sample were identified
using the cutoff of |log2 (fold change)| > 1.5 and a false discovery
rate (FDR) < 0.05. The Benjamini–Hochberg method was used to
determine the adjusted p-values.

Gene ontology and functional
enrichment analysis

For functional enrichment analysis, blue catfish genes were
mapped to the zebrafish (Danio rerio) assembly GRCz11 (Howe
et al., 2013) using DIAMOND version 2.0.0 (Buchfink et al., 2021) to
determine the gene names. Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway (Kanehisa
and Goto, 2000) analyses were performed using Metascape (Zhou
et al., 2019) with default parameters. The DEG gene symbols were
used as the input gene list. The optional parameters of “input as

species” and “analysis as species” were selected as “any species” and
“zebrafish,” respectively. The GO terms analysis was conducted for
biological processes, cellular components, and molecular functions.

Analysis of tissue-specific gene expression

The τ index was used to determine the tissue specificity (Yanai
et al., 2005) in gene expression, which ranges from 0 (non-specific,
expressed equally in all tissues) to 1 (highly specific, only expressed
in one tissue). For each gene, τ is computed according to the formula
τ index = ΣN

i (1−xi)
N−1 , i � 1 , where N is the number of tissues, and xi is

the normalized expression value. A cutoff of τ > 0.9 was used to
detect tissue-specific genes (Yanai et al., 2005).

Quantitative reverse transcription PCR
validation of tissue-specific genes

Quantitative reverse transcription PCR (qRT-PCR) experiments
were performed to validate the tissue-specific genes identified from
RNA-seq data. One candidate gene from each group (channel catfish
only, blue catfish only, and both species) was selected, including fabp2,
cyp21a2, and pth1a. A housekeeping gene, gapdh, was included as a
reference. The relative gene expression levels of these genes were
quantified in the heart, intestine, liver, mucus, and muscle of
channel catfish and blue catfish, with three replicates for each tissue.
Primer sequences used for qRT-PCR validation are listed in
Supplementary Table S4. The first-strand cDNA synthesis was
conducted using the LunaScript® RT SuperMix Kit (New England
BioLabs, Ipswich, MA, United States) with 1 μg of total RNA, following
themanufacturer’s protocol. The same total RNA samples for the RNA-
seq experiments were used for validation. Quantitative reverse
transcription PCR was performed on a Bio-Rad C1000 Touch
Thermal Cycler with CFX96 Real-Time PCR Detection Systems
(Bio-Rad Laboratories, Hercules, CA, United States) in a 20 μL final
reaction volume. The reactionmixture included 10 μL of Luna universal
qPCR Master Mix, 0.5 μL of each primer, 6 μL of nuclease-free water,
and 3 μL of cDNA template. The standard amplification protocol was
95°C for 60 s, followed by 40 cycles at 95°C for 15 s and 60°C for 30 s
with two technical replicates. The relative gene expression value was
computed using the 2−ΔΔCT method.

Results

Channel catfish exhibit superior growth
during the early life stages of tank culture

Although heterosis has been reported in pond culture, channel
catfish (CC, channel catfish × channel catfish) exhibit superior
growth compared to blue catfish (BB, blue catfish × blue catfish)
and their reciprocal hybrids (CB, channel catfish female × blue
catfish male, and BC, blue catfish female × channel catfish male) in
tanks and other smaller culturing units (Figure 1A) (Dunham et al.,
1987; Dunham et al., 1990; Argue et al., 2014; Wang et al., 2022a). In
this study, we measured the body weight at 3 weeks and 10.8 months
of age for N = 20 fish of each of the four genetic types (CC, BB, CB,
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and BC). No significant difference was observed between channel
catfish and blue catfish at 3 weeks (p > 0.05; Figure 1B), but channel
catfish were significantly heavier at 10.8 months than blue catfish
(30.3 g vs 11.6g, p < 0.001; Figure 1C and Data S1). The difference in
body weight suggests that the growth rate of channel catfish is
approximately three times higher than that of blue catfish, which is
consistent with previous studies (Wang et al., 2022c).

Transcriptome-wide expression profiling
revealed significant differences in gene
expression in the liver, mucus, and intestine
between channel catfish and blue catfish

To investigate gene expression differences in important organs
between channel catfish and blue catfish, the heart, liver, intestine,
mucus, and muscle were selected for transcriptome analysis at
10.8 months of age (Figure 1D and Supplementary Table S1). In
total, 697 million 150-bp reads (209.2 Gbp of sequences) were

generated (Supplementary Table S2). On average, 73% of RNA-seq
reads were uniquely mapped to the blue catfish reference genome
(Wang et al., 2022b). To investigate the tissue-specific gene
expression profiles in both species, a multi-dimensional scaling
(MDS) plot was generated using normalized gene counts and the
transcriptomic profiles clustered together by tissue in the first two
dimensions (Figure 1E). Overall, tissues exhibit a higher degree of
resemblance than species, reflecting functional similarities among
individual tissues. Dimension 1 separated skeletal muscle and
heart from the remaining tissues, which is consistent with the
fact that they are derived from mesoderm (Figure 1E). The skeletal
muscle and heart tissues from BB and CC are intermingled,
whereas liver, intestine, and skin mucus samples from the two
species are well separated (Figure 1E). The results suggest that
skeletal muscle and heart muscle are more functionally conserved
than other tissues. Notably, skin mucus and intestine
transcriptomic profiles are more similar within species. Mucus-
secreting cells are also present in the intestine, and both organs are
in contact with the microbiota (gut and skin microbiota).

FIGURE 1
Body weight measurements and multi-dimensional scaling (MDS) plot of transcriptome quantification from five tissues of channel catfish and blue
catfish. (A) Four genetic types of channel catfish Ictalurus punctatus (CC), blue catfish Ictalurus furcatus (BB), and their reciprocal hybrids (BC and CB). (B)
Barplot of body weight for four genetic types at 3 weeks of age. (C) Barplot of body weight for four genetic types at 10.8 months of age. Statistical
significancewas assessed by the nonparametric Mann–WhitneyU test (**, p < 0.01; ***, p < 0.001). (D)MDS plot of five tissues in blue catfish (BB) and
channel catfish (CC). The expressed gene counts were used as input. The x-axis and y-axis represent the first two dimensions.To graphics: This image
should be moved to figure 1
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Detection of differentially expressed genes
between channel catfish and blue catfish in
five organs

The expression levels of each gene were determined using the reads
per kilobase of transcript per million mapped reads (RPKM). To
identify DEGs, a pairwise analysis of differential gene expression was
conducted between channel catfish and blue catfish (Data S2). Among
these five organs, themucus exhibited the largest number of DEGs, with
2,324 upregulated and 3,509 downregulated DEGs in channel catfish
compared to blue catfish (Figure 2A). The intestine and heart also had
more than 2,000 DEGs between channel catfish and blue catfish
(Figures 2B,C). In contrast, muscle displayed the lowest number of
DEGs, with only 125 upregulated DEGs and 228 downregulated DEGs
(Figure 2D), suggesting functional conservation between species. There
were ~1,400 DEGs identified in the liver samples (Figure 2E).

To compare the overall expression profiles among five organs,
the numbers of expressed genes (RPKM >2) in each organ were
investigated (Figure 2F). The mucus transcriptome had the largest
number of expressed genes (>20,000 genes), whereas the muscle had
only 5,036 genes detected, indicating considerable variation among
organs. A total of 4,644 genes were found to be shared among all five
organs (Figure 2F), accounting for ~90% of the muscle
transcriptome or ~25% of the mucus transcriptome. The liver,
heart, intestine, and mucus exhibited the largest overlapping gene
set, with 7,113 expressed genes common to these organs. More than
4,000 genes were expressed exclusively in the mucus and intestine,
which is consistent with the similar gene expression profiles depicted
in the MDS plot (Figure 1E). Regarding genes that were only
expressed within an individual organ, mucus had the largest
number of organ-specific genes (1,173), while muscle tissue had
the lowest number, with only 24 such genes identified (Figure 2F).

FIGURE 2
Transcriptome-wide differentially expressed genes (DEGs) in five organs between channel catfish and blue catfish. Volcano plots of pairwise
comparisons in the mucus (A), intestine (B), heart (C), muscle (D), and liver (E). DEGs with a false discovery rate (FDR) < 0.05 are highlighted. The x-axis
stands for log2 (fold change), and the y-axis represents −log10(FDR). The vertical lines indicate |log2FoldChange| = 1.5. (F) Upset plot showing the
intersection of expressed gene sets across five organs between channel catfish and blue catfish.

Frontiers in Genetics frontiersin.org05

Wang et al. 10.3389/fgene.2024.1341555

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1341555


Stress response, immune activity, and
metabolic pathways are enriched
among DEGs

To identify the biological function of DEGs in each tissue, gene
ontology (GO) enrichment analyses were performed comparing blue
catfish and channel catfish. The upregulated DEGs were defined as
genes with higher expression levels in channel catfish than those in blue
catfish. In the heart, upregulated DEGs were significantly enriched in
the lipid metabolic process (p < 10−5), while downregulated DEGs
clustered in immunity-related terms such as regulation of neutrophil
migration and complement activation (Figure 3A). In the intestine, the
most significant function term was “cytosolic ribosome” in the
upregulated DEGs (p < 10−40; Figure 3B). In contrast, the

downregulated DEGs were mainly enriched in response to
temperature stimulus (p < 10−4), which is associated with the stress
response process (Figure 3B). In the liver, upregulated DEGs were
primarily enriched in the cellular lipid metabolic process (p < 0.001;
Figure 3C). Interestingly, downregulated DEGs were also clustered in
metabolic terms such as carboxylic acid metabolic process, NADP
metabolic process, and cellular lipid metabolic process (Figure 3C). In
mucus, the enrichment analysis revealed that upregulated DEGs were
significantly associated with the structural constituents of ribosomes
(p < 10−17), creatine kinase activity, cytokine receptor activity, and
response to wounding (Figure 3D). For muscle tissues, the top three
most enriched terms among upregulated DEGs were carbohydrate
catabolic process, muscle contraction, and cellular response to
stress (Figure 3E).

FIGURE 3
Gene ontology enrichment analysis of differentially expressed genes between channel catfish and blue catfish. Enrichment scores (x-axis) were
determined by −log10(p-value) for significantly enriched terms of upregulated and downregulated genes in channel catfish in the heart (A), intestine (B),
liver (C), mucus (D), and muscle (E).
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Tissue-specific genes in channel catfish and
blue catfish

To examine the diversity of expression patterns among
tissues, we utilized a tissue specificity index (τ value) to
quantify the specificity of the gene profile (Data S3). In this
study, a gene with a τ value greater than 0.9 was classified as a
tissue-specific gene (TSG). Thus, TSGs were identified across the
five tissues in two species. Among the different tissues in channel
catfish, the number of TSGs ranged from 33 in muscle tissue to
1,872 in mucus tissue (Supplementary Table S3 and
Supplementary Data S4). The distribution of TSG across
tissues in blue catfish followed a similar pattern. Among the
tissue-specific genes, three highly expressed genes, irrc10, fabp2,
and agt, were exclusively detected in channel catfish (Figure 4A).
Three different genes, hspa9, cyp21a2, and myog, were identified
only in blue catfish. It is worth noting that some tissue-specific

genes were expressed in both species, including ngfb, pth1a, and
isl1 (Figure 4C).

To confirm tissue-specific expression identified from RNA-seq
data using an independent approach, qRT-PCR was performed to
determine the relative expression levels of selected genes (see
Materials and Methods). The relative expression value of fabp2
was significantly higher in the intestine of channel catfish than in
other tissues (p < 0.05; Supplementary Figure S1). No fabp2
expression was detected in blue catfish, indicating that fabp2 is
intestine-biased in channel catfish only. Cyp21a2 was highly
expressed in both the intestine and mucus of blue catfish, while
little to no expression was detected in channel catfish (Supplementary
Figure S2). Pth1a was exclusively expressed in the heart in both
species, but its expression level in the blue catfish was over 100 times
higher than in the channel catfish (Supplementary Figure S3). The
relative expression values of all three genes are consistent with the
expression pattern identified from RNA-seq data.

FIGURE 4
Tissue-specific and species-specific gene candidates in channel catfish and blue catfish at 10.8 months of age. Barplots of RNA-seq reads per
kilobase of transcript per million mapped reads (RPKM) values. (A) Tissue-specific genes (lrrc10, fabp2, and agt) found only in channel catfish. (B) Tissue-
specific genes (hspa9, cyp21a2, and myog) found only in blue catfish. (C) Tissue-specific genes (ngfb, pth1a, and isl1) found in channel catfish and blue
catfish.To graphics: This image should be moved to figure 4
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Discussion

Tissue-specific transcriptomes in blue
catfish and channel catfish

In this study, transcriptomes from fivemajor tissues/organs provide
a genomic resource for investigating the transcriptomic differences
between two economically important catfish species. Given the
variations observed in growth performance and disease resistance
between blue catfish and channel catfish, there is a strong interest in
understanding local adaptation, genome evolution, and the genetic basis
underlying these traits. Over the past decade, expressed sequence tag
(EST) sequencing (Li et al., 2007), single nucleotide polymorphisms
(SNPs) information (Liu et al., 2011), and full-length cDNAs
identification (Chen et al., 2010) have been characterized in blue
catfish and channel catfish. Although swimbladder RNA-seq data
were reported to investigate the differences in chamber formation
between blue catfish and channel catfish (Yang et al., 2018), the
transcriptomic divergence study across multiple tissues between
these two species is still limited.

Transcriptomes are most commonly used in fish to characterize
molecular physiology and identify genes that respond to or
ameliorate environmental stresses (Basu et al., 2002; Cossins and
Crawford, 2005). Gene expression regulation shows considerable
variation among different organs, individuals, and species (Hsieh
et al., 2003). All tissue-specific transcriptomes used in this study
were from peripheral tissues, including the heart, intestine, liver,
mucus, and muscle. Overall, the peripheral tissue transcriptomes
separated into distinct clusters on the MDS plot, suggesting a
divergence of gene expression patterns. The utilization of
peripheral tissue transcriptomes in catfish research can contribute
to the understanding of catfish biology and create opportunities for
further investigations in various fields, including metabolism,
immune responses, development, stress response, and physiology.

The growth advantage in channel catfish
may be associatedwithmetabolic regulation
and tissue development

Cardiac tissue plays a vital role in fish physiology as it is responsible
for pumping oxygenated blood throughout the fish’s body and
delivering essential nutrients and hormones to various organs and
tissues. Cardiac transcriptome analyses have been very effective in
discovering candidate genes in studies of cardiac toxicity, response
to hypoxia, and cardiac disease in various fish species (Shih et al., 2015;
Saetan et al., 2021; Xiao et al., 2021). Although no treatment was
administered in the present study, two heart tissue-specific genes were
identified through a comparison of gene profiles among tissues,
including lrrc10 and pth1a (Figure 3). Irrc10, a highly conserved
gene unique to the heart, is implicated in embryonic development
and tissue differentiation processes. Lrrc10 was reported as a cardiac-
specific factor (Serdin1) in mice that is essential for heart development
(Adameyko et al., 2005; Manuylov et al., 2008). In zebrafish, the Lrrc10
morphants exhibited cardiac functional defects, as evidenced by a
decrease in ejection fraction and cardiac output (Kim et al., 2007).
The pth1a gene encodes a protein called parathyroid hormone receptor
1 (PTH1 receptor), which plays a crucial role in the regulation of

calcium and phosphate homeostasis. This is consistent with the
downregulated DEGs enriched in response to peptide hormones
(Figure 3A). It was also shown to play a role in bone remodeling,
which involves the continuous breakdown and formation of bone
tissue, in zebrafish (Aceto et al., 2015).

Fish intestine serves several important functions related to
digestion, nutrient absorption, body fluid balance, and immune
defense, which are critical for growth and disease-resistance
phenotypes. A dramatically upregulated intestine-specific gene in
channel catfish, fabp2 (fatty acid-binding protein 2; Figure 4A),
encodes an intestinal fatty acid-binding protein (I-FABP). Fatty acid-
binding proteins (FABPs) play a crucial role in the transcriptional
regulation of genes associated with lipid metabolism, which can
significantly impact fat deposition in animals (Venkatachalam et al.,
2018). Fabp2 was initially identified in mammals and is expressed
exclusively in the intestine (Gajda and Storch, 2015). It has also been
reported in fish species with variable expression patterns (Sharma et al.,
2004; Venkatachalam et al., 2017). Numerous studies have provided
evidence that the expression of FABP in fish is regulated by nutritional
factors (Venold et al., 2013; Xu et al., 2017). Starvation stress affects the
expression level of FABP in various fish species, typically leading to
downregulation in response to prolonged periods of starvation
(Kaitetzidou et al., 2015; Ölmez et al., 2015). Therefore, alterations
in FABP levels and gene expression can serve as indicators of lipid
accumulation. During the dissection process in the present study, a
substantial presence of white adipose tissues was notably observed in
channel catfish, indicating that channel catfish tend to accumulate a
greater amount of energy sources than blue catfish at the 10.8-month
developmental stage.

Skeletal muscle constitutes the major portion of the fish trunk,
comprising approximately 40%–60% of the total body weight (Xu
et al., 2019). Fish muscle performs a variety of physiological
functions associated with locomotion, movement, and
metabolism. The regulation of muscle fiber development and
growth is maintained by myogenic regulatory factor (MRF)
genes, including myod, myf5, myog, and mrf4. Among these
genes, myog is a crucial member of the myogenic regulator
family, responsible for governing the differentiation of
mesodermal cells into myoblasts, which subsequently form the
muscle fibers. Notably, myog is the only gene among the MRFs
expressed in all skeletal muscle cell lines (Hasty et al., 1993). It was
also reported that the MRF genes are regulated by the GH-insulin-
like growth factor (IGF) axis (Fuentes et al., 2013). Gene silencing
and knockout of the myostatin gene have been found to promote
somatic growth in many fish species, such as zebrafish (Gao et al.,
2016), medaka (Chiang et al., 2016), and channel catfish (Khalil
et al., 2017). In the present study, the highly expressed myog gene in
the muscle of channel catfish may contribute to the difference in
growth performance between blue catfish and channel catfish in a
tank environment (Figure 4B).

Difference in stress response and immune
activity between blue catfish and
channel catfish

Mucus provides the mucosal barrier as the first line of defense
against pathogens. The secretion patterns of mucus not only
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influence the rates of bacterial shedding but also play important
roles in the production of enzymes, antimicrobial peptides, and
secreted immunoglobulins (Xu et al., 2013). Comparing the mucus
transcriptome between blue catfish and channel catfish revealed a
significant number of DEGs, indicating potential differences in
immune response mechanisms. Specifically, the upregulated
DEGs in mucus were enriched with gene ontology terms related
to cytokine receptor activity (GO: 0004896) and response to
wounding (GO: 0009611), suggesting unique immune patterns in
channel catfish (Figure 3D). Blue catfish also have their own set of
GO terms for stress response. For example, a mucus-specific gene,
cyp21a2 was highly expressed in blue catfish compared to channel
catfish (Figure 4B). It encodes the cytochrome P450 enzyme 21-
hydroxylase, which plays a crucial role in catalyzing a key step in the
biosynthesis of glucocorticoids (such as cortisol) and
mineralocorticoids (Miller and Auchus, 2011). In fish, cortisol
serves as the primary circulating glucocorticoid, with effects
mediated through the glucocorticoid receptor (GR) (Faught and
Vijayan, 2016). The primary function of cyp21a2 is to facilitate the
production of cortisol, which is involved in regulating metabolism,
immune responses, stress response, and maintaining homeostasis in
the body. In zebrafish, cyp21a2 knockout induced a reduction in
cortisol levels (Eachus et al., 2017). As a common stress indicator,
the higher cortisol levels in blue catfish may indicate that this species
is more sensitive to environmental and psychological stress. Further
study needs to be conducted at the physiological level to confirm
this. In addition to glucocorticoids, cyp21a2 is also responsible for
the production of mineralocorticoids, primarily aldosterone.
Aldosterone is involved in regulating sodium and potassium
balance, blood pressure, and fluid balance in the body.

The liver plays an important role in the metabolism,
detoxification, nutrient storage, synthesis of blood proteins, and
immune function of fish. The agt gene, also known as
angiotensinogen, encodes the angiotensinogen protein.
Angiotensinogen is a precursor protein that plays a significant
role in the renin-angiotensin system (RAS) (Nishimura, 2004), a
hormonal cascade involved in regulating blood pressure, fluid
balance, and sodium homeostasis. The agt gene is also likely to
be involved in the immune response, as a previous study indicated
that the expression level of agt significantly increased after bacterial
infection in ayu (Chen et al., 2008).

Heat tolerance is a critical trait in aquaculture species (Tan et al.,
2019). Heat shock proteins (HSPs) belong to a superfamily of
proteins that are triggered by various stressors, including
physical, chemical, and biological factors, such as high
temperature, hypoxia, infection, and toxins (Kregel, 2002).
HSP70 is a widely recognized stress protein in aquatic organisms,
playing a crucial role in stress responses, including thermotolerance
(Bertotto et al., 2011), and also participating in the regulation of the
immune system (Tsan and Gao, 2009). In the present study, hspa9,
as a member of the heat shock protein 70 (HSP70) family, was found
to be highly expressed in blue catfish intestine tissue compared to
channel catfish (Figure 4B), indicating potential stress susceptibility
in blue catfish. In Japanese flounder, the hspa9 was identified with a
high level of expression in the transcriptome after infection with
Edwardsiella tarda.

The sensory and neural systems enable fish species to perceive
the world around them and respond appropriately to the

environment (Borghezan et al., 2021). The ngfb gene encodes the
nerve growth factor beta (NGFβ) protein, which plays a vital role in
the development and survival of nerve cells, particularly sensory
neurons responsible for transmitting pain, temperature, and touch
sensations. A significant difference in ngfb expression levels was
observed in this study between channel catfish and blue catfish
(Figure 4C), which may impact their function. It was found that ngfb
was downregulated in the hippocampal neurons induced by
lipopolysaccharides (LPS) (Fang et al., 2020). Collectively,
divergence in multiple organs may contribute to the differences
in stress response and immune activity between channel catfish and
blue catfish.
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