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Background and aims: Cervical cancer, a prevalent gynecological malignant
tumor, poses a significant threat towomen’s health and lives. Immune checkpoint
inhibitor (ICI) therapy has emerged as a promising avenue for treating cervical
cancer. For patients with persistent or recurrent metastatic cervical cancer, If the
sequence of dead receptor ligand-1 (PD-L1) is positive, ICI show significant
clinical efficacy. PD-L1 expression serves as a valuable biomarker for assessing
ICI therapeutic efficacy. However, the complex tumor immune microenvironment
(TIME), encompassing immune cell composition and tumor-infiltrating lymphocyte
(TIL) status, also exerts a profound influence on tumor immunity and prognosis.
Given the remarkable strides made by ICI treatments in improving the survival rates
of cervical cancer patients, it becomes essential to identify a comprehensive
biomarker that integrates various TIME aspects to enhance the effectiveness of
ICI treatment. Therefore, the quest for biomarkers linked tomultiple facets of TIME
in cervical cancer is a vital pursuit.

Methods: In this study, we have developed an Immune-Associated Gene
Prognostic Index (IRGPI) with remarkable prognostic value specifically for
cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC).
The Cancer Genome Atlas CESC dataset (n = 305) was meticulously analyzed to
pinpoint key immune-related genes via weighted gene co-expression network
analysis and differential gene expression assays. Subsequently, we employed Cox
regression analysis to construct the IRGPI. Furthermore, the composition of
immune cells and TIL status were examined using CIBERSORT and TIDE.
Tumor expression of Epigen, LCN10, and P73 were determined with
immunohistochemistry.

Results: The resulting IRGPI, composed of EPGN, LCN10, and TP73 genes,
displayed a strong negative correlation with patient survival. The discovery
was validated with a patient cohort from our hospital. The IRGPI not only
predicts the composition of immune cell subtypes such as Macrophages M1,
NK cells, Mast cells, Plasma cells, Neutrophils, Dendritic cells, T cells CD8, and
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T cells CD4 within CESC, but also indicates TIL exclusion, dysfunction, and PD-1
and PD-L1 expression. Therefore, the IRGPI emerges as a promising biomarker not
only for prognostic assessment but also for characterizing multiple immune
features in CESC. Additionally, our results underscored the significant
associations between the IRGPI and immune cell composition, TIL exclusion,
and dysfunction, along with PD-1 and PD-L1 expression in the TIME.

Conclusion: Consequently, the IRGPI stands out as a biomarker intimately
connected to both the survival and TIME status of CESC patients, offering
potential insights into immunotherapy strategies for CESC.
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CESC, TIME, ICI therapy, IRGPI, therapeutic target

1 Introduction

Globally, cervical carcinoma ranks as the fourth most common
malignancy and the fourth-highest cause of cancer-related death in
women (Ding et al., 2020; Liu et al., 2020). Despite significant
advancements in cervical screening and a variety of treatment
modalities, including radiotherapy, chemotherapy, and surgery
(Jemal et al., 2011; Torre et al., 2015; Bray et al., 2018), the
incidence and mortality rates of cervical cancer have continued
to rise annually worldwide. Patients with advanced cervical cancer
may develop resistance to radiotherapy and chemotherapy, leaving
limited treatment options upon recurrence and metastasis.
Consequently, there is an imperative need to explore novel
prognostic markers and therapeutic targets that could provide
essential prognostic information to guide the management of
metastatic and recurrent CESC.

In recent years, immunotherapy has achieved remarkable progress
in clinical anticancer therapy, emerging as a new frontline treatment for
recurrent cervical cancer (Polk et al., 2018). Notably, clinical trials such
as KEYNOTE-158 and KEYNOTE-826 have demonstrated the
effectiveness of immunotherapy in improving survival rates for
CESC patients (Chung et al., 2019; Monk et al., 2023). While other
cancers have employed several standards to assess the potential benefits
of anti-PD-1/PD-L1 therapy, cervical cancer faces unique challenges.
For instance, mismatch repair defects and high tumor mutation burden
are relatively rare in cervical cancer (Le et al., 2017; Friedman et al.,
2023), making PD-L1 expression the primary biomarker for ICI
treatment. However, limitations in PD-L1 detection methods and its
variability among patients hinder its reliability (Rimm et al., 2017).
Moreover, a subset of PD-L1-negative patients still responds positively
to ICI treatment (Ribas and Siwen, 2016). Although immune
checkpoint inhibitors were expected to exhibit great potential in
CESC patients, the clinical outcomes and prognosis have been less
than satisfactory, with fewer than 20% of patients achieving partial or
complete responses, even among those with PD-L1-positive tumors
(Frenel et al., 2017; Chung et al., 2019).

The tumor microenvironment (TME) constitutes a complex
ecosystem comprising various cell types, including fibroblasts,
vascular endothelial cells, and their secreted products such as
cytokines and chemokines, which play pivotal roles in tumor
initiation and progression (Joyce and Pollard, 2009; de Vos van
Steenwijk et al., 2013; Quail and Joyce, 2013; Riaz et al., 2016;
Cabel et al., 2017; Liu et al., 2019; Okonogi et al., 2019; Pignata et al.,
2019). Tumor-infiltrating immune cells (TICs) have a direct bearing

on the response to immunotherapy. Therefore, in-depth analysis of
the composition and characteristics of TICs in CESC and their
correlation with infiltration patterns and prognosis becomes
essential for a nuanced understanding of the complex antitumor
response and effective guidance for immunotherapy. Thus, a
dependable prognostic feature is indispensable to make precise
personalized decisions regarding ICI treatment, assess prognosis,
and predict immunotherapy responsiveness in CESC patients.

Promisingly, a prognostic signature based on immune-related
genes (IRGs) has shown tremendous potential in predicting prognosis
and immunotherapy responsiveness across various cancers, although
such models have been less explored in the context of CESC. In this
study, we have formulated a three-gene signature (EPGN, LCN10, and
TP73) as an IRGPI to forecast CESC prognosis and immune
characteristics. We systematically analyzed immune-related genes
within CESC transcriptome data and identified hub genes linked
to patient prognosis through weighted gene co-expression network
analysis (WGCNA). The IRGPI’s prognostic value was subsequently
validated, and its associations with tumor-immune cell profiles, TIL
status, and PD1/PD-L1 immune checkpoints were further elucidated.
Our results unequivocally affirm that the IRGPI is an exceptional
biomarker for forecasting both prognosis and TIME status in CESC.
To the best of our knowledge, this comprehensive multi-gene model
assessing survival in cervical cancer, significantly associated with the
TME, is unparalleled in the field. Ultimately, our IRGPI-based
prognostic signature not only serves as a reliable tool for survival
prediction but also efficiently predicts the clinical response of ICIs for
CESC patients. This achievement holds the potential to advance
personalized consultation for immunotherapy in the
foreseeable future.

2 Materials and methods

2.1 Data collection and immune
genes sources

RNA-seq data from cervical cancer patients, including
305 cancer samples and 3 adjacent normal tissue samples, were
obtained from the Cancer Genome Atlas (TCGA) database. Clinical
data such as survival time, status, age, TNM, and stage were sourced
from UCSC Xena (accessed on 11 October 2022). Immune-related
genes were retrieved from the ImmPort database (ImmPort: 1793)
and InnateDB (InnateDB: 1226), leading to a total of 2660 immune
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genes after duplicates were removed. Of these, 1855 genes were
retained for further analysis after genes with expression loss in more
than 70% of samples in the pretreatment data were excluded.

2.2 Weighted gene coexpression network
analysis (WGCNA)

WGCNA is a robust tool for identifying clusters (modules) of highly
interconnected genes.We employedWGCNA to identify co-expression
modules of immune-related genes from ImmPort and InnateDB. This
involved constructing a co-expression similarity matrix based on
Pearson correlation coefficients between gene pairs. Utilizing the
scale-free topology criterion (R2 = 0.9) and a soft threshold (β = 3),
we established five modules. Each module, except the gray module,
represented a set of genes with high patient-to-patient similarity. Genes
not assigned to any module were placed in the gray module. We used
topological overlap matrices (TOM) for visualizing gene-gene
connectivity and carried out GO and KEGG pathway analyses for
genes in each module (except the gray module) using R’s clusterProfiler
package to identify enriched pathways. Correlations between the four
modules obtained through WGCNA and sample features (cervical
cancer status) were computed, revealing that genes in the yellow and
brown modules were significantly correlated with cervical cancer (p
values of 1e-15 and 0.004, respectively), indicating their potential as
cervical cancer targets. Genes from the yellow and brownmodules were
selected for subsequent analysis.

2.3 Identification of differentially
expressed genes

Differential gene expression analysis was performed using RNA-
seq data from cervical cancer patients (tumor and three normal
samples). Genes with |log2FoldChange| ≥ 1 and an adjusted p-value
(Benjamini-Hochberg method) < 0.05 were considered significantly
differentially expressed between the samples.

2.4 Construction and validation of immune-
related gene prognostic index (IRGPI)

Univariate Cox regression analysis identified immune-related
differentially expressed genes (DEGs) significantly correlated with
overall survival in cervical cancer patients (p-value <0.05). Multi-
factor Cox regression and stepwise regression analysis were
employed to construct the IRGPI model. The final optimal
regression model’s coefficients were calculated. The IRGPI score for
each cancer sample was calculated as follows: gene one expression level *
coef1 + gene 2 expression level * coef2 + . . . + gene N expression level *
coefN. Patients in the TCGA dataset were divided into high and low
IRGPI groups based on IRGPI scores. The Kaplan-Meier (KM) survival
curve assessed the IRGPImodel, and the log-rank test further confirmed
its performance. This prognostic model was also validated in a separate
cohort by calculating the area under the ROC curve (AUC) at 250, 500,
and 750 days. Multivariate Cox regression analysis incorporated
significant clinicopathological features (age, TNM, and stage) and
IRGPI scores for cervical cancer patients.

2.5 Identification of molecular
characteristics between different
IRGPI subgroups

Differential expression analysis was conducted between groups
with high (n = 153) and low (n = 153) IRGPI scores. Enrichment
analysis and gene set enrichment analysis (GSEA) were performed
on DEGs from high and low IRGPI groups to identify relevant
signaling pathways.

2.6 Assessment of immune cell infiltration

CIBERSORT was used to evaluate the infiltration levels of immune
cells in each sample. The Wilcoxon test compared immune cell
distribution among different subgroups, and Spearman correlation
was used to calculate immune cell correlations.

2.7 GO and KEGG analysis of immune-
associated DEGs

Immune-associated DEGs were identified, and R’s
clusterProfiler package was used to perform GO and KEGG
analyses to identify significantly enriched biological processes
(BP), cellular components (CC), molecular functions (MF), and
pathways (corrected p-values <0.05).

2.8 TIDE analysis

TIDE was employed to assess individual responses to
immunotherapy. The Wilcoxon rank sum test was used to calculate
differences in TIDE scores among IRGPI groups (p < 0.05). Spearman
correlation analyzed correlations between prognostic markers (IRGPI,
EPGN, LCN10, TP73) and PD-L1/PD1 expression.

2.9 Specimen and clinical data

Specimen and Clinical Data Formalinfixed, paraffin-embedding
(FFPE) specimens were collected from the Harbin Medical University
Cancer Hospital. Tissues were collected from 59 CESC patients who
underwent treatment of cervival cancer between 2012 and 2016 in
Harbin Medical University Cancer Hospital. The study was approved
by the Ethics Committee of Harbin Medical University Cancer
Hospital. Follow-up time ranged from 1 to 122 months.

2.10 Immunohistochemistry

Tissue sections were dewaxed in xylene and hydrated gradually
through graded alcohol. EDTAbuffer was used for antigen retrieval. The
endogenous peroxidase activity was blocked, and then the sections were
incubated with the primary anti-Epigen (1:100; PA5-
47985,ThermoFisher),anti-LCN10(1:200; PA5-63207,ThermoFisher),
or anti-P73 (1:100; PA5-35368,ThermoFisher) overnight at 4°C. Then
the secondary antibody and a DAB kit (34,002, Thermo Scientific™)
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were applied to the sections. The tissue sections were evaluated by two
pathologists who were unaware of the patient’s clinical information. For
Epigen, LCN10, and P73 IHC, the scores were assigned from 0 to
3 based on the staining intensity level (no staining, light brown, brown,
and tan). The staining extent was graded from 0 to 4 for the percentage
of positive cells (0%–5%, 5%–25%, 26%–50%, 51%–75%, and 76%–
100%). The product of staining intensity and extent scores was used as
the IHC score, with a range of 0–12. Scores 0–4 were assigned as
negative, and scores 5–12 were assigned as positive.

2.11 Clinical data validation

Clinical and transcript data from a cohort of patients treated
with IMvigor210 for metastatic urothelial carcinoma were retrieved
using the “IMvigor210CoreBiologies” package (n = 348).

2.12 Statistical analysis

All statistical analysis was performed with R language. The Cox
regression analysis was used to determine hazard ratios (HRs) and 95%
confidential intervals (CIs) for univariable and multivariable analyses.
Progression-free survival (PFS) was defined as the time between the
initiation of diagnosis and the date of the first evidence of tumor
progression. We used Kaplan–Meier plots and log-rank tests to
calculate the differences in PFS among different subgroups. The
Pearson correlation analysis was used to calculate the correlation of
two variables. p < 0.05 was defined as a statistical significance.

3 Results

3.1 Identification of gene co-expression
networks of immune-related genes in
CESC samples

To identify immune-related hub genes, we conducted a
WGCNA analysis on immune genes gathered from the ImmPort
and InnateDB databases. The co-expression modules of immune-
related genes were determined using the WGCNA method. The
results were visualized in different colored modules. Five modules
were identified using a soft threshold of 3. A total of 1855 genes were
assigned to these five modules, consisting of 298 in the blue module,
296 in the brown module, 529 in the turquoise module, 191 in the
yellow module, and 541 in the gray module (Figures 1A;
Supplementary Figure S1B, S2C).

When we clustered the samples, we observed that the expression
profiles of cervical cancer samples corresponded well to the sample
classification, which has little relationship with WGCNA itself
(Supplementary Figure S2A). Our WGCNA analysis revealed that
the genes in the yellow and brown modules showed significant
correlations with cervical cancer, with p-values of 1e-15 and 0.004,
respectively. This suggests that the genes in the yellow and brown
modules may hold potential as targets for cervical cancer
(Supplementary Figure S2B). Analyzing within the modules, the
genes in the yellow and brownmodules exhibited strong correlations
with CESC, with correlation coefficients of 0.71 and 0.6, and

respective p-values of 3.8e-30 and 1.1e-27. These results indicate
that these genes within the modules are not only highly correlated
with their respective modules but also with relevant traits, further
underscoring the significance of ongoing gene exploration
(Figure 1B; Supplementary Figure S1C).

We then performed GO and KEGG functional enrichment
analysis on the selected yellow and brown modules. The
functions of receptor ligand activity, growth factor activity, and
glycosaminoglycan binding, as enriched by GO, have all been
demonstrated to be related to the occurrence and development of
cervical cancer. Additionally, the KEGG pathways enriched by the
analysis include the PI3K-Akt signaling pathway, the MAPK
signaling pathway, and the Ras and Rap1 signaling pathway, all
of which have also been shown to be related to the occurrence and
development of cervical cancer (Figures 1C, D; Supplementary
Figure S1D, S2E).

3.2 Identification of differentially expressed
immune-related central genes in
CESC samples

Differential expression analysis of 305 cervical cancer tumors and
3 normal samples revealed 1972 significantly differentially expressed
genes in cervical cancer samples (Figures 2A, B). Out of the previous
487 genes from the yellow and brown modules, 81 were identified as
differentially expressed immune-related genes in cervical cancer
(log2FC > 1 and p < 0.01) (Figure 2C). Subsequently, functional
enrichment analysis was conducted, uncovering multiple functions
and signaling pathways associated with cervical cancer (Figure 2D).

3.3 Establishment of CESC immune-related
gene prognostic index (IRGPI)

First, clinical data for patients with cervical cancer were obtained
from the TCGA database. The survival status and follow-up time
from this clinical data were used to establish a univariate COX
proportional risk regression model for the 81 immune-related
differential genes in cervical cancer that were previously
identified. This helped identify genes whose expression
significantly impacted the survival status of patients. Additionally,
this study constructed a univariate COX proportional risk regression
model for five clinical factors within the clinical data, including age,
tumor stage, tumor primary, lymph node status, and distant
metastasis. This allowed us to screen for clinical factors that
significantly affect the survival of patients with cervical cancer
(p < 0.05). The results revealed that five genes, namely EPGN,
LCN10, HTR3A, MCHR1, TP73, and the clinical feature “STAGE,”
significantly affected the survival of CESC patients. These findings
indicated a significant association between these five genes and the
prognosis of patients with cervical cancer (Figure 3C).

In the univariate COX regression analysis, only the relationship
between each individual variable and survival status was assessed,
without considering the influence of other variables. In real-world
scenarios, a sample’s survival status may be jointly affected by
multiple clinical factors. To address this, our study incorporated
the five genes (p <0.05) that significantly impacted prognosis as
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determined by the univariate COX proportional risk regression
model into a multivariate COX proportional risk regression
model. Additionally, the clinical factor “Stage,” which
significantly affected the prognosis of cervical cancer patients,
was introduced into the model as a covariate.

In order to identify factors that independently affect the
prognosis of cervical cancer, we performed a stepwise
regression analysis on the candidate predictors and calculated
the coefficients of the final optimal regression model. This
analysis led to the identification of three genes: EPGN,
LCN10, and TP73. Notably, there was no significant difference
in the expression of EPGN between CESC and normal tissues,
whereas the expression of LCN10 in CESC was significantly lower
than in normal samples, and the expression of TP73 in CESC was
significantly higher than in normal samples (Figure 3A). The
results of the multivariate COX regression indicated that these
three genes could be considered as prognostic markers for
cervical cancer. Figure 3B displays the survival curves for
EPGN, LCN10, and TP73.

To further assess the impact of these three significant immune
genes on the prognosis of cervical cancer patients, we used
univariate and multivariate COX proportional risk regression
analyses to construct risk scores. The formula for these risk
scores is as follows: Score = (EPGNexpr * 0.1181) + [LCN10expr

* (−0.2517)] + [TP73expr * (−0.2069)]. Based on the calculated risk
scores for each cervical cancer patient, we divided the patients into
high-risk and low-risk groups using the median value as the
threshold. We then used the R-package “survminer” to conduct
survival analysis on cervical cancer patients in these two groups
based on the risk score, and we generated KM survival curves. The
results are presented in Figure 3D, where a low risk score is
associated with a better prognosis, while a high risk score
predicts a poor prognosis. This suggests that the three genes
identified in this study are significant biomarkers for the
prognosis of cervical cancer patients. To assess the performance
of the prognostic model, we used ROC curves and found that the
model achieved an AUC of 0.756 at 250 days, 0.729 at 500 days, and
0.662 at 750 days. These results indicate that the prognostic model,
based on the risk score, can accurately predict the prognosis of
cervical cancer patients (Figure 3E).

3.4 Validation of the predictive value
of IRGPI

To further validate the prognostic value of EPGN, LCN10, and
TP73, we conducted assessments with additional cohorts.
Specifically, we utilized the CESC cohort from the Kaplan-Meier

FIGURE 1
Identification of co-expressed immune-related genes associated with CESC using WGCNA. (A) WGCNA analysis topological overlap matrix
heatmap; (B) Correlation between genes in the yellow module and CESC; (C) Enrichment of GO genes in the co-expression network yellow module; (D)
Enrichment of KEGG genes in the co-expression network yellow module.
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plotter database to evaluate the impact of EPGN, LCN10, and
TP73 expression on overall survival. The results demonstrated
that EPGN expression exhibited a significant negative correlation
with the overall survival (OS) of CESC patients (log-rank test, p <
0.05). In contrast, LCN10 expression was positively correlated with
the OS of CESC patients (log-rank test, p = 0.054). Similarly, the
group with high TP73 expression showed better overall survival
compared to the group with low TP73 expression (log-rank test, p <
0.05) (as depicted in Figure 4A).

We then further validated the association of IRGPI with PFS in
CESC patients from our hospital. The 59 CESC patients underwent
treatment after being diagnosed with cervical cancer between
2012 and 2016. Epigen (EPG) is encoded by the EPGN gene. The
p73 protein is encoded by the TP73 gene. To confirm the correlation
of IRGPI with the characteristics of CESC patients, we used the
semi-quantitative IHC scores of Epigen, LCN10, and P73 to
calculate IRGPI in the CESC patients from our hospital
(Table 1). As shown in Figure 4B, Expression of Epigen, LCN10,

P73 in CESC. There was no significant difference in the expression
of Epigen between CESC and normal tissues, whereas the expression
of LCN10 in CESC was significantly lower than in normal samples,
and the expression of P73 in CESC was significantly higher than in
normal samples of the patients from our hospital (Figure 4C).
Consistent with the TCGA results, a high expression of LCN10
(p = 0.02) and P73 (p = 0.024) was associated with a better PFS; a low
expression of Epigen (p = 0.34) was associated with a better PFS.
Furthermore, the KM estimator showed that PFS in the IRGPI-low
group was significantly longer than that in the IRGPI-high group
(p = 0.028) (Figure 4D).

3.5 Identification of differentially expressed
genes associated with IRGPI status

The 305 CESC samples were divided into high-risk and low-risk
groups based on their immunization scores. Expression data from

FIGURE 2
Identify differentially expressed central immune-related genes between tumor and normal samples. (A) Volcano plot of DEGs between CESC and
normal samples; (B) Heatmap of differentially expressed genes in CESC (red) and normal samples (blue); (C) Venn diagram of immune-related DEGs in
CESC and normal samples; (D) Functional enrichment analysis of immune-related DEGs.
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TCGA was extracted for further analysis of the high and low
subgroups. Among the 2197 genes with significant differences
between these groups (p < 0.01), 371 genes were upregulated in
the high-risk group, while 1826 genes were downregulated in the

same group. Heat maps were generated to visualize the top 15 genes
in each group (Figure 5A).

To explore the gene sets enriched in different subpopulations,
we conducted GSEA. The upregulated gene sets in the high-risk

FIGURE 3
Construction of the Immune-Related Gene Prognostic Index (IRGPI) for CESC. (A) Differential expression of EPGN, LCN10, and TP73 genes in CESC
compared to normal tissues. (B) Survival analysis of EPGN, LCN10, and TP73 genes. (C) Univariate and multivariate Cox regression analysis of survival-
related genes. (D) Kaplan-Meier survival analysis of IRGPI scoring using TCGA data and the relationship between survival status and IRGPI score
distribution in TCGA CESC cohort. (E) ROC curves for the 1, 3, 5, and 7-year prognostic models in CESC (TCGA cohort).
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group were enriched in various immune and tumor-related
pathways, including the cytokine-cytokine receptor interaction
pathway and the IL-17 signaling pathway. On the other hand,
the upregulated gene sets in the low-risk group were significantly

enriched in pathways related to drug metabolism, such as
cytochrome P450 and fatty acid degradation, among others.
These pathways have also been linked to tumorigenesis and
disease progression (Figure 5B).

FIGURE 4
Validating the prognostic value of IRGPI. (A) Kaplan-Meier survival plots for the impact of EPGN, LCN10, and TP73 expression on the survival of CESC
cohort patients are available in the database. (B) Expression of Epigen, LCN10, P73 in CESC. a) Representative samples with Epigen positive (above) and
negative (below) expression; b) representative samples with LCN10 positive (above) and negative (below) expression; c) representative samples with P73
positive (above) and negative (below) expression. Scale bars: 200 μm for the left pictures in (a–c), and 50 μm for the right pictures in (a–c); (C)
Differential expression of Epigen, LCN10, and P73 genes in CESC compared to normal cervical tissues of the patients from our hospital. (D) Kaplan–Meier
survival analysis of Epigen , LCN10, and P73 expression and IRGPI groups using IHC scores of the patients from our hospital.
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Additionally, we performed an analysis of gene mutations to
gain a deeper understanding of the immunological properties of
different subpopulations. The results revealed that the mutation
count in the high-risk group was significantly higher than that in the
low-risk group. Missense variations were the most common
mutation type, followed by nonsense deletions and frameshift
deletions (Figures 5C, D). We also identified the top 10 genes
with the highest mutation rates in both subpopulations (Figures
5E, F). In both groups, genes like PIK3CA, TTN, KMT2C, MUC16,
EP300, and DMD exhibited high mutation rates. However,
mutations in the LRP1B, SYNE1, ADGRV1, and RYR2 genes
were more common in the high-risk groups. Conversely,
mutations in the KMT2D, FLG, FBXW7, and USH2A genes were
more prevalent in the low-risk group.

3.6 IRGPI correlated with the composition of
immune cells in CESC samples

To analyze the composition of immune cells in different
subgroups, we utilized CIBERSORT analysis to assess the
infiltration levels of immune cells in each sample. Additionally,
the Wilcoxon test was employed to compare the distribution of

immune cells among various IRGPI groups (Figure 6A). Notably, we
observed significant differences in the proportion of immune cells
between high and low-risk groups. Upon integrating key clinical
features and immunoinfiltration mapping, we discovered that the
high-risk subgroup exhibited a higher abundance of activated Mast
cells, Neutrophils, and resting NK cells. Conversely, resting
Dendritic cells, Macrophages (M1), resting Mast cells, Plasma
cells, CD4 memory resting T cells, CD8 T cells, follicular helper
T cells, and T cell regulators (Tregs) were more prevalent in the low-
risk subgroups (Figure 6B). Furthermore, we conducted correlation
analysis for the 21 types of immune cells in cervical cancer samples.
The correlations among these immune cells reveal interactions
within the immune microenvironment. It is worth noting that
the proportion of immune cells exhibited weak to moderate
correlations (Figure 6C).

3.7 IRGPI is associated with T Cell rejection
and dysfunction in CESC samples

We employed TIDE to assess the potential therapeutic impact
of immunotherapy in distinct subgroups. A higher TIDE
predictive score indicates a greater potential for immune

TABLE 1 Relationship between IRGPI and the clinicopathological characteristics of CESC patients from our hospital.

Clinical Variables IRGPI-High(n = 26) IRGPI-Low(n = 33) p value

n % n %

Age, years

≤60 15 58 20 61 0.821

>60 11 42 13 39

FIGO

I 1 4 3 9

II 10 38 14 42

III 12 46 15 46 0.638

IV 2 8 1 3

Unknown 1 4 0 0

Pathological type

Squamous carcinoma 23 88 32 97

adenocarcinoma 2 8 1 3 0.367

other 1 4 0 0

Grade

high 9 35 8 24

low 6 23 12 37 0.493

Unknown 11 42 13 39

Neoadjuvant chemotherapy

yes 8 31 11 33 0.834

no 18 69 22 67
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evasion, suggesting that patients may derive less benefit from ICI
treatment. In our findings, there was no significant difference in
TIDE scores between the high-risk and low-risk groups.
However, the low-risk group exhibited significantly higher

microsatellite instability (MSI) scores and greater T cell
dysfunction compared to the high-risk group (Figure 7A).
Notably, the levels of T cell rejection were relatively similar in
both the low-risk and high-risk groups (Figure 7A).

FIGURE 5
Identify differentially expressed genes (DEGs) in distinct IRGPI subgroups. (A) Heatmap of DEGs between high and low IRGPI risk groups. (B) GSEA
displaying significantly enriched upregulated pathways in high (top) and low (bottom) IRGPI risk groups. (C) 107 (76.98%) of 139 samples withmutations in
the high-risk group. (D) 108 (75.52%) of 143 samples with mutations in the low-risk group. (E) Top 10 genes with the highest mutation rates and common
mutation types in the high-risk group. (F) Top 10 genes with the highest mutation rates and common mutation types in the low-risk group.
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3.8 IRGPI correlated with PD-1 and PD-L1
expression in CESC samples

As PD-L1 expression is commonly used as a criterion for
determining whether cancer patients should undergo ICI treatment,
we examined the correlation between PD-L1/PD-1 expression levels,
risk scores, and the expression of EPGN, LCN10, and TP73. Our
findings revealed that EPGN exhibited a positive correlation with
PD-1 and PD-L1 expression in TCGA. LCN10 showed a positive
correlation with PD-1 expression but a negative correlation with PD-
L1 expression. TP73 demonstrated a positive correlation with PD-1 and
PD-L1 expression. Interestingly, the expression of the risk score and PD-
1 and PD-L1 in the samples displayed a significant negative correlation,
indicating a significant association between the risk score developed in
this study and immunotherapy (Figure 8).

To validate the value of the risk score established in this
study for anti-PD-L1 urothelial carcinoma, we utilized the
“IMvigor210CoreBiologies” package to acquire 348 transcriptomes
and corresponding clinical data from an IMvigor210-treated

metastatic urothelial carcinoma cohort. Notably, the survival curve
clearly shows that the samples in the high-risk group generally exhibit
shorter survival times compared to those in the low-risk group,
underscoring the clinical significance of the constructed risk
score (Figure 7B).

To confirm the correlation of IRGPI with PD-L1 expression in
CESC, we selected 23 patients with cervical cancer who had PD-L1
test reports and were treated with anti-PD-L1, and statistically
analyzed the correlation between PD-L1 expression and Epigen,
LCN10 and P73 expression (PD-L1 CPS score <3 was negative; CPS
score >3 is positive). The results are consistent with the TCGA
database, both Epigen (r = 0.542, p = 0.008), LCN10(r = −0.502, p =
0.015) and P73 (r = 0.587, p = 0.003) expression were correlated with
PD-L1 expression (Table 2). Next, we analyzed the relationship
between IRGPI and PD-L1 expression. The results show that IRGPI
was negatively correlated with PD-L1 expression (r = −0.443; p =
0.034) (Table 2). High-risk patients had shorter survival times
compared to low-risk patients, providing further evidence that
IRGPI is significantly associated with immunotherapy (Figure 7C).

FIGURE 6
The immune cell composition in different IRGPI groups in the tumor microenvironment (TIME). (A) Calculation of the proportions of 21 tumor-
infiltrating immune cells in individual patients using CIBERSORT. (B) Differences in immune cell infiltration between different IRGPI groups (pink: IRGPI
high-risk group; blue: IRGPI low-risk group). (C) Correlations between immune cells in TNBC.
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4 Discussion

Tumor growth and the effectiveness of ICI therapy are
influenced by numerous genes, many of which are components
of the TIME. To decipher the complexity of this gene network, we
employed WGCNA to group immune-related genes and identify
hub biomarkers within enriched modules. This led to the
identification of 81 immune-related hub genes, which were
further subjected to survival analysis to construct an IRGPI.

IRGPI emerged as a powerful and independent prognostic factor
for Cervical Squamous Cell Carcinoma and Endocervical
Adenocarcinoma patients. Its predictive ability extended across
different patient cohorts, including those from TCGA and the
IMvigor210 database. IRGPI forecasts improved survival for
IRGPI-low patients and diminished survival for IRGPI-high
patients. The consistency of these results in different cohorts
underscores the considerable prognostic value of IRGPI and

implies the essential role of IRGPI components in modulating
TIME in CESC.

The roles of EPGN, LCN10, and TP73 in CESC are not yet well
understood. EPGN is a novel ErbB ligand, and ErbB receptors
belong to the tyrosine kinase receptor superfamily. They mediate
the proliferation, differentiation, and survival of normal cells. ErbB
family molecules are prominent candidates for therapeutic targets.
Several treatment strategies targeting ErbB receptors have been used
for breast cancer and lung cancer, and clinical trials are ongoing for
several other malignancies. The high mRNA expression levels of
unregulated ErbB ligands underscore the crucial role of ligand-
receptor interactions in downstream signaling pathways (Amsellem-
Ouazana et al., 2006). Novel therapeutic approaches should not only
target ErbB gene products but also their ligands. In our study, we
found a positive correlation between EPGN and PD-1 and PD-L1
expression, although the correlation with PD1 was not very
significant. This suggests a promising prospect for combining

FIGURE 7
IRGPI is associated with T-cell exclusion and dysfunction in the TCGA dataset of CESC. (A) TIDE scores, MSI scores, T-cell exclusion scores, and T-
cell dysfunction scores for different IRGPI risk groups. (B) The value of the score in the urothelial carcinoma cohort for anti-PD-L1 treatment. The p-value
may not appear significant, but the curves can distinguish between them. (C) Kaplan–Meier survival analysis of PD-L1 expression and IRGPI groups using
IHC scores of the patients from our hospital.
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EPGN with immunotherapy in cancer treatment, but further
experimental validation and mechanistic research are needed.

Additionally, some immune system-related pathways have
been found to be associated with the EPGN gene, including
neutrophil degranulation, myeloid differentiation factor 88,
and Toll-like receptors. Research indicates that several genes

involved in immune responses may play a crucial role in
promoting HPV infection (Al-Eitan et al., 2020). Prolonged
high-risk HPV infection leads to cervical cancer, and we
speculate that EPGN plays a key role in the development of
cervical cancer. In our study, we found no significant difference
in EPGN expression between CESC and normal tissues, but high

FIGURE 8
The correlation between EPGN, LCN10, TP73, IRGPI and the expression of PD-L1/PD1 in the TCGA dataset of CESC.
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EPGN expression was negatively correlated with OS in CESC
patients. We have experimentally concluded that a low
expression of Epigen was associated with the better survival of
CESC patients in different cohorts.

Epigen (EPG) is encoded by the EPGN gene. It is a low-affinity/
broad-specificity growth factor belonging to the Epidermal Growth
Factor (EGF) superfamily, and it is the latestmember of themammalian
EGFR ligand family. EPG mediates cell responses from survival to
proliferation andmigration (Yarden and Sliwkowski, 2001; Harris et al.,
2003). In epithelial cells, it stimulates the phosphorylation of EGFR and
downstream signaling molecules like MAPK and promotes cell
proliferation in a dose-dependent manner (Strachan et al., 2001).
Signaling through EGFR (ErbB1) plays a crucial role in embryonic
development and adulthood (Yarden and Sliwkowski, 2001; Harris
et al., 2003). Furthermore, the dysregulation of the EGFR signaling
network is associated with tumor formation and invasion (Gschwind
et al., 2004). Like other EGFR ligands, EPG expression is upregulated by
hormones or in certain cancer types. EPG shows increased expression in
human breast and prostate infiltrating adenocarcinomas
(Kochupurakkal et al., 2005). EPG can induce the proliferation and
differentiation of various target cell lines (Strachan et al., 2001),
suggesting that EPG may be involved in tumorigenesis.

Lipocalin 10 (Lcn10) is one of the less conspicuously
characterized members of the lipocalin protein family. Initially, it
was identified as a gene expressed in the murine epididymis (Suzuki
et al., 2004). Lcn10 deficiency promotes a pro-inflammatory
polarization of macrophages by disrupting the Nr4a1 signaling
pathway while inhibiting anti-inflammatory responses.
Furthermore, under metabolic stress conditions, the expression of
Lcn10 in macrophages is downregulated. Taken together, these
findings suggest that Lcn10 may play a crucial role as an anti-
inflammatory mediator in regulating macrophage function during
the inflammatory process. The absence of Lcn10 may exacerbate
pro-inflammatory responses in macrophages under various stress
conditions while suppressing anti-inflammatory reactions. These
earlier observations imply a potential role for Lcn10 as an anti-
inflammatory mediator in the context of inflammation.

In the TME, tumors actively recruit macrophages in various
ways. Macrophages exhibit a degree of plasticity and can be
modulated by environmental stimuli. CESC cells induce
macrophage polarization into M1-like tumor-associated
macrophages (TAMs), which produce fewer pro-inflammatory
cytokines such as tumor necrosis factor-alpha (TNF-α) and IL-10
but more anti-inflammatory cytokines like IL-92 (Sánchez-Reyes
et al., 2014; Zhou et al., 2021). Tumor cells induceM2 polarization in
macrophages by secreting various cytokines and growth factors.
Overall, CESC cells actively recruit normal macrophages in the
TME, inducing them to act as immunosuppressive TAMs. Research

has shown a significant correlation between increased macrophage
levels in the tumor stroma and lymphatic vessel formation and
lymphatic metastasis in CESC (Li et al., 2023). The presence of
TAMs in cervical cancer tumors is also associated with tumor
progression and recurrence (Gorvel and Olive, 2023). Along
these lines, our study results indicate that LCN10 is significantly
underexpressed in CESC compared to normal samples, and
LCN10 expression positively correlates with OS in CESC patients
(log-rank test, p-value <0.05). Our research further affirms the
favorable prognosis associated with Lcn10 in CESC.

It is increasingly evident that lipocalins (LCNs) play multifaceted
biological roles in regulating cell proliferation, differentiation, apoptosis,
and senescence (Flower, 1995; 1996; Akerstrom et al., 2000; Grzyb et al.,
2006). They are also associated with the regulation of immune
responses/inflammation, odor reception, reproduction, cancer
development, and metabolic disorders, as well as cardiovascular
remodeling (Virtanen, 2021; Ganfornina et al., 2022; Redl and
Habeler, 2022). Our study establishes a positive correlation between
LCN10 and PD-1 expression while showing a negative correlation with
PD-L1 expression, further underscoring the connection of LCN10 with
immune responses. As carrier proteins, LCNs play a role in the general
clearance of hydrophobic molecules both intracellularly and
extracellularly (Flower, 1996). Clinically, LCNs have been widely
explored as biochemical biomarkers for diagnosing human diseases
(Bacci et al., 2015; Zabetian-Targhi et al., 2015; Bergwik et al., 2021;
Sawyer, 2021; Steinhoff et al., 2021; Angelika et al., 2023). Studies have
observed a significant increase in LCN2 expression in macrophages
under metabolic stress conditions, while LCN10 expression is
significantly downregulated (Li et al., 2022). Future research is
needed to clarify whether increased LCN10 expression/activity in
macrophages or direct administration of recombinant LCN10 protein
has therapeutic potential in cervical cancer. Furthermore, exploring the
relevance of other lipocalin family members to cervical cancer
development is necessary.

TP73 is a tumor suppressor, a member of the p53 gene family,
highly homologous to TP53, and plays a unique role in
neurodevelopment and apoptotic responses to DNA damage (Stella
et al., 2019). It has a pivotal regulatory function in various processes,
including embryonic development, tissue homeostasis, and cancer.
TP73 has garnered significant attention in the field of cancer
management, mainly because it can mimic and/or substitute for the
anti-cancer function of p53. Unlike p53, TP73 rarely mutates in cancer,
making it less susceptible to intratumoral and intertumoral mutational
heterogeneity (p73-Governed miRNA Networks: Translating
Bioinformatics Approaches to Therapeutic Solutions for Cancer
Metastasis—PubMed, n. d.). Reports indicate that TP73 has roles in
cell cycle arrest, apoptosis, and genome stability in multiple cancers
(Candi et al., 2014). Various TP73 variants have been identified to be

TABLE 2 Correlations between Epigen/LCN10/P73/IRGPI IHC and PD-L1 expression.

Pearson Correlation Analysis Epigen LCN10 P73 IRGPI IHC Score

PD-L1 expression

R 0.542 —0.502 0.587 —0.443

p 0.008 0.015 0.003 0.034

Epigen, LCN10 and P73 expression was determined by their IHC scores. IRGPI IHC scores were Calculated with Epigen, LCN10 and P73 IHC scores. PD-L1 expression was determined by

PD-L1 IHC scores in pathological reports of our hospital.
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highly expressed in several cancers (Yao et al., 2019). Altered
TP73 expression is observed in most human cancers and is
associated with adverse outcomes in colorectal cancer patients.
Studies on colorectal cancer have found that TP73-positive tumor
patients have a greater malignancy risk and shorter survival
(Kotulak et al., 2016; Chu et al., 2020). Our study results show that
TP73 is significantly overexpressed in CESC compared to normal
samples, consistent with existing literature. The group with high
TP73 expression exhibits better OS than the low TP73 expression
group (log-rank test, p = 0.0086). The differences in survival analysis
between our study and the literaturemay be related to the consideration
of different TP73 variants. TP73 can be translated into numerous
isoforms with both oncogenic and tumor-suppressive functions and
participates in complex signaling cascades with TP53 and TP63
(Rodríguez et al., 2018).

The p73 protein is a major member of the p53 protein family
encoded by the TP73 gene. It is now recognized that p73 not only
impacts numerous cancer-related pathways but also regulates
various processes of embryonic development and tissue
homeostasis. Studies have revealed that TP73+/− mice display a
heightened susceptibility to cancer, underscoring the undeniable
association between p73 and cancer (Flores et al., 2005). In fact,
there is a degree of functional overlap between p53 and p73, and
p73 can inhibit cancer cell growth independently of p53 (Jost et al.,
1997; Collavin et al., 2010; Ozaki et al., 2010). There are studies that
show the p73 activators may have a different anti-cancer effect in
non-aggregative and aggregative p53 mutants (Cai et al., 2022).

P73 isoforms are crucial for the normal functioning of the
immune system. In the context of cancer, the TAp73 subtype is
considered to have anti-cancer effects (Stiewe and Pützer, 2000;
Malik et al., 2021). On one hand, resolution of macrophage-
mediated innate immunity and inflammatory responses requires
TAp73. TAp73 KO alters macrophage polarization, extending the
maintenance of the M1 effector phenotype at the expense of the
M2 phenotype, thereby impairing the resolution of inflammation
(Tomasini et al., 2013). Studies have shown that the overexpressed
tumor suppressor PCBP1 favored the production of long isoforms of
p73 in human cervical carcinoma cells, thereby inducing
upregulated ratio of Bax/Bcl-2, the release of cytochrome c and
the expression of caspase-3 (Chen et al., 2022). On the other hand,
p73 is vital for the normal functioning of the immune system. In
adaptive immunity, Ren et al. (Ren et al., 2020) recently discovered
that p73 acts as a negative regulator of Th1 immune response by
suppressing IFN γ transcription and downregulating IFN γ
production. Our study reveals a positive correlation between
TP73 and PD-1 and PD-L1 expression. TP73 rarely mutates in
tumors, making p73 an attractive therapeutic target, especially for
cancers with ineffective or disrupted p53 pathways (Dötsch et al.,
2010). Therefore, gaining a deeper understanding of the
p73 pathway is of significant importance for advancing new
cancer treatment strategies. Investigating combined
immunotherapy targeting TP73 is also a worthy avenue for
further exploration.

Due to the pivotal roles of EPGN, LCN10, and TP73 in the TIME,
we conducted an analysis of immune cell profiles in CESC to investigate
the connection between IRGPI and the composition of tumor-
infiltrating immune cells. The distribution of immune cell types
varied between the two IRGPI subgroups. Dendritic cells resting,

Macrophages M1, Mast cells resting, Plasma cells, T cells
CD4 memory resting, CD8 T cells, T cells follicular helper, and
Tregs were more abundant in the IRGPI-low subgroup, while Mast
cells activated, Neutrophils, and resting NK cells were more prevalent in
the IRGPI-high subgroup. Numerous studies have demonstrated that
dense infiltration of T cells, particularly cytotoxic CD8 T cells, is
indicative of a favorable prognosis (Bindea et al., 2013; Gentles et al.,
2015; Fridman et al., 2017), consistent with previous clinical
observations in CESC (Piersma et al., 2007). In most tumor types,
Neutrophils have been shown to promote tumor development.
Neutrophils within tumors typically contribute to
immunosuppression and are associated with a poor prognosis.
Conversely, M1 macrophages are known for their anti-tumor activity
by promoting immune responses, thus predicting a favorable prognosis
in various cancer types (Solinas et al., 2009; Qian and Pollard, 2010;
Ruffell and Coussens, 2015; Fridman et al., 2017; Metzemaekers et al.,
2023). These findings suggest that the IRGPI-low subgroup has a more
favorable immune microenvironment than the IRGPI-high subgroup.

Recently, a novel algorithm called TIDE was developed to model
tumor-immune evasion by evaluating the extent of T cell exclusion and
the priming of infiltrating cytotoxic T lymphocytes (CTLs) (Jiang et al.,
2014). TIDE has shown superior performance in assessing the
effectiveness of first-line ICI therapy in melanoma patients compared
to widely used ICI therapy biomarkers, such as tumor mutation burden
and PD-L1 expression. A higher TIDE predictive score reflects a greater
potential for immune escape, suggesting that patients are less likely to
benefit from ICI treatment. In our results, MSI scores and T cell
dysfunction were significantly higher in the low-risk group than in
the high-risk group.

Next, we investigated the relationship between PD-1/PD-
L1 expression and IRGPI. Given that PD-L1 expression is the most
commonly used criterion for determining whether patients should
receive ICI treatment, we examined the correlation between PD-L1/
PD1 expression levels and the risk score. In the TCGA dataset, we
observed that IRGPI was inversely correlated with both PD-1 and PD-
L1 expression. Furthermore, the expression of PD-1 and PD-L1
positively correlated with EPGN and TP73 expression, while
LCN10 expression was positively associated with PD-1 expression
and negatively associated with PD-L1 expression. These results
suggest a significant correlation between the risk score established in
this study and immunotherapy potential.

Although we consistently observed a positive correlation
between PD-L1 and EPGN or TP73 expression, the underlying
molecular mechanisms behind these observations remain
unclear. In Epstein-Barr virus-associated gastric cancer
(EBVaGCs), TP73 methylation is detected in 92%–100% of
cases, compared to just 5% in EBV-negative gastric cancer
(Chang et al., 2006; Ushiku et al., 2007). Small RNA encoded
by the Epstein-Barr virus (EBER) expression and loss of the EBV
genome were associated with a decrease in the number of PD-L1-
positive immune cells and CD8+ tumor-infiltrating T
lymphocytes. One possible explanation for this phenomenon is
that tumors can evade immune surveillance by down-regulating
or reducing virus-associated antigens, which may benefit tumor
progression (Kondo et al., 2023). However, there are no reports
regarding the regulatory relationship between EPGN and PD-L1.
Nevertheless, IRGPI is a valuable and reproducible measure for
assessing PD-L1 expression in CESC.
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5 Conclusion

In conclusion, the study unveiled a simplified IRGPI consisting
of three key genes. IRGPI serves as an excellent prognostic indicator
for CESC patients. It not only reflects the immune cell composition
within the tumor-immune microenvironment but also indicates the
status of TILs, as well as PD-1 and PD-L1 expression. Patients with
low IRGPI values may benefit more from CTL activation in ICI
therapy. Further research should focus on understanding the
molecular mechanisms underlying the relationships between
EPGN, LCN10, TP73, and ICI therapy, and explore their
therapeutic potential in cervical cancer treatment.
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