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The traditional single nucleotide polymorphism (SNP)-wise approach in genome-
wide association studies is focused on examining the marginal association
between each SNP with the outcome separately and applying multiple testing
adjustments to the resulting p-values to reduce false positives. However, the
approach suffers a lack of power in identifying biomarkers. We design an
ensemble machine learning approach to aggregate results from logistic
regression models based on multiple subsamples, which helps to identify
biomarkers from high-dimensional genomic data. We use different methods
to analyze a genome-wide association study from the Alzheimer’s Disease
Neuroimaging Initiative. The SNP-wise approach does not identify any
significant signal, while our novel approach provides a list of ranked SNPs
associated with the cognitive functions of interests.
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1 Introduction

Genome-wide association studies (GWASs) are used to identify associations between
genetic variations and diseases/traits of interest. A commonly used approach is the SNP-
wise approach, which involves surveying single nucleotide polymorphisms (SNPs) that
comprise the genome to locate ones associated with the outcome via regression models
Uffelmann et al. (2021). To avoid inflation of false positives, multiple testing adjustments,
such as a Bonferroni adjustment or false discovery rate (FDR) control, are carried out to the
resulting p-values from these numerous SNP-wise hypothesis testings Benjamini and
Hochberg (1995); Sesia et al. (2021); Uffelmann et al. (2021). However, after multiple
testing adjustments, barely any associations are detected, especially for small-sized and
medium-sized data Hong and Park (2012). The proposed solutions in literature for
combatting these low-powered GWASs include only testing a subset of these SNPs
given some prior knowledge, increasing p-value thresholds, and increasing sample size
to increase the power of detecting signals Johnson et al. (2010); Uffelmann et al. (2021); Wei
et al. (2009). However, the first two solutions are affected by subject opinions, and available
resources determine the sample size of a study.

The advance of machine learning algorithms provides researchers with great toolkits to
extract information from high-dimensional data. So, instead of looking at the marginal
association between the outcome variable and each SNP separately, advanced machine
learning methods can handle many SNPs simultaneously and select important ones from
them while maintaining great accuracy in prediction. For example, random forest uses
multiple decision trees as its base learners to combine prediction power for more accurate
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prediction, and it can also provide a list of SNPs ranked based on the
importance of the association with the outcome variable
Breiman (2001).

In this paper, we propose a novel algorithm named Bagged
Logistic Regression (BLESS), which can help identify important
features/SNPs when traditional SNP-wise association testing
struggles. This approach leverages bootstrapping techniques to fit
logistic regression models as its base learners on subsamples of the
data. This enables the assessment of SNP effects within each
subsample, followed by checking if the resulting p-values exceed
a threshold after multiple testing adjustments from all subsamples.
The outcome is a ranked list of SNPs based on their adjusted p-value.
The bootstrap aggregation (bagging) approach brings new insights
to the GWAS analysis.

BLESS is an ensemble algorithm that combines multiple model
outputs to reduce variability and provide a more comprehensive
representation of the data. In addition, BLESS can handle high-
dimensional data by subsetting it into more manageable sets, which
diminishes the need for extensive computational resource allocation and
assists in avoiding issues of correlation and multicollinearity between
SNPs. Finally, BLESS is capable of finding notable associated features
even in small sample sizes, making it a convenient approach since small/
medium-sized datasets are common in GWAS.

The rest of the article is organized as below. Section 2 explains
materials and methods, including datasets for method illustration,
the traditional SNP-wise approach, random forest, and our novel
BLESS algorithm approach for GWAS. Section 3 contains a
simulation study with the design and results. Section 4 is data
application, where we use these methods in our ADNI datasets
to identify SNPs significantly associated with the outcome of
cognitive impairment. At last, Section 5 discusses the
implications of the BLESS algorithm and future directions.

2 Materials and methods

2.1 Data and outcome

Data used in this article are obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (https:/adni.loni.
usc.edu). The two particular datasets used are from ADNI
Department of Defence (ADNI DoD) and ADNI2/Grand
Opportunities (ADNI2_GO). These datasets contain rich
information on genotypes, phenotypes, demographics, and
cognitive assessments of 197 and 236 participants, respectively.

The outcome of interest to this study is the cognitive measure of
Clinical Dementia Rating (CDR). CDR is a 5-point scale that
provides a standardized way to characterize the severity of
dementia, i.e., 0 = none, 0.5 = questionable, 1 = mild, 2 =
moderate, and 3 = severe Hughes et al. (1982); Morris (1993).
The measurement assesses a variety of cognitive domains, such
as “. . .memory, orientation, judgment and problem-solving,
community affairs, home and hobbies, and personal care”
(Hughes et al., 1982; Morris (1993, 1997)). Due to a severe
positive skewness of the original CDR scores in both cohorts (in
ADNI DoD, kurtosis = 11.321 and skewness = 2.547; in ADNI2_GO,
kurtosis = 3.294 and skewness = 1.642), the commonly used data
transformation functions such as log and square root are unable to

make the data symmetric. Therefore, we dichotomize the CDR
scores into two categories based on a predetermined threshold of
0.5, outlined by Hughes et al. and O’Bryant et al. O’Bryant et al.
(2008). That is, a person with scores <0.5 is classified as having no
cognitive impairment, and a person with scores ≥0.5 has some
impairment regardless of severity (mild to severe).

For the genotypes, in both cohorts, quality control (QC) is
conducted by using the popular PLINK Purcell et al. (2007) software,
which included removing individuals and SNPs with high
percentage of missing values and low minor allele frequencies,
filtering SNPs that deviated from the Hardy-Weinberg
equilibrium Edwards (2008), and removing females from the
data, as they were the extreme minority. Moreover, principal
component analysis (PCA) of genotypes is conducted, and the
top 5 principal components (PCs) are included in the model to
account for the population stratification Price et al. (2006). Table 1
contains a detailed summary of the QC procedures.

The covariates included in this study are age, ethnicity,
Apolipoprotein E4 (ApoE4), Mini-Mental State Examination
(MMSE), Alzheimer’s Disease Assessment Scale (ADAS) and the
top 5 principal components (PCs) from PCA. ApoE4 is a gene
variant strongly associated with the onset of Alzheimer’s Disease
(AD) Corder et al. (1993). Additionally, MMSE and ADAS are both
commonly used assessments of cognitive function, particularly in
the context of AD and dementia Folstein et al. (1975); Rosen et al.
(1984). Note that simple imputation is used to deal with variables
with a small proportion of missing values, where mode is imputed
for categorical variables and mean is imputed for continuous
variables. Tables 2, 3 outline the summary statistics stratified
based on CDR groups for each cohort.

2.2 SNP-wise approach

The traditional SNP-wise approach involves applying regression
models to evaluate the associations of each SNP individually to the
outcome of interest. These regression models are often adjusted by
various covariates. For example, logistic regression models would be
used in this study, as the outcome variable is binary. These models
would be adjusted by the covariates outlined in Section 2.1. From
there, multiple testing adjustments must be utilized to the resulting
p-values in order to reduce false positives Benjamini and Hochberg
(1995); Uffelmann et al. (2021).

This approach suffers stringent penalties from some multiple
testing adjustments and the invalid assumptions of independence
among the hypotheses testing required by multiple testing
procedures, leading to a lack of power in identifying important
signals from small or medium-sized data. Despite these issues, this
approach has the benefit of ranking the SNPs based on their
marginal associations, which results in taking the top SNPs for
further analysis Li (2008).

2.3 Random forest

Random forest is a powerful ensemble learning method that has
been gaining traction due to its ability to make robust and accurate
predictions. As mentioned, random forest combines the predictive
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power of multiple decision trees to make more accurate final
predictions. By making use of bagging and random feature
selection, random forest reduces model overfitting and increases
generalizability to unseen data Breiman (2001).

Using the randomForest package in R, Liaw and Wiener (2002)
we can specify the number of decision trees built as well as assess the
importance of SNPs based on two measurements, mean decrease
accuracy and mean decrease Gini. Mean decrease accuracy refers to
the reduction in accuracy when a particular feature is permuted.
Mean decrease Gini refers to the decrease in Gini impurity, which
measures the probability of misclassifying the label of a randomly
chosen element within a set of data points Mola and Siciliano (1997);
Yuan et al. (2021). Essentially, larger values on bothmeasures signify
important features Han et al. (2016).

2.4 BLESS algorithm

The BLESS algorithm utilizes an ensemble approach similar
to random forest, where the base model is a logistic regression

model instead of a decision tree. Figure 1 provides an architecture
of the BLESS algorithm. The BLESS algorithm uses bootstrap
subsampling without replacement and subsets the features, which
randomly selects a subset of all features Pathical and Serpen
(2010). These approaches can alleviate the issue of correlation
and collinearity between features and improve model
performance. These data subsets are then used to build logistic
regression models, where the aggregated results, over multiple
iterations, are subjected to FDR multiple testing adjustments,
effectively creating a ranked list of features associated with
the outcome.

Figure 1 demonstrates the architecture of the algorithm. In
Step 1, a percentage (say 90%) of the observations and
approximately the square root of the number of features
(i.e., SNPs) are randomly subsampled 1000 times/iterations.
Each subsample also contains the covariates of interest. For
Step 2, a logistic regression model is fitted, using each of the
resulting datasets from Step 1, to estimate the effects of the
selected features in the dataset on the outcome variable. This
process results in numerous statistical tests on SNPs through the
1000 logistic regression models. Within Step 3, we conduct the
FDR multiple testing adjustments to the group of p-values for
each SNP carried out from the previous step. We dynamically
adjust the p-values for multiple tests by accounting for the
fluctuating number of comparisons for each SNP. For
example, if an SNP were selected for 100 out of the
1000 iterations, then 100 would be the number of tests for
multiple testing adjustments. Finally, if any adjusted p-values
exceed the threshold of 0.05, the corresponding SNP is identified
as a significant signal and included in the final list. Moreover,
among the selected SNPs, the minimum adjusted value within the
group of p-values for that SNP is incorporated in the final list.

TABLE 1 Detailed summary of the QC procedures.

Step Description

1 Exclude SNPs and subjects with missing value rates > 0.05

2 Exclude SNPs with minor allele frequency rates < 0.05

3 Exclude SNPs with Hardy-Weinberg Equilibrium p-values < 1 × 10−6

4 Check sex balance. Remove females due to extreme minority

5 Principal Component Analysis. Calculating top 10 PCs to control for
population stratification

TABLE 2 Summary statistics for ADNI DoD data.

Normal cognition Some cognitive impairment Total

(N = 122) (N = 75) (N = 197)

Age (Years)

Mean (SD) 69.0 (±4.15) 69.5 (±5.06) 69.2 (±4.51)

Ethnicity (N (%))

Not Hispanic/Latino 114 (93%) 63 (84%) 177 (90%)

Other 8 (7%) 12 (16%) 20 (10%)

ApoE4 (N (%))a

Zero Alleles 88 (72%) 56 (75%) 144 (73%)

At Least One Allele 34 (28%) 19 (25%) 53 (27%)

MMSEb

Mean (SD) 28.4 (±1.63) 27.8 (±1.83) 28.2 (±1.73)

ADASc

Mean (SD) 10.3 (±4.45) 13.7 (±5.03) 11.6 (±4.95)

aApoE4, Apolipoprotein E4.
bMMSE, Mini-Mental State Examination.
cADAS, Alzheimer’s Disease Assessment Scale.
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This process aids in the creation of a ranked list based on these
adjusted p-values in Step 4.

It should be noted the BLESS algorithm has the flexibility to
increase the number of iterations. Augmenting the number of
iterations can ensure each feature or genetic variant has ample
opportunity to be accounted for when randomly sampling
the features.

3 Simulation study

3.1 Simulation design

We carry out simulation studies to test the ability of our novel
BLESS algorithm to identify the significant SNPs. We first build a
blueprint model based on the ADNI DoD cohort. From the cohort,

FIGURE 1
Bless algorithm architecture.

TABLE 3 Summary statistics for ADNI2_GO data.

Normal cognition Some cognitive impairment Total

(N = 58) (N = 178) (N = 236)

Age (Years)

Mean (SD) 75.7 (±5.88) 72.7 (±7.32) 73.5 (±3%)

Ethnicity (N (%))

Not Hispanic/Latino 58 (100%) 171 (96%) 229 (97%)

Other 0 (0%) 7 (4%) 7 (3%)

ApoE4 (N (%))a

Zero Alleles 47 (81%) 95 (53%) 142 (60%)

At Least One Allele 11 (19%) 83 (47%) 94 (40%)

MMSEb

Mean (SD) 28.8 (±1.44) 27.7 (±2.35) 27.9 (±2.21)

ADASc

Mean (SD) 10.9 (±4.20) 16.4 (±8.20) 15.1 (±7.79)

aApoE4, Apolipoprotein E4.
bMMSE, Mini-Mental State Examination.
cADAS, Alzheimer’s Disease Assessment Scale.
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we identify the top 1000 SNPs from SNP-wise association testing
based on their marginal effects. From the top 1000, we select the top
30 SNPs with their pairwise LD distances (r2) less than 0.8 and filter
out all other SNPs with close LD distance (r2 ≥ 0.8) to any of the top
30 SNPs Mu and Zhang (2013). This results in 771 SNPs passing the
filtering. In our blueprint model, the top 30 SNPs are true SNPs
carrying signals, and the remaining ones do not contribute to the
outcome variable. That is, our blueprint model is:

logit Pr yi � 1( )( ) � β0 +∑
771

j�1
βjSNPij,

where β0 is the intercept, βj is the coefficient for the j
th SNP, i is the

subject index, and j is the SNP index with i � 1, 2, . . . , n and
j � 1, 2, . . . , 771. In particular, we set β0 � 0 and generate βj by
adding noise from N(mean � 0.3, sd � 0.1) to the true effects for j �
1, 2./ , 30 and the remaining βs’ are 0. It is known that the
contribution of a single SNP is small. So, for these SNPs with true
signals, we chose the mean to be 0.3 and the standard deviation to be a
third of the mean. This way, we can get a similar overall frequency of
the outcome variable being 1 with the original data, as well as ensure
the generated βj has noise different from 0. For each replication, we
simulate a set of βj’s and use the original genotyping data from the top
30 SNP to generate the outcome variables. The generated data has the
same sample size as the original one (n � 197). We repeat the process
100 times to generate 100 copies of data.

For each simulated data, we apply the BLESS algorithm and
obtain the list of significant SNPs for each dataset. To obtain the best
combination of the tuning parameters in the BLESS algorithm, we
vary the size of percentages as 80%, 90% and 100% and vary the
number of selected features as 10, 30, and 50. Note that the
percentages of 90% and the magic number 30 (i.e., approximately
the square root of the total number of features considered) are
recommended for the bagging method Liaw and Wiener (2002).
Additionally, we consider increasing the number of input SNPs to
5000. Following the same setup as above, 3614 SNPs pass the
filtering and are used to assess the algorithm’s performance.

We calculate the recall, precision, and accuracy for these lists of
identified SNPs to assess the algorithm’s overall performance in
identifying the true signals. Let true positive (TP) be the number of
SNPs that BLESS can identify from the 30 blueprint SNPs, true
negative (TN) be the number of SNPs that BLESS did not identify
and were not in the blueprint SNPs, false positive (FP) be the
number of SNPs BLESS identified and were not in the blueprint
SNPs, and false negative (FN) be the number of SNPs from the
blueprint SNPs that BLESS did not identify. The evaluation metrics
are defined as the following.

Recall � TP
TP + FN

,

Precision � TP
TP + FP

,

Accuracy � TP + TN
TP + FP + FN + TN

As a comparison, we also carry out the SNP-wise approach to
the generated data mentioned above, with adjustment of the
resulting p-values based on an FDR adjustment. For this, the
simulation metrics are set up the same as above.

3.2 Simulation results

Figure 2 shows the boxplots of the resulting recall, precision, and
accuracy from simulation studies across various simulation settings
when inputting 1000 SNPs. Supplementary Appendix Figure S7 in
Supplementary Appendix 6.2 displays the similar results when
inputting 5000 SNPs. In general, the BLESS algorithm provides
high recall, low precision, and medium accuracy across all the
simulation settings, indicating its ability to identify most of the
original blueprint SNPs accurately but also possessing quite a bit of
false positive signals. The best combination of the tuning parameters
is 90% with 30 (the square root of the total features) based on a
balanced performance of all metrics considered.

Figure 3 displays the simulation evaluation metrics for applying
SNP-wise association testing with FDR multiple testing corrections
when inputting 1000 SNPs. Supplementary Appendix Figure S8 (in
Supplementary Appendix 6.2) does the same but for 5000 input
SNPs. As shown, the SNP-wise approach has high recall, low
precision and low accuracy indicating this method can identify
nearly all the blueprint SNPs, but also a large number of false signals.

From this result, BLESS generally performs better than the
traditional SNP-wise approach when considering all the
evaluation metrics. Now we apply the BLESS algorithm to real data.

4 Data application

We apply our BLESS algorithm to the two ADNI datasets
introduced in Section 2.1 to demonstrate algorithm applications. For
both cohorts, the outcome variable is the dichotomized CDR score
indicating a normal or cognitive impairment status, and the included
covariates are age, ApoE4, MMSE, ADAS, and the top 5 PCs. After the
quality control, the genotyping data are included for analysis. ADNI
DoD and ANDI2_GO contain the variables mentioned and the genetic
information from 197 to 236 participants, respectively.

As for the analysis approach, we first apply SNP-wise association
testing to both cohorts to assess their SNPs’marginal effects associated
with the binary CDR outcome. In particular, as stated previously in
Section 2.2, logistic regression is used as the base model, which is
adjusted by Age, MMSE scores, ADAS scores, ApoE4, Ethnicity, and
the top 5 PCs, for each of the cohorts. We utilize this approach as a way
to filter out the top 1000 SNPs for each group. From there, we apply
both random forest and the BLESS algorithm to each filtered SNP list,
comparing and contrasting the results between the two. Finally, GSEA is
performed on the top 100 BLESS-identified SNPs, for ADNI DoD only,
to highlight the importance of GSEA and further validate the BLESS
algorithm’s ability to identify SNPs associated with cognitive
impairment when traditional methods struggle.

Figure 4 is the Manhattan Plot for ADNI DoD. Due to the
stringent multiple testing penalty and not reaching the genome-wide
threshold, no significant SNPs are uncovered. Therefore, we carry
the top SNPs to use with random forest and BLESS.

4.1 Random forest

For both cohorts, using the top 1000 SNPs and the covariates
indicated above, the random forest models are built with 1000 trees.
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The results, based on the measurements in Section 2.3, are shown in
Figures 5, 6. Additionally, Appendix 6.2 contains results from
building the models with 5000 trees (Supplementary Appendix
Figures S9, S10).

4.2 BLESS results

Based on the results in Section 3.2 and for simplicity, we utilize
1000 input SNPs. Taking the top 1000 SNPs from the SNP-wise
approach, in addition to the covariates and outcome variable
mentioned above, we apply the BLESS algorithm to them for
each cohort. As outlined in Section 2.4, we randomly sample

90% of the observations and use a subset of approximately
square root the number of SNPs (about 30 SNPs) for ADNI
DoD and ADNI2_GO separately, while including the covariates
as fixed effects for every iteration. Using the subsample of data, we fit
the logistic regression base model. We then repeat this process
1000 times and aggregate the results. From there, we apply FDR
multiple testing adjustment to each grouped SNP and extract the
minimum adjusted p-value.

Tables 4, 5 display the top 10 features identified by BLESS for
their respective cohort. These top 10 BLESS identified features are
accompanied by their FDR-adjusted p-values (FDR-p), p-value from
SNP-wise association testing, and the rank of that feature with
respect to the top 1000 SNPs based on marginal effects.

FIGURE 2
Boxplots of Evaluation Metrics from Simulation Studies for 1000 Input SNPs. The number of selected features varies as 10, 30, and 50, and the
proportion of subsamples varies as 80%, 90% and 100%.

FIGURE 3
Boxplots of evaluation metrics from simulation studies for 1000 input SNPs from SNP-wise association testing.
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Moreover, we identify some overlap by comparing the results
between random forest and BLESS. For example, in the ADNI DoD
group, BLESS-identified SNPs rs11161788 (FDR-p< 0.001),
rs11767371 (FDR-p< 0.001), rs17158379 (FDR-p< 0.001),
rs4724376 (FDR-p< 0.001), rs7127081 (FDR-p< 0.001),
rs7169979 (FDR-p< 0.001), and rs7550529 (FDR-p< 0.001) are
present for both Mean Decrease Gini and Mean Decrease
Accuracy in Figure 5. Similarly, from ADNI2_GO, BLESS-
identified SNPs rs10732752 (FDR-p< 0.001), rs12294719 (FDR-
p< 0.001), rs1915762 (FDR-p< 0.001), rs332433 (FDR-p< 0.001),
rs332438 (FDR-p< 0.001), rs35200886 (FDR-p< 0.001) and

rs10057765 (FDR-p = 3.12 × 10−2) correspond to results in
Figure 6. These overlapping findings highlight the BLESS
algorithms’ capacity to detect features comparable to another
bootstrap aggregation method while supplying an additional set
of significant features.

Additionally, as discussed in Section 2.4, the number of
iterations can be increased to enhance the probability that each
feature is accurately accounted for. Supplementary Appendix Tables
S6, S7 in Supplementary Appendix 6.1 show the results of
augmenting the number of iterations in the BLESS
algorithm to 5000.

FIGURE 4
Manhattan Plot from the SNP-Wise Approach for ADNI DoD. The red horizontal line is the genome-wide significance threshold (p-value = 5 × 10−8).
The blue horizontal line is the suggestive line (p-value = 1 × 10−5).

FIGURE 5
Dotchart Plot of Variable Importance from Random Forest for ADNI DoD. This model was built using 1000 trees.

Frontiers in Genetics frontiersin.org07

Gardiner et al. 10.3389/fgene.2024.1336891

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1336891


4.3 Post-hoc analysis

SNP to gene mapping is essential for determining the biological
impact of particular SNPs. The mapping allows for a clearer
understanding of how each SNP is related to the disease/trait of
interest. Using the popular web-based genomic tool, g:Profiler
Raudvere et al. (2019), we input the top 100 BLESS-identified
SNPs for ADNI DoD with 1000 iterations, to identify which
genes those SNPs land on. From there, we investigate the
designated genes to identify associations with cognitive decline

related to AD. An Excel file with the mapped genes can be found
in Supplementary Material.

Some of the BLESS results hold promising biological implications.
For example, rs10807240 is mapped to Leucine Rich Repeat And
Fibronectin Type III Domain Containing 2 (LRFN2). A case study
conducted by Thevenon et al. resulted in the implication of LRFN2 to
deficits in a variety of tasks related to attention, working memory, and
executive function Thevenon et al. (2015). Additionally, LRFN2 has
been associated with antisocial personality disorder Rautiainen et al.
(2016) and autism Voineagu et al. (2011).

FIGURE 6
Dotchart Plot of Variable Importance from Random Forest for ADNI2_GO. This model was built using 1000 trees.

TABLE 4 Top 10 ranked features from the BLESS algorithm for ADNI DoD with 1000 iterations.

Feature FDR adjusted p-value Marginal p-value Rank

rs10027161 <0.001 1.105233e-03 446

rs10047112 <0.001 7.520767e-04 291

rs10061898 <0.001 6.580724e-04 235

rs10062726 <0.001 1.065982e-03 430

rs10072248 <0.001 2.012709e-03 947

rs10087406 <0.001 3.896721e-04 134

rs10152713 <0.001 6.389886e-04 227

rs10157147 <0.001 3.979436e-04 137

rs10163879 <0.001 1.284811e-04 42

rs10165591 <0.001 1.053653e-03 425

Frontiers in Genetics frontiersin.org08

Gardiner et al. 10.3389/fgene.2024.1336891

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1336891


Furthermore, these trends have been identified in mice. LRFN2-
deficient mice have displayed suppressed inhibitory synapse
development in the hippocampus, one of the main brain regions
responsible for memory formation, and autism-like behaviours such
as sensory dysfunction, impaired communication skills and social
withdrawal Li et al. (2018); Morimura et al. (2019). However, despite
these findings, the knowledge behind the role of LRFN2 is limited,
especially for humans, and therefore requires further investigation.

Moving on from LFRN2, rs11129016 is mapped to Zinc Finger
Protein 385D (ZNF385D). A GWAS conducted by Eicher et al.
identified multiple SNPs, which mapped to this gene, associated with
reading disability and language impairment. These disorders introduce
barriers that affect communication skills development. Additionally,
Eicher et al. found ZNF385D markers associated with overall brain
volume Eicher et al. (2013). Brain volume changes have been associated
with changes in cognition. That is, volume loss has been associated with
higher rates of annual memory loss, decline in verbal fluency, and
reduced attention, visuospatial ability and executive function Armstrong
et al. (2020). Finally, in anADNI study, a couple of SNPswithin this gene
were associated with brain arteriolosclerosis. This disease is characterized
by the thickening of arterial vessel walls in the brain and has been linked
to worst MMSE and CDR scores Ighodaro et al. (2016).

5 Conclusion and discussion

This article introduces the BLESS algorithm, an alternative
approach for identifying relevant SNPs that may have been
missed from the SNP-wise approach. It employs ensemble
machine-learning approaches that involve subsampling and
subsetting data, fitting logistic regression models for each subset,
and applying FDR multiple testing adjustments to the aggregated
result from multiple iterations. One of the main motivations behind
this algorithm is to create an approach that can be used in GWAS
when the traditional SNP-wise approach may produce inconclusive
results. Additionally, as we randomly select a subset of SNPs for an
iteration, the BLESS algorithm can assist in avoiding issues of
correlation and collinearity or linkage disequilibrium between SNPs.

Utilizing simulation studies, we demonstrate the BLESS
algorithm’s ability to identify a good proportion of the

simulation-generating SNPs (i.e., true signals). From there, we
apply random forest and the BLESS algorithm to data from
ADNI DoD and ADNI2_GO to identify SNPs related to the
cognitive measure CDR that were missed in the SNP-wise
approach. Notably, we emphasize the BLESS algorithm’s ability
to provide a ranked list based on FDR-adjusted p-values. This
approach not only captures comparable results to another
bagging method but also offers additional significant features.

Finally, using the top-ranked features from BLESS for ADNI
DoD, GSEA was performed to explore the biological implications of
the identified SNPs. This analysis serves to reinforce the application
of SNP to gene mapping and provides further validation for the
performance of the BLESS algorithm.

Some of the limitations behind this approach lie in the subsampling
used. When using subsampling for each iteration, many features are
excluded from the model-building process. Since the data is randomly
subsampled, there is a potential to miss features and/or only build a few
models with relevant features. However, as mentioned, the number of
iterations can be increased to ensure each feature has more
opportunities to be sampled. Additionally, it may be theoretically
challenging to determine the optimal number of iterations. By
monitoring the results between sequential iterations and looking for
signs of convergence, researchers can make decisions on the stopping
criteria. However, this approach is data-specific and requires
researchers’ subjective opinions on the signs of convergence. Future
studies can explore more robust methods for identifying the optimal
number of iterations.

In conclusion, BLESS can be used to identify associated SNPs
when traditional SNP-wise approaches struggle. BLESS can also
handle high-dimensional data, as well as utilize common small/
medium-sized data. Moreover, since this algorithm can be treated as
a general ensemble machine learning method, it can be applied to
data in other research sections.

For the Alzheimer’s disease
neuroimaging initiative

Data used in preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

TABLE 5 Top 10 ranked features from the BLESS algorithm for ADNI2_GO with 1000 iterations.

Feature FDR adjusted p-value Marginal p-value Rank

rs1000960 <0.001 1.973342e-03 973

rs1001383 <0.001 1.946161e-03 961

rs10021925 <0.001 4.286250e-04 213

rs10035001 <0.001 1.467912e-03 709

rs10047855 <0.001 7.565090e-04 382

rs10050235 <0.001 1.157843e-03 547

rs10060689 <0.001 1.826003e-03 909

rs10090180 <0.001 9.629075e-04 469

rs10113 <0.001 1.549562e-03 760

rs10125807 <0.001 6.062699e-04 309

Frontiers in Genetics frontiersin.org09

Gardiner et al. 10.3389/fgene.2024.1336891

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1336891


(adni.loni.usc.edu). As such, the investigators within the ADNI
contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at:
http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions: Authors obtained the data usage through an
application process from the ADNI website. Requests to access these
datasets should be directed to https://adni.loni.usc.edu/data-
samples/access-data/#access_data.

Author contributions

KG: Formal Analysis, Software, Visualization, Validation,
Writing–original draft, Writing–review and editing. XZ:
Conceptualization, Funding acquisition, Methodology, Resources,
Software, Supervision, Validation, Writing–review and editing. LX:
Conceptualization, Funding acquisition, Methodology, Project
administration, Resources, Software, Supervision, Validation,
Visualization, Writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
work is supported by the University of Saskatchewan internal
funding, NSERC DG # RGPIN-2021-03530 (LX), the Canada
Research Chair #CRC-2021-00232 (XZ), the Michael Smith
Health Research BC Scholar: # SCH-2022-2553 (XZ), and
NSERC CGS-M (KG). ADNI is funded by the National
Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, and through generous
contributions from the following: AbbVie, Alzheimer’s
Association; Alzheimer’s Drug Discovery Foundation; Araclon
Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb
Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan
Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F.
Hoffmann-La Roche Ltd. and its affiliated company Genentech,
Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer
Immunotherapy Research Development, LLC.; Johnson
Pharmaceutical Research Development LLC.; Lumosity;
Lundbeck; Merck Co., Inc.; Meso Scale Diagnostics, LLC.;
NeuroRx Research; Neurotrack Technologies; Novartis

Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging;
Servier; Takeda Pharmaceutical Company; and Transition
Therapeutics. The Canadian Institutes of Health Research is
providing funds to support ADNI clinical sites in Canada.
Private sector contributions are facilitated by the Foundation
for the National Institutes of Health (www.fnih.org). The grantee
organization is the Northern California Institute for Research
and Education, and the study is coordinated by the Alzheimer’s
Therapeutic Research Institute at the University of Southern
California. ADNI data are disseminated by the Laboratory for
Neuro Imaging at the University of Southern California.

Acknowledgments

We acknowledge the Digital Research Alliance of Canada for
providing the computational resources. Additionally, We would like
to acknowledge this research is an extension of a PIMS VXML
project, Genome-Wide Association Study on Gene Pathway
Identification and Cognitive Function Prediction (https://vxml.
pims.math.ca/projects/genome/). We would also like to
acknowledge ADNI. Data collection and sharing for this project
was funded by the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (National Institutes of Health Grant U01 AG024904) and
DOD ADNI (Department of Defense award number W81XWH-12-
2-0012).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2024.1336891/
full#supplementary-material

References

Armstrong, N. M., An, Y., Shin, J. J., Williams, O. A., Doshi, J., Erus, G., et al.
(2020). Associations between cognitive and brain volume changes in cognitively
normal older adults. NeuroImage 223, 117289. doi:10.1016/j.neuroimage.2020.
117289

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false
discovery rate: a practical and powerful approach to multiple testing.
J. R. Stat. Soc. Ser. B Methodol. 57, 289–300. doi:10.1111/j.2517-6161.1995.
tb02031.x

Frontiers in Genetics frontiersin.org10

Gardiner et al. 10.3389/fgene.2024.1336891

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://adni.loni.usc.edu/data-samples/access-data/#access_data
https://adni.loni.usc.edu/data-samples/access-data/#access_data
http://www.fnih.org
https://vxml.pims.math.ca/projects/genome/
https://vxml.pims.math.ca/projects/genome/
https://www.frontiersin.org/articles/10.3389/fgene.2024.1336891/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2024.1336891/full#supplementary-material
https://doi.org/10.1016/j.neuroimage.2020.117289
https://doi.org/10.1016/j.neuroimage.2020.117289
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1336891


Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi:10.1023/a:
1010933404324

Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C.,
Small, G. W., et al. (1993). Gene dose of apolipoprotein e type 4 allele and the risk of
alzheimer’s disease in late onset families. Science 261, 921–923. doi:10.1126/science.
8346443

Edwards, A. (2008). Anecdotal, historical and critical commentaries on genetics: gh
hardy (1908) and hardy–weinberg equilibrium. Genetics 179, 1143–1150. doi:10.1534/
genetics.104.92940

Eicher, J. D., Powers, N. R., Miller, L. L., Akshoomoff, N., Amaral, D. G., Bloss, C.
S., et al. (2013). Genome-wide association study of shared components of reading
disability and language impairment. Genes, Brain Behav. 12, 792–801. doi:10.1111/
gbb.12085

Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975). “mini-mental state”: a
practical method for grading the cognitive state of patients for the clinician.
J. Psychiatric Res. 12, 189–198. doi:10.1016/0022-3956(75)90026-6

Han, H., Guo, X., and Yu, H. (2016). “Variable selection using mean decrease accuracy
and mean decrease gini based on random forest,” in 2016 7th IEEE International
Conference on Software Engineering and Service Science (ICSESS), Beijing, 26-28 Aug.
2016, 219–224. doi:10.1109/ICSESS.2016.7883053

Hong, E., and Park, J. (2012). Sample size and statistical power calculation in
genetic association studies. Genomics amp; Inf. 10, 117–122. doi:10.5808/gi.2012.
10.2.117

Hughes, C. P., Berg, L., Danziger, W., Coben, L. A., and Martin, R. L. (1982). A new
clinical scale for the staging of dementia. Br. J. Psychiatry 140, 566–572. doi:10.1192/bjp.
140.6.566

Ighodaro, E. T., Abner, E. L., Fardo, D. W., Lin, A.-L., Katsumata, Y., Schmitt, F. A.,
et al. (2016). Risk factors and global cognitive status related to brain arteriolosclerosis in
elderly individuals. J. Cereb. Blood Flow amp; Metabolism 37, 201–216. doi:10.1177/
0271678x15621574

Johnson, R. C., Nelson, G. W., Troyer, J. L., Lautenberger, J. A., Kessing, B. D.,
Winkler, C. A., et al. (2010). Accounting for multiple comparisons in a genome-wide
association study (gwas). BMC Genomics 11, 724. doi:10.1186/1471-2164-11-724

Li, J. (2008). Prioritize and select snps for association studies with multi-stage designs.
J. Comput. Biol. 15, 241–257. doi:10.1089/cmb.2007.0090

Li, Y., Kim, R., Cho, Y. S., Song, W. S., Kim, D., Kim, K., et al. (2018). Lrfn2-mutant
mice display suppressed synaptic plasticity and inhibitory synapse development and
abnormal social communication and startle response. J. Neurosci. 38, 5872–5887.
doi:10.1523/jneurosci.3321-17.2018

Liaw, A., and Wiener, M. (2002). Classification and regression by randomforest. R.
News 2, 18–22.

Mola, F., and Siciliano, R. (1997). A fast splitting procedure for classification trees.
Statistics Comput. 7, 209–216. doi:10.1023/A:1018590219790

Morimura, N., Yasuda, H., Yamaguchi, K., Katayama, K.-I., Tomioka, N. H., Yamada,
K., et al. (2019). Autism-like behaviors and enhanced memory formation and synaptic
plasticity in lrfn2/salm1-deficient mice. IBRO Rep. 6, S144–S145. doi:10.1016/j.ibror.
2019.07.460

Morris, J. C. (1993). The Clinical Dementia Rating (CDR): current version and
scoring rules. Neurology 43, 2412–2414. doi:10.1212/wnl.43.11.2412-a

Morris, J. C. (1997). Clinical dementia rating: a reliable and valid diagnostic and
staging measure for dementia of the alzheimer type. Int. Psychogeriatrics 9, 173–176.
doi:10.1017/s1041610297004870

Mu, W., and Zhang, W. (2013). Molecular approaches, models, and techniques in
pharmacogenomic research and development. Pharmacogenomics, 273–294. doi:10.
1016/b978-0-12-391918-2.00008-1

O’Bryant, S. E., Waring, S. C., Munro Cullum, C., Hall, J., Lacritz, L., Massman, P. J.,
et al. (2008). Staging dementia using clinical dementia rating scale sum of boxes scores: a
Texas alzheimer’s research consortium study. Archives Neurology 65, 1091–1095.
doi:10.1001/archneur.65.8.1091

Pathical, S., and Serpen, G. (2010). “Comparison of subsampling techniques for
random subspace ensembles,” in 2010 international conference on machine learning and
cybernetics, 1, 380–385. doi:10.1109/ICMLC.2010.5581032

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and Reich,
D. (2006). Principal components analysis corrects for stratification in genome-wide
association studies. Nat. Genet. 38, 904–909. doi:10.1038/ng1847

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., et al.
(2007). Plink: a tool set for whole-genome association and population-based linkage
analyses. Am. J. Hum. Genet. 81, 559–575. doi:10.1086/519795

Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., et al. (2019). g:
profiler: a web server for functional enrichment analysis and conversions of gene lists
(2019 update). Nucleic acids Res. 47, W191–W198. doi:10.1093/nar/gkz369

Rautiainen, M.-R., Paunio, T., Repo-Tiihonen, E., Virkkunen, M., Ollila, H. M.,
Sulkava, S., et al. (2016). Genome-wide association study of antisocial personality
disorder. Transl. Psychiatry 6, e883. doi:10.1038/tp.2016.155

Rosen, W., Mohs, R., and Davis, K. (1984). A new rating scale for alzheimer’s disease.
Am. J. Psychiatry 141, 1356–1364. doi:10.1176/ajp.141.11.1356

Sesia, M., Bates, S., Candès, E., Marchini, J., and Sabatti, C. (2021). False discovery rate
control in genome-wide association studies with population structure. Proc. Natl. Acad.
Sci. 118, e2105841118. doi:10.1073/pnas.2105841118

Thevenon, J., Souchay, C., Seabold, G. K., Dygai-Cochet, I., Callier, P., Gay, S., et al.
(2015). Heterozygous deletion of the lrfn2 gene is associated with working memory
deficits. Eur. J. Hum. Genet. 24, 911–918. doi:10.1038/ejhg.2015.221

Uffelmann, E., Huang, Q. Q., Munung, N. S., de Vries, J., Okada, Y., Martin, A. R.,
et al. (2021). Genome-wide association studies. Nat. Rev. Methods Prim. 1, 59. doi:10.
1038/s43586-021-00056-9

Voineagu, I., Wang, X., Johnston, P., Lowe, J. K., Tian, Y., Horvath, S., et al. (2011).
Transcriptomic analysis of autistic brain reveals convergent molecular pathology.
Nature 474, 380–384. doi:10.1038/nature10110

Wei, Z., Sun, W., Wang, K., and Hakonarson, H. (2009). Multiple testing in genome-
wide association studies via hidden markov models. Bioinformatics 25, 2802–2808.
doi:10.1093/bioinformatics/btp476

Yuan, Y., Wu, L., and Zhang, X. (2021). Gini-impurity index analysis. IEEE Trans. Inf.
Forensics Secur. 16, 3154–3169. doi:10.1109/tifs.2021.3076932

Frontiers in Genetics frontiersin.org11

Gardiner et al. 10.3389/fgene.2024.1336891

https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1126/science.8346443
https://doi.org/10.1126/science.8346443
https://doi.org/10.1534/genetics.104.92940
https://doi.org/10.1534/genetics.104.92940
https://doi.org/10.1111/gbb.12085
https://doi.org/10.1111/gbb.12085
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1109/ICSESS.2016.7883053
https://doi.org/10.5808/gi.2012.10.2.117
https://doi.org/10.5808/gi.2012.10.2.117
https://doi.org/10.1192/bjp.140.6.566
https://doi.org/10.1192/bjp.140.6.566
https://doi.org/10.1177/0271678x15621574
https://doi.org/10.1177/0271678x15621574
https://doi.org/10.1186/1471-2164-11-724
https://doi.org/10.1089/cmb.2007.0090
https://doi.org/10.1523/jneurosci.3321-17.2018
https://doi.org/10.1023/A:1018590219790
https://doi.org/10.1016/j.ibror.2019.07.460
https://doi.org/10.1016/j.ibror.2019.07.460
https://doi.org/10.1212/wnl.43.11.2412-a
https://doi.org/10.1017/s1041610297004870
https://doi.org/10.1016/b978-0-12-391918-2.00008-1
https://doi.org/10.1016/b978-0-12-391918-2.00008-1
https://doi.org/10.1001/archneur.65.8.1091
https://doi.org/10.1109/ICMLC.2010.5581032
https://doi.org/10.1038/ng1847
https://doi.org/10.1086/519795
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1038/tp.2016.155
https://doi.org/10.1176/ajp.141.11.1356
https://doi.org/10.1073/pnas.2105841118
https://doi.org/10.1038/ejhg.2015.221
https://doi.org/10.1038/s43586-021-00056-9
https://doi.org/10.1038/s43586-021-00056-9
https://doi.org/10.1038/nature10110
https://doi.org/10.1093/bioinformatics/btp476
https://doi.org/10.1109/tifs.2021.3076932
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1336891

	BLESS: bagged logistic regression for biomarker identification
	1 Introduction
	2 Materials and methods
	2.1 Data and outcome
	2.2 SNP-wise approach
	2.3 Random forest
	2.4 BLESS algorithm

	3 Simulation study
	3.1 Simulation design
	3.2 Simulation results

	4 Data application
	4.1 Random forest
	4.2 BLESS results
	4.3 Post-hoc analysis

	5 Conclusion and discussion
	For the Alzheimer’s disease neuroimaging initiative
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


