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An increasing number of studies point to an association between mitochondrial
proteins (MPs) and lung cancer (LC). However, the causal relationship between
MPs and LC remains unclear. Consequently, our study employed a bidirectional
Mendelian randomization (MR) analysis to explore the causal association between
MPs and different pathological types of LC. A two-sample MR study was
performed using the genome-wide association study (GWAS) data publicly
available. We applied the primary inverse variance weighted (IVW) method
along with additional MR methods to validate the causality between MPs and
different pathological types of LC. To ensure the robustness of our findings,
sensitivity analyses were employed. Moreover, we performed a bi-directional MR
analysis to determine the direction of the causal association. We identified a total
of seven MPs had significant causal relationships on overall LC, lung squamous
cell carcinoma (LUSC), and small cell lung carcinoma (SCLC). We found two MPs
had significant associations with overall LC, four MPs had significant associations
with LUSC, and four MPs had significant associations with SCLC. Additionally, an
MP was found to have a nominal relationship with LUSC. Moreover, no causality
was found between MPs and lung adenocarcinoma (LUAD). Bidirectional MR
showed no reverse effect between identifiedMPs and different pathological types
of LC. In general, our findings of this MR study suggest causal associations of
specific MPs with overall LC, LUSC, and SCLC. However, no such causality was
found in LUAD.
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1 Introduction

Cancer stands as one of the primary causes of global mortality.
On a worldwide scale, in 2020, it is estimated that approximately
2.2 million new cases of lung cancer (LC) and nearly 1.8 million LC
deaths occurred. Meanwhile, LC ranked as the most commonly
diagnosed cancer among males and the third most frequently
diagnosed cancer among females (Sung et al., 2021). The
incidence of new LC cases is projected to rise until 2035 in most
countries, which causes a substantial global public health challenge
(Luo et al., 2023). The majority of LC patients are diagnosed at an
advanced stage of the disease, resulting in a 5-year survival rate of
less than 20% (Osuoha et al., 2018; Bade and Dela Cruz, 2020).
Hence, it is crucial to identify modifiable protective or risk factors to
prevent the occurrence and progression of LC. Smoking is the most
established and well-acknowledged risk factor for LC (Leiter et al.,
2023). However, as smoking prevalence decreases and the number of
LC cases in nonsmokers rises, it becomes increasingly important to
investigate a better understanding of LC development (Bade and
Dela Cruz, 2020). As a result, further research is gradually focusing
on the other risk factors of LC, encompassing environmental
exposures, lifestyle, gender, and genetics (Schabath and Cote, 2019).

Mitochondria serve as the central command for cellular
metabolism, maintaining equilibrium and stress responses,
playing a pivotal role in regulating processes like cell growth,
division, differentiation, and apoptosis (Anderson et al., 2019).
Previous studies have unveiled an unforeseen complexity and
versatility in mitochondrial activities, combining mitochondrial
energetics with protein biogenesis, metabolic pathways, and
apoptosis (Pfanner et al., 2019). Moreover, recent studies based
on proteomics indicated the remarkable importance of retaining
mitochondrial proteostasis in guaranteeing the correct function of
mitochondria (Wachoski-Dark et al., 2022). Encoded by both
nuclear and mitochondrial DNA, mitochondrial proteins (MPs)
are susceptible to errors during folding and assembly on account of
oxidative stress and post-translational modifications (Stefani, 2004;
Santo-Domingo and Demaurex, 2012). This may result in
mitochondrial dysfunction, leading to an increase in reactive
oxygen species (ROS) with tumor-promoting effect (Bandy and
Davison, 1990). Mitochondrial protein quality control (MPQC)
employs various pathways and regulators to maintain the quality
and quantity of MPs. Dysregulated MPQC results in proteotoxicity
andmalfunctioning mitochondria, contributing to a range of human
diseases, including cancer. Numerous studies have connected the
dysfunction of MPQC in the etiology and pathogenesis of multiple
types of cancer, including LC (Wallace, 2012; Friedlander et al.,
2021). However, due to various objective factors, including
technological and methodological constraints, the majority of
existing research findings about MPQC rely on the animal or
cellular experiments which can be influenced by multiple
variables (Friedlander et al., 2021). In summary, the causality of
the relationships between MPs and LC, as well as the direction of
these causal connections, remains unclear. Therefore, it is crucial to
investigate if MPs contribute to the onset of LC or just outcomes of
shared risk factors.

Mendelian randomization (MR) analysis is a widely used
method for establishing the causal relationship between exposure
factors and outcomes, with the fundamental principle of employing

genetic variations as instrumental variables (IVs) to model and
evaluate the causality (Sanderson, 2021). The MR approach parallels
the design of a randomized controlled trial (RCT) on account of
parental alleles being randomly distributed to offspring during
gamete formation in Mendel’s law (Emdin et al., 2017).
Furthermore, the results of MR studies are more robust against
residual confoundings and the bias of reverse causal effects because
the genetic variations are randomly assigned during meiosis and are
not linked to environmental factors (Boehm and Zhou, 2022).

In our study, we aimed to apply a comprehensive two-sample
MR analysis to determine the causal effect between MPs and LC and
its various pathological types. By means of employing a bidirectional
MR analysis, we could investigate the causality of MPs on LC risk
and also determine if LC had a causal effect on MPs. From this
foundation, we aimed to elucidate the influence between MPs and
different pathological types of LC, ultimately aiding in developing
innovative treatment options for LC.

2 Methods

2.1 Study design

Figure 1 illustrates an overview of the bidirectional MR analyses
employed in our study. All IVs selected were guided by three
principal assumptions of MR studies. Namely, IVs must
demonstrate a strong association with the exposure; IVs impact
the outcome solely through the exposure; IVs should not exhibit any
association with confounding factors in the relationship between
exposure and outcome.

2.2 Genome-wide association study
(GWAS) sources

The GWAS data for MPs were sourced from a GWAS study
involving a total sample size of 3,301 healthy participants of
European descent (Sun et al., 2018). A total of 66 mitochondrial
proteins (due to limited data availability) were enrolled in the
subsequent MR analysis. The GWAS data for LC were derived
from a large-scale GWAS study involving 85,716 individuals with
29,266 cases and 56,450 controls, while the GWAS study ulteriorly
categorized LC into specific pathological types as lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),
and small cell lung carcinoma (SCLC) (McKay et al., 2017). All
detailed information on GWAS data for MR analyses is presented in
Figure 1. The original GWAS obtained approval from their
respective institutions, and all data used for this study are
publicly available. Therefore, no additional ethical approval
was required.

2.3 Acquisition of IVs

Due to the restricted pool of accessible SNPs, we opted for SNPs
with a cutoff of p < 1e-5. Then genetic instruments were excluded on
a linkage disequilibrium (LD) threshold of r2 < 0.001 and a window
size = 10,000 kb. To assess the statistical strength of each SNP, the F
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statistics were also calculated, and the SNPs with F statistic <10 were
eliminated for weak strength (Brion et al., 2013). We further
excluded IVs that exhibited associations with potential
confounding traits according to PhenoScanner (http://www.
phenoscanner.medschl.cam.ac.uk/).

2.4 MR analysis

As for the two-sample analyses, we conducted the inverse
variance-weighted (IVW) method as the primary approach for
examining the bidirectional causal relationships between MPs
and different pathological types of LC. Additionally, three
complementary MR approaches were employed, including MR-
Egger, weighted median (WM), and MR-Pleiotropy residual sum
and outlier (MR-PRESSO), to sustain the findings derived from the
IVM method. p-values were adjusted for false discovery rate (FDR)
method, and Adjusted p-values (adj. P) < 0.05 were considered
statistically significant. Also, p-values <0.05 were considered
nominally significant.

2.5 Sensitivity analysis

Given that the IVW method could be biased by pleiotropic IVs,
sensitivity analyses were employed to address the pleiotropic effects
in the causal estimates. To assess potential heterogeneity, Cochrane’s
Q test was applied. In cases where heterogeneity was detected p <
0.05, a random-effects IVW analysis was performed to account for
the measured heterogeneity. Additionally, the intercept of MR-
Egger and MR-PRESSO global test were adopted to estimate the
presence of horizontal pleio8tropy in the genetic variants (p <
0.05 indicated potential horizontal pleiotropy) while MR-PRESSO
global test demonstrated a greater level of accuracy and assistance
compared to MR-Egger in identifying horizontal pleiotropy.

Furthermore, a leave-one-out analysis was conducted to
determine whether the results were actuated by individual
variants. We conducted all our MR analyses using the R software
(version 4.3.1).

3 Results

3.1 Acquisition of IVs

After filtering for SNPs with LD, significantly linked to potential
confounders (lung function and chronic obstructive pulmonary
disease), and other LC-associated traits, a total of 125 SNPs were
enrolled as IVs for the ensuing MR analyses, with the F statistics for
each SNP being >10, demonstrating the absence of instrument bias
(Supplementary Table S1).

3.2 Causal effects of MPs on LC

The results reported that both mitochondrial NADH
dehydrogenase [ubiquinone]iron-sulfur protein 4 (Ndufs4) (IVW:
OR = 0.971, 95% CI: 0.949–0.994, p = 0.015, adj. p = 0.015) and
mitochondrial import inner membrane translocase subunit TIM14
(TIMM14/DNAJC19) (IVW: OR = 0.935, 95% CI: 0.887–0.985, p =
0.012, adj. p = 0.023) had a protective causal effect on overall LC
(Figure 2). However, we observed no genetic predisposition to
MPs demonstrated a causal relationship on LUAD
(Supplementary Table S2).

As to LUSC, the findings suggested that mitochondrial
steroidogenic acute regulatory protein (StAR) (IVW: OR = 0.878,
95% CI 0.790–0.977, p = 0.017, adj. p = 0.028), mitochondrial
Ndufs4 (IVW: OR = 0.955, 95% CI 0.920–0.991, p = 0.015; WM:
OR = 0.960, 95% CI 0.920–1.002, p = 0.063, adj. p = 0.037) and
mitochondrial DNAJC19 (IVW: OR = 0.908, 95% CI 0.830–0.992,

FIGURE 1
Assumptions and study design of the bidirectional Mendelian randomization study of the causal relationships between 66 mitochondrial proteins
and different pathological types of lung cancer. LC, lung cancer; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; SCLC, small cell
lung carcinoma; SNPs, single nucleotide polymorphisms.
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p = 0.033, adj. p = 0.041) had protective causal effects on LUSC. In
contrast, mitochondrial NADH dehydrogenase [ubiquinone]1 beta
subcomplex subunit 8 (NDUFB8) (IVW: OR = 1.104, 95% CI
1.001–1.218, p = 0.048, adj. p = 0.048) indicated pathogenic
causal impacts on LUSC. Besides, mitochondrial sodium/
hydrogen exchanger 9B2 (SLC9B2) (IVW: OR = 1.115, 95% CI
1.025–1.212, p = 0.011, adj. p = 0.055) showed a suggestive casual
association with the higher risk of LUSC (Figure 2).

In terms of SCLC, we discovered two protective factors,
including mitochondrial ADP-ribose pyrophosphatase (NUDT9)
(IVW: OR = 0.864, 95% CI 0.784–0.952, p = 0.003, adj. p = 0.012)
and mitochondrial Ndufs4 (IVW: OR = 0.928, 95% CI 0.866–0.995,
p = 0.035, adj. p = 0.048) and two risk factors, including
mitochondrial 39S ribosomal protein L32 (MRPL32) (IVW:
OR = 1.186, 95% CI 1.015–1.386, p = 0.032, adj. p = 0.043) and
mitochondrial oligoribonuclease (REXO2) (IVW: OR = 1.197, 95%
CI 1.015–1.411, p = 0.032, adj. p = 0.043) were causal associated with
SCLC (Figure 2).

3.3 Sensitivity analysis

The scatter plot showed that the causal estimates derived by the
MR-Egger regression and weighted median approach were
consistent in both dimension and direction with IVW method
(Supplementary Figure S1). The findings of Cochrane’s Q test
indicated no significant heterogeneity (p > 0.05). The results
revealed that the MR-Egger regression did not identify any
pleiotropic effects for MPs (all p > 0.05). Additionally, the MR-
PRESSO global test detected neither horizontal pleiotropic effects

nor outlier SNPs (all p > 0.05). Moreover, the leave-one-out analysis
validated that no individual SNP solely drove the causality between
MPs and different pathological types of LC
(Supplementary Figure S2).

3.4 Bidirectional causal associations
between identified MPs and LC

To assess any reverse causality between identified MPs and
different pathological types of LC, we considered overall LC and its
subtypes as the exposure and identified MPs as the outcome. After
screening, we employed 119 SNPs associated with different
pathological types of LC as IVs (Supplementary Table S3).
Finally, the results indicated no evidence for a reverse causal
association between identified MPs and different pathological
types of LC (Table 1).

4 Discussion

To our knowledge, this is the inaugural investigation of the
causality between mitochondrial proteins and LC using open-access
genetic databases. We employed bidirectional MR analyses to
determine the causality between 66 MPs and different
pathological types of LC, which enabled us to evaluate the
upstream and downstream in the disease progression while
avoiding reverse causation. We further ensured the robustness of
our MR analyses against pleiotropic influences by implementing a
variety ofMR approaches, includingMR-Egger andMR-PRESSO, to

FIGURE 2
Causal effects of mitochondrial proteins on different pathological types of LC. LC, lung cancer; LUSC, lung squamous cell carcinoma; SCLC, small
cell lung carcinoma; SNPs, single nucleotide polymorphisms; MR, Mendelian randomization; MR-PRESSO, MR-pleiotropy residual sum and outlier.
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TABLE 1 Causal effects of different pathological types of LC on identified mitochondrial proteins.

Exposure Outcome Method nSNP OR (95%CI) p-
value

adj. p-
value

LC

Mitochondrial NADH dehydrogenase [ubiquinone]iron-sulfur
protein 4

Inverse variance
weighted

50 1.048
(0.933–1.176)

0.430 0.860

MR Egger 50 1.083
(0.824–1.424)

0.570 0.570

Weighted median 50 0.981
(0.831–1.157)

0.816 1

Mitochondrial import inner membrane translocase subunit
TIM14

Inverse variance
weighted

50 1.034
(0.897–1.191)

0.649 0.649

MR Egger 50 1.193
(0.856–1.664)

0.303 0.606

Weighted median 50 1.012
(0.851–1.204)

0.894 0.894

LUSC

Mitochondrial steroidogenic acute regulatory protein Inverse variance
weighted

39 0.952
(0.879–1.031)

0.226 0.377

MR Egger 39 1.121
(0.949–1.326)

0.188 0.470

Weighted median 39 0.991
(0.879–1.117)

0.881 0.881

Mitochondrial NADH dehydrogenase [ubiquinone]1 beta
subcomplex subunit 8

Inverse variance
weighted

39 0.995
(0.916–1.081)

0.911 0.911

MR Egger 39 0.971
(0.814–1.159)

0.747 0.747

Weighted median 39 1.030
(0.914–1.161)

0.626 1.000

Mitochondrial NADH dehydrogenase [ubiquinone]iron-sulfur
protein 4

Inverse variance
weighted

39 0.993
(0.907–1.086)

0.872 1.000

MR Egger 39 0.889
(0.736–1.072)

0.226 0.377

Weighted median 39 1.023
(0.909–1.151)

0.706 0.883

Mitochondrial sodium/hydrogen exchanger 9B2 Inverse variance
weighted

39 0.948
(0.876–1.027)

0.191 0.478

MR Egger 39 0.834
(0.706–0.986)

0.041 0.205

Weighted median 39 0.967
(0.858–1.089)

0.579 1.000

Mitochondrial import inner membrane translocase subunit
TIM14

Inverse variance
weighted

39 1.073
(0.987–1.167)

0.098 0.490

MR Egger 39 1.093
(0.915–1.306)

0.333 0.416

Weighted median 39 1.082
(0.964–1.213)

0.180 0.900

SCLC

Mitochondrial ADP-ribose pyrophosphatase Inverse variance
weighted

30 1.004
(0.945–1.067)

0.902 0.902

(Continued on following page)
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validate our findings. Our results indicated that a total of eight MPs
may be potential protective contributors or potential risk factors to
the development of overall LC, LUSC, and SCLC, whereas no such
causal effect was observed in the case of LUAD. Furthermore, we
found no evidence for a reverse causal effect between identified MPs
and different pathological types of LC.

The majority of reactive oxygen species (ROS) within cells are
produced from the mitochondrial respiratory chain. An
overabundance of ROS can result in oxidative stress, causing
oxidative harm to proteins and alterations in MP expression
(Rabilloud et al., 2001; Poyton et al., 2009). Numerous studies
have demonstrated that increased levels of ROS are correlated
with the formation and advancement of LC (Weinberg et al.,
2010; Jiang et al., 2022). Additionally, examining variations in the
mitochondrial proteome is deemed to be an effective method to
gauge the degree of mitochondrial damage under oxidative stress
conditions (Gibson, 2005). Due to the absence of protective histones
and a restricted range of DNA repair mechanisms, mitochondrial
DNA (mtDNA) is highly susceptible to oxidative damage (Richter
et al., 1988). Instability in mtDNA has been observed in several
cancers, including LC (Chatterjee et al., 2006). An observational
study suggested that compared to patients without LC, mutation
rates in mtDNA were significantly increased in exhaled breath
condensate in patients with LC (Yang Ai et al., 2013). After
smoking, exposure to radon is the second leading cause of LC
(Lorenzo-González et al., 2019). A study found that in radon-
induced LC patients, the concentration of cell free mtDNA was
significantly increased compared to other participants in the study

(Bulgakova et al., 2022). Although these studies suggested a
relationship between MPs and LC to some degree, the causal
links remain unclear, and the direct association between them
still lacks substantial research backing. Our research offered
evidence supporting causal associations of MPs with LC and its
subtypes by deducing the causality through genetic prediction using
MR, which could also mitigate confounders effectively.

The result showed two protective factors in overall LC.
Ndufs4 encodes mitochondrial complex I protein (Karamanlidis
et al., 2013), while a study revealed deficiency in complex I led to
elevated levels of mitochondrial ROS in macrophages in mouse
models with myeloid-specific deletion of Ndufs4 (Cai et al., 2023). A
similar result of Ndufs4 was also found in LUSC and SCLC, which
indicated that Ndufs4 may be a vital protective factor in the
development of LC. DNAJC19 plays a crucial role in preserving
mitochondrial integrity, and the mutation in DNAJC19 could
induce the occurrence of dilated cardiomyopathy and ataxia
syndrome (Davey et al., 2006). Paradoxically, the expression of
DNAJC19 was increased in NSCLC tissues compared to
noncancerous adjacent tissues (Zhou et al., 2021). This conflictive
result could be attributed to pathogenic variants in DNAJC19, which
can lead to damage to mitochondrial function (Wachoski-Dark
et al., 2022). Our finding also indicated the protective causal
effect of DNAJC19 on LUSC, which further substantiates that
DNAJC19 has a pivotal protective effect against LC.

In terms of LUSC, our study revealed four probable and one
possible MPs with causal links, including protective factors of StAR,
Ndufs4, and DNAJC19 and risk factors of NDUFB8 and SLC9B2.

TABLE 1 (Continued) Causal effects of different pathological types of LC on identified mitochondrial proteins.

Exposure Outcome Method nSNP OR (95%CI) p-
value

adj. p-
value

MR Egger 30 1.026
(0.904–1.165)

0.693 0.924

Weighted median 30 0.987
(0.911–1.070)

0.757 1.000

Mitochondrial 39S ribosomal protein L32 Inverse variance
weighted

30 0.968
(0.911–1.029)

0.298 0.596

MR Egger 30 0.905
(0.797–1.027)

0.134 0.536

Weighted median 30 0.940
(0.869–1.017)

0.123 0.492

Mitochondrial NADH dehydrogenase [ubiquinone]iron-sulfur
protein 4

Inverse variance
weighted

30 1.057
(0.995–1.123)

0.074 0.296

MR Egger 30 1.033
(0.910–1.173)

0.619 1.000

Weighted median 30 1.043
(0.957–1.137)

0.334 0.668

Mitochondrial Oligoribonuclease Inverse variance
weighted

30 0.995
(0.936–1.057)

0.869 1.000

MR Egger 30 0.975
(0.858–1.109)

0.708 0.708

Weighted median 30 1.005
(0.922–1.096)

0.901 0.901

LC, lung cancer. LUAD, lung adenocarcinoma. LUSC, lung squamous cell carcinoma. SCLC, small cell lung carcinoma. SNPs, single nucleotide polymorphisms. MR, Mendelian randomization.

adj. p-values, Adjusted p-values.
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StAR governs the crucial step that limits the rate of steroid
biosynthesis, playing a vital role in the regulation of steroid
hormones (Manna et al., 2009). ROS impairs mitochondria,
leading to reduced StAR expression and steroidogenesis across
various steroid-producing cells. At the same time, hormone
deficiencies are considered a primary driver of human aging,
which is related to the onset of various tumors (Manna et al.,
2016; Jackaman et al., 2017). The selective nitration of
NDUFB8 results in the disintegration of mitochondrial
supercomplexes, causing the impairment of complex I activity
and mitochondrial function. The activity of Complex I is
recognized as a crucial factor in controlling mitochondrial
respiration. Besides, nitration of NDUFB8 may represent a
crucial mechanism in inflammatory conditions, which is a crucial
component in the advancement of tumors (Coussens and Werb,
2002; Quintero et al., 2006; Davis et al., 2010). SLC9B2 is a sodium/
hydrogen antiporter (Chintapalli et al., 2015). However, our
understanding of the precise molecular functions of
SLC9B2 remains limited. A previous study suggested the
increased expression of SLC9B2 had a positive relationship with
Autosomal-dominant polycystic kidney disease (Chapman et al.,
2015). The expression level of SLC9B2 was identified significantly
upregulated in Crohn’s disease (Ye et al., 2022). We speculate that
the inflammation may be one of the reasons for its role as a risk
factor for LUSC.

For SCLC, the results identified that NUDT9 and
Ndufs4 presented protective causal effects, and MRPL32 and
REXO2 showed pathogenic causal effects. Adenosine diphosphate
ribose (ADPR) interacts with NUDT9 homology to activate
transient receptor potential melastatin 2 (TRPM2) channel
(Miller and Cheung, 2016), while the decreased level of
TRPM2 was considered to enhance tumor potential metastasis
(Gershkovitz et al., 2018). SCLC is well known as a highly
aggressive disease, thus this mechanism may explain the
association between the protective factor NUDT9 and SCLC. As
to risk factors, the current understanding of MRPL32 and REXO2 is
limited. Prior studies demonstrated that suppressing MRPL32 could
reduce oxygen-glucose deprivation/reperfusion damage (Guan et al.,
2020) and that REXO2 was associated with a poorer prognosis in
glioma (Wang et al., 2021).

Nevertheless, our study had several constraints. Firstly,
increasing the sample size is pivotal for a more accurate
determination of the causal relationship between MPs and
different pathological types of LC due to the potential biases
from the current fairly small MP sample size. Secondly, the
participants in GWAS data were predominantly of European
populations, which constrained the applicability of our
results to other ethnicities and could result in biased
conclusions. Finally, our study merely identified causal
associations of MPs with LC and its subtypes, further in-
depth research is required to clarify the exact mechanisms of
the causality.

5 Conclusion

In general, we systematically assessed the causality between
MPs and different pathological types of LC by performing

bidirectional MR analyses. Our study identified a total of
seven MPs had significant causal relationships on overall LC,
LUSC, and SCLC. Our findings suggested that there were two
protective causal associations with LC; two protective causal
associations, two causal pathogenic associations, and a
nominally protective causal association with LUSC; two
protective causal associations and two causal pathogenic
associations with SCLC. Additionally, the results
demonstrated no MP had a causality link with LUAD, and
no evidence supported the reverse causality for identified
MPs with LC or its subtypes. This research underscores the
causal effects of MPs on the occurrence of LC, suggesting that
MPs might be a viable strategy for LC prevention.
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