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Background: Atopic dermatitis (AD) is inflammatory disease. So far, therapeutic
mechanism of Runfuzhiyang powder on AD remains to be studied. This study
aimed to mine key biomarkers to explore potential molecular mechanism for AD
incidence and Runfuzhiyang powder treatment.

Methods: The control group, AD group, treat group (AD mice treated with
Runfuzhiyang powder were utilized for studying. Differentially expressed AD-
related genes were acquired by intersecting of key module genes related to
control group, AD group and treatment group which were screened by
WGCNA and AD-related differentially expressed genes (DEGs). KEGG and
GO analyses were further carried out. Next, LASSO regression analysis was
utilized to screen feature genes. The ROC curves were applied to validate the
diagnostic ability of feature genes to obtain AD-related biomarkers. Then
protein-protein interaction (PPI) network, immune infiltration analysis and
single-gene gene set enrichment analysis (GSEA) were presented.
Finally, TF-mRNA-lncRNA and drug-gene networks of biomarkers were
constructed.

Results: 4 AD-related biomarkers (Ddit4, Sbf2, Senp8 and Zfp777) were
identified in AD groups compared with control group and treat group by
LASSO regression analysis. The ROC curves revealed that four biomarkers had
good distinguishing ability between AD group and control group, as well as AD
group and treatment group. Next, GSEA revealed that pathways of E2F targets,
KRAS signaling up and inflammatory response were associated with 4
biomarkers. Then, we found that Ddit4, Sbf2 and Zfp777 were significantly
positively correlated with M0 Macrophage, and were significantly negatively
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relevant to Resting NK. Senp8 was the opposite. Finally, a TF-mRNA-lncRNA
network including 200 nodes and 592 edges was generated, and 20 drugs
targeting SENP8 were predicted.

Conclusion: 4 AD-related and Runfuzhiyang powder treatment-related
biomarkers (Ddit4, Sbf2, Senp8 and Zfp777) were identified, which could provide
a new idea for targeted treatment and diagnosis of AD.

KEYWORDS

atopic dermatitis, Runfuzhiyang powder, diagnosis, biomarkers, immune infiltration,
TF–mRNA–lncRNA network

1 Introduction

Atopic dermatitis (AD) is a prevalent inflammatory skin disorder
with a rising global incidence, significantly impairing patients’ quality of
life. ADmanifests as recurrent eczematous lesions and intense pruritus,
stemming from a dysfunctional epidermal barrier, an abnormal skin
microbiome, and dysregulated type 2 immune mechanisms (Langan
et al., 2020). This heterogeneous disease involves multiple genetic risk
factors, with over 70 genes implicated, including those related to skin
barrier function, T helper (Th)2 immune responses, vitamin D
metabolism, and its receptor synthesis. However, genetic
predispositions play a minor role in AD onset. Notably, individuals
with mutations in the filaggrin (FLG) gene or other relevant genes do
not always exhibit classic AD symptoms, and some patients lack
identifiable mutations. Moreover, the epigenomes of AD patients
differ significantly from those of healthy individuals, particularly in
genes regulating immune responses and inflammatory processes
(Nedoszytko et al., 2020). The heterogeneity of AD endotypes and
phenotypes complicates the establishment of distinct biomarkers.
Current diagnostic criteria and measurement tools often lack clinical
applicability in specific subpopulations and are susceptible to inter-
observer biases. This heterogeneity may also contribute to the limited
efficacy of traditional treatment methods. Therefore, identifying reliable
biomarkers is crucial for improved diagnosis and monitoring of AD
patients. Additionally, a better understanding of the condition could
facilitate the development of multifactorial treatments for this complex
and heterogeneous disease.

Cutaneous inflammation, particularly type 2 skin inflammation, is
central to the pathogenesis of AD. The lesional skin exhibits a complex
and diverse inflammatory profile. Beyond Th1 and Th2 cells, AD
lesions contain a variety of immune cells, including Th17 and Th22 cells
(Brunner et al., 2018), dendritic cells, macrophages, neutrophils, natural
killer (NK) cells (Rojahn et al., 2020), innate lymphoid cells,
inflammatory epidermal dendritic cells (IDECs), basophils (Mashiko
et al., 2017), and eosinophils (Chiricozzi et al., 2023). Managing AD
involves alleviating symptoms and establishing long-term control by
avoiding individual triggers, restoring the skin barrier withmoisturizers,
and employing a step-up and step-down approach to reduce
inflammation. Anti-inflammatory therapy is chosen based on disease
severity. A deeper understanding of the key drivers of inflammation in
AD is essential for developing targeted therapeutic approaches.
Additionally, these therapies should be individualized, considering
each patient’s unique characteristics and disease course.

Runfuzhiyang powder, formulated by the late Prof. Liu Fuxing,
an expert in Chinese medicine with decades of clinical experience, is
composed of Pogostemon cablin, Elsholtzia, Herba artemisiae

scoparia, and Speranskia herb. This mixture is decocted into a
solution and applied as a wet compress. Runfuzhiyang powder
has a long history of clinical use, known for its ability to
improve lesions and reduce pruritus (Guo and Ye, 2011).
However, the specific effects and the molecular mechanisms
through which Runfuzhiyang powder acts have not yet been studied.

This study aims to elucidate the molecular mechanisms through
which Runfuzhiyang powder treats AD. RNA sequencing was
performed on cutaneous samples from AD mice, Runfuzhiyang
powder-treated AD mice, and control mice. Key genes were
identified, and a molecular regulatory network associated with
these genes was constructed. Additionally, the study analyzed
immune cell infiltration in AD.

2 Materials and methods

2.1 Grouping and animal models

Fifty-four female Balb/c mice (6 to 8 weeks old) were used in this
study to investigate the effects of Runfuzhiyang powder on dermatitis.
Themice were divided into four groups: the control group (n = 10), AD
group (n = 10, representing the dermatitis group), treatment group (n =
30, AD-like mice treated with Runfuzhiyang powder), and positive
control group (n = 4, AD-like mice treated with a known positive
therapeutic drug). The treatment group was further divided into three
subgroups to determine the optimal concentration of the intervention:
low dose (n = 10), medium dose (n = 10), and high dose (n = 10). The
control group was maintained normally after shaving their backs. To
induce AD-like dermatitis, the back of each mouse was coated with
50 μL of 3 nmol of calcipotriol (MC903) dissolved in 95% ethanol,
followed by 25 μL of 20 g/L ovalbumin. This induction process was
carried out for 7 days. Starting from day 7, the AD-like mice were
treated with different concentrations of Runfuzhiyang powder for
10 min daily. The positive control group received a known
therapeutic drug for 10 min daily. The control and dermatitis
groups were treated with normal saline for 10 min daily. Dermatitis
scores and scratching behavior were recorded at 7, 14, and 21 days
across the different groups. The study plan is illustrated in Figure 1.

2.2 Histopathological analysis

The back skin tissue from the mice was harvested and fixed in 4%
paraformaldehyde for 24–48 h. After embedding in paraffin, the tissue
was sectioned into 5-μm-thick slices for hematoxylin–eosin (H&E) and
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toluidine blue staining. For H&E staining, tissue sections were stained
with hematoxylin for 5 min, treated with the 1% hydrochloric acid
alcohol differentiation solution for 10–15 s, and then stained with eosin
for 5–10 s. Subsequently, the sections underwent two treatments with
xylene (10min each), following dehydration with ethanol. For toluidine
blue staining, sections were stained with toluidine blue for 10–15 min
and then treated with the 0.1% glacial acetic acid differentiation solution
for 5–10 s. After dehydration with ethanol, the sections were treated
with xylene for 10 min. Finally, the sections were mounted with balsam
to observe the histomorphology of the back skin tissue under a
microscope (TS2, Nikon, Japan). Mast cells and eosinophils were
counted in at least five fields by flow cytometry.

2.3 Measurement of serum
immunoglobulins

Serum immunoglobulin E (IgE) levels were measured using
enzyme-linked immunosorbent assay (ELISA) kits (Jianglai
Biotechnology, Suzhou, China), following the manufacturer’s
instructions.

2.4 Immunofluorescence co-localization

After fixation, dehydration, transparency, and wax immersion,
the skin tissue was embedded in paraffin and cut into 3-µm sections.
The sections were baked, dewaxed, and hydrated, followed by
antigen retrieval and endogenous peroxidase inactivation. For
nuclear staining, a DAPI staining solution was added dropwise to
the cells, stained for 5 min at room temperature while protected

from light, and then washed three times with PBS for 5 min each. To
detect Ddit4, CD56, and CD68, their respective antibodies (Santa,
Sc-271158; NLAMI, DF 1832; and Affinity, DF7581) were diluted
and incubated with the sections. Following incubation with
appropriate secondary antibodies, the slices were sealed with an
anti-fluorescence-quenching blocker. Five fields of view were
selected for observation under the microscope, and the slices
were photographed to calculate the positive rate.

2.5 Acquisition and processing of samples

The diseased skin of ADmice (AD group; cutitis group), the skin
of healthy mice (control group), and the skin of AD mice treated
with Runfuzhiyang powder (treatment group) were collected, with
nine cases in each group.

2.6 RNA extraction, library construction, and
sequencing

TRIzol (Invitrogen, CA, United States) was used to isolate and
purify RNA. The quality of RNA was assessed using the NanoDrop
ND-1000 spectrophotometer (NanoDrop, Wilmington, DE,
United States), and its integrity was confirmed with the
Bioanalyzer 2100 instrument (Agilent, CA, United States). For
downstream experiments, 1 μg of RNA was deemed sufficient.
PolyA-containing mRNA was captured using oligo(dT) magnetic
beads (Dynabeads Oligo(dT), 25-61005, Thermo Fisher,
United States). The captured mRNA was fragmented using the
NEBNext® Magnesium RNA Fragmentation Module (E6150S,

FIGURE 1
Flowchart.
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United States) at 94°C for 5–7 min. Fragmented RNA was then used
to synthesize cDNA with reverse transcriptase (Invitrogen
SuperScript™ II Reverse Transcriptase, 1,896,649, CA,
United States). RNase H (NEB, m0297, United States) and E. coli
DNA polymerase I (NEB, m0209, United States) converted
RNA–DNA hybrids into DNA duplexes through two-strand
synthesis. The double-stranded DNA was mixed in a dUTP
solution (Thermo Fisher, R0133, CA, United States), and its ends
were blunted. Magnetic beads were used to screen and purify the
fragments by size. A library of 300 ± 50-bp fragments was created by
digesting the double-stranded DNA with the UDG enzyme (NEB,
m0280, MA, United States). Finally, two-end sequencing was
performed using the Illumina Novaseq™ 6000 system (LC-Bio
Technologies Co., Ltd., Hangzhou, China) in the PE150 mode
according to standard protocols.

2.7 Sequencing data quality control and
preprocessing

First, low-quality sequencing data were filtered using the
Cutadapt (v. 1.9) package. The following parameters were
removed: 1) adapters, polyA, and polyG; 2) sequences with more
than 5% unknown nucleotides (N); and 3) low-quality reads
containing more than 20% bases with a Q-value ≤20. Sequence
quality was then verified using FastQC (v. 0.11.9), which included
assessing Q20, Q30, and GC content of the clean data. The filtered
clean data were subsequently aligned to the reference mouse genome
using the HISAT2 (v. 2.2.1) package (Kim et al., 2015). The reference
mouse genome was sourced from the Ensembl database (https://
www.ensembl.org/Mus_musculus/Info/Index?redirect=no). Gene
counts were extracted using featureCount software.

FIGURE 2
Differential expression analysis among different groups. (A) Box plots of the gene expression matrix of 27 samples. (B) Principal component analysis
(PCA) of control, cutitis, and treatment groups. (C, D) Volcano map (C) and heatmap (D) of differentially expressed genes (DEGs) between cutitis and
control groups. (E, F) Volcano map (E) and heatmap (F) of DEGs between cutitis and treatment groups.
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2.8 Identification of differentially expressed
genes (DEGs)

To identify DEGs between the different groups, differential
expression analysis was performed. First, the gene expression
matrix of each sample was extracted and standardized using
DESeq2 software. A box plot of the gene expression matrix was
then generated. Principal component analysis (PCA) was applied to
illustrate differences between the samples of different groups. DEGs
were identified in three groups (the cutitis group, control group, and
treatment group) using the “DESeq2” package with criteria of |log2
fold change (FC)| > 1.5 and p < 0.05 (Love et al., 2014). A volcano
plot was created using the R package “ggpubr” (Kassambara, 2023),
and heatmaps were generated with the R package “Heatmap”
(Boileau, 2019).

2.9 Weighted gene co-expression network
analysis (WGCNA)

WGCNA, a bioinformatics algorithm, integrates highly related
genes into several modules. Using the R package “WGCNA”
(Langfelder and Horvath, 2008), modules highly related to AD
were selected. Genes in the modules were related to the cutitis
group, control group, and treatment group. First, the
goodSamplesGenes function of the “WGCNA” package facilitated
sample clustering and filtering. Next, the data’s soft threshold was
determined. Each gene module was set to a minimum size of 300,
following the hybrid dynamic tree cut algorithm. Genes were
divided into modules through hierarchical clustering. The
correlation between each module and the experimental groups
was analyzed, and the module with the highest absolute
correlation coefficient with traits was identified as the key
module for further analysis.

2.10 Screening and enrichment analysis of
candidate genes

To identify the candidate genes involved in Runfuzhiyang
powder’s treatment of AD rats, the intersection of DEGs from
the cutitis group vs control group, DEGs from the cutitis group
vs treatment group, and module genes was obtained using a Venn
diagram. The biological functions and pathway analyses of these
candidate genes were performed using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) and Gene Ontology (GO) with the R
package “clusterProfiler” (Wu et al., 2021).

2.11 Screening of biomarkers and receiver
operating characteristic (ROC)
curve analysis

First, the least absolute shrinkage and selection operator
(LASSO) regression analysis was used to screen feature genes in
the cutitis group vs control group and in the cutitis group vs
treatment group. The feature genes identified in both groups
were then intersected to obtain biomarkers. Finally, ROC

curves were plotted to validate the diagnostic value of these
biomarkers.

2.12 Construction of the gene–gene
interaction (GGI) network and gene set
enrichment analysis (GSEA)

Using the GeneMANIA online database, genes related to the
identified biomarkers were predicted. The top 20 genes, along
with the four biomarkers, were then used to construct a GGI
network with the R package “Cytoscape” (Smoot et al., 2011). The
functions of these genes were annotated under the GGI network.
Additionally, GSEA was conducted to explore the pathways
associated with the biomarkers. Spearman’s correlation
coefficients between the biomarkers and all other genes were
calculated and ranked. GSEA showed significant enrichment in
KEGG pathways using the R package “clusterProfiler”
(P-adjust <0.05) (Wu et al., 2021). The background gene set
“c2.cp.kegg.v7.0.symbols.gmt” was downloaded from the
Molecular Signatures Database (MSigDB).

2.13 Immune microenvironment and
correlation analysis

The immune microenvironment was explored in the three
groups. Initially, 25 immune-cell gene sets from mice were
selected as the reference gene set. The CIBERSORT algorithm
(Newman et al., 2015) was employed to determine the
proportion of immune cells. Differential immune cells were then
analyzed in the cutitis group vs control group and in the cutitis
group vs treatment group. Finally, Spearman’s correlation analysis
was performed between the biomarkers and differential
immune cells.

2.14 Analysis of the transcription factor (TF)–
mRNA–long non-coding RNA (lncRNA)
network

To identify potential molecules involved in the regulation
of biomarkers, TFs and lncRNAs were predicted based
on these biomarkers. From the transcriptional regulatory
relationships database (TRRUST, http://www.grnpedia.org/trrust),
827 mouse TFs were obtained. The correlation coefficient between
the TFs and biomarkers was calculated using Spearman’s method.
Biomarker-related TFs were identified with a correlation coefficient |
cor| > 0.9 and p < 0.05. Next, intersections of biomarker-related TFs
and DEGs in the cutitis group vs control group were used to obtain
candidate TFs, resulting in TF–mRNA pairs.

Differential expression (DE)-lncRNAs in the cutitis group were
identified using the DESeq2 package and compared with those in the
control group. Spearman’s method was employed to calculate the
correlation between DE-lncRNAs and biomarkers. Biomarker-
related lncRNAs were selected based on a correlation coefficient
|cor| > 0.9 and p < 0.05. Intersections of biomarker-related lncRNAs
and DE-lncRNAs were then used to identify candidate lncRNAs,

Frontiers in Genetics frontiersin.org05

Lin et al. 10.3389/fgene.2024.1335093

http://www.grnpedia.org/trrust
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1335093


resulting in lncRNA–mRNA pairs. Finally, a TF–mRNA–lncRNA
network was constructed.

2.15 Drug prediction

In addition to Runfuzhiyang powder, other drugs associated
with the identified biomarkers were predicted for potential use in
subsequent AD treatment. Initially, the biomarkers were
transformed from mouse genes into their human homologous
genes. A drug–gene network was then constructed using the Drug
Gene Interaction database (DGIDB, www.dgidb.org).

2.16 Statistical analysis

All bioinformatics analyses were conducted using R
software. For the experimental analysis, a one-way ANOVA
test was employed to compare differences between two
variables using GraphPad Prism (v. 10.0) software. DEGs
were identified with criteria of |log2FC| > 1.5 and p < 0.05.
LASSO regression analysis was utilized to identify feature genes.
The diagnostic value was assessed using the ROC curve, with an
area under the ROC curve (AUC) > 0.7 indicating good
diagnostic performance. Spearman’s correlation analysis was
performed to evaluate the relationship between two variables,

FIGURE 3
Identification of key module genes related to atopic dermatitis (AD). (A) Heatmap of sample clustering and traits. (B) Selection of the optimal soft-
thresholding (power). (C)Cluster dendrogram of samples. (D)Hierarchical clustering of genes andmodule identification. (E)Heatmap of the relationships
between gene modules and differential immune cells. (F) Scatterplot of 498 genes in the blue module.
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with |cor| > 0.3 and p < 0.05 considered significant. Additionally,
a p-value of <0.05 was regarded as indicative of a statistically
significant difference.

3 Results

3.1 Induction of the AD-like mouse model
using 3 nmol of MC903 and ovalbumin
for 7 days

The dermatitis group exhibited the highest dermatitis score
(Supplementary Figure S1). Among the three groups treated with
Runfuzhiyang powder, the medium-concentration group showed
the most effective treatment results (Supplementary Figure S1).
Observing the number of scratches over 30 min revealed a
decrease in the treatment group, with the medium-concentration
group displaying the most significant reduction in scratching
behavior (Supplementary Figure S2).

3.2 Dorsal skin thickness and eosinophil
accumulation under the influence of
Runfuzhiyang powder on skin lesions of
AD mice

H&E staining revealed that the dorsal skin of the dermatitis
group was significantly thicker compared to the control
group. The groups treated with low, medium, and high doses
of Runfuzhiyang powder showed significantly reduced dorsal
skin thickness compared to the dermatitis group. The
medium-dose group exhibited the most significant reduction
in dorsal skin thickness and was most similar to the positive
control group. Additionally, the dermatitis group had a
significantly higher number of eosinophils than the control
group. In contrast, the low-, medium-, and high-dose groups
had significantly fewer eosinophils compared to the dermatitis
group, with the high-dose group showing eosinophil counts
closest to those in the positive control group (Supplementary
Figure S3; Supplementary Figure S4).

3.3 Effects of Runfuzhiyang powder on mast
cell infiltration in AD mice

Toluidine blue staining results showed that the dermatitis group
had a significantly higher number of mast cells compared to the
control group. In contrast, the high- and medium-dose groups, as
well as the positive control group, exhibited significantly fewer mast
cells than the dermatitis group (Supplementary Figure S5;
Supplementary Figure S6).

3.4 Analysis of serum IgE levels

To elucidate the molecular effects of different doses of
Runfuzhiyang powder on AD, serum IgE levels were
measured in each group. Compared to the control group, the

dermatitis group exhibited significantly higher IgE levels. In
contrast, the low-, medium-, and high-dose groups had
significantly lower IgE levels than the dermatitis group. The
medium-dose group showed the lowest IgE levels and the mildest
inflammation. Therefore, it is suggested that selecting an
appropriate dose of Runfuzhiyang powder based on its
therapeutic effect can effectively treat AD
(Supplementary Figure S7).

Considering scratching behavior, dorsal skin thickness,
eosinophil accumulation, mast cell infiltration, and IgE levels
together, the medium-dose Runfuzhiyang treatment demonstrated
themost effective outcome on ADmice. Consequently, the medium-
dose Runfuzhiyang treatment group was selected for follow-up
sampling and sequencing analysis.

FIGURE 4
Identification of candidate genes and functional enrichment
analysis. (A) Venn diagram of 314 candidate genes obtained by
overlapping key module genes, DEGs between cutitis and control
groups, and DEGs between cutitis and treatment groups. (B, C)
Gene Ontology (GO) terms (B) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (C) enriched in candidate genes. BP,
biological progress; CC, cellular component; MF, molecular function.
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3.5 Differential analysis

The original sequencing data were preprocessed and filtered
to obtain clean data. The filtered sequencing data were then
aligned with the reference genome of the mouse, showing that the
sequence alignment rate in all 27 sequenced samples was higher
than 73% (Supplementary Table S1). Consistent expression
across all 27 samples (Figure 2A) validated their use for
subsequent expression analysis. PCA revealed that the control

and treatment groups exhibited similar expression patterns,
while the cutitis group demonstrated a significantly different
expression pattern compared to the control and treatment
groups (Figure 2B).

The cutitis group exhibited a total of 7,433 DEGs, with
4,564 upregulated and 2,869 downregulated DEGs, compared to
the control group (Figures 2C,D). Additionally, 6,988 DEGs were
identified in the cutitis group compared to the treatment group, with
4,210 upregulated and 2,778 downregulated (Figures 2E,F).

FIGURE 5
Identification of biomarkers. (A, B) Least absolute shrinkage and selection operator (LASSO) regression analysis of feature genes with a minimum
lambda value between cutitis and control groups (A) and cutitis and treatment groups (B). (C) Venn diagram of four biomarkers. (D) Receiver operating
characteristic (ROC) curves of four biomarkers. AUC, area under the curve.
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3.6 Key module genes related to AD

WGCNA was conducted to identify genes associated with AD.
Sample clustering results are shown in Figure 3A. A scale-free
network was constructed using a soft threshold (β) of 14 (scale-
free R2 = 0.85) (Figure 3B). A cluster dendrogram was then obtained

(Figure 3C). A total of 11 modules were identified using the dynamic
tree cutting algorithm with MEDissThres set to 0.3 (Figure 3D).
Subsequent correlation analysis between the modules and the cutitis,
control, and treatment groups highlighted the blue module as the
key module (Figure 3E). Ultimately, 498 genes within the blue
module were identified as key module genes (Figure 3F).

FIGURE 6
Exploration of the interactions and potential functions of biomarkers. (A) Protein–protein interaction (PPI) network of biomarkers. (B) Single-gene
gene set enrichment analysis (ssGSEA) of biomarkers.
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FIGURE 7
Immune infiltration analysis. (A) The proportion of 25 immune cells in samples. (B,C) Discrepancies of the percentages of immune cells between
cutitis and control groups (B), cutitis and treatment groups (C). ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001. (D) The correlation analysis among
immune cells. (E) The correlation of biomarkers to differential immune cells. (F) Scatterplot of biomarker correlation with differential immune cells.
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3.7 Screening and enrichment analysis of
candidate genes

The intersection of 498 key module genes, 7,433 DEGs
from the cutitis vs control comparison, and 6,988 DEGs
from the cutitis vs treatment comparison identified
314 candidate genes, as depicted in the Venn diagram in
Figure 4A. GO and KEGG analyses indicate that these
314 candidate genes are involved in biological processes
such as cell chemotaxis, mononuclear cell migration,
macrophage migration, positive regulation of inflammatory
response, immune effector process regulation, Ras signaling
pathway, Fc gamma receptor-mediated phagocytosis, and
Herpes simplex virus 1 infection (Figures 4B,C and
Supplementary Table S2).

3.8 Screening of biomarkers and validation

LASSO regression analysis was employed to further screen the
314 candidate genes. This analysis identified 11 feature genes
(4933431E20Rik, Ddit4, Jdp2, Mctp1, Sbf2, Senp8, Serpina3m,
Slc10a6, Slc20a1, Slc25a28, and Zfp777) that distinguished the
cutitis group from the control group (Figure 5A). Additionally,
eight feature genes (Ddit4, Fam209,Gm9465, Sbf2, Senp8, Serpina3n,
Xdh, and Zfp777) distinguished the cutitis group from the treatment
group (Figure 5B). The intersection of these feature genes identified
four biomarkers (Ddit4, Sbf2, Senp8, and Zfp777) (Figure 5C). ROC
curves demonstrated that these four biomarkers possess strong
diagnostic capabilities across the cutitis, control, and treatment
groups (Figure 5D).

3.9 GGI and GSEA

The GeneMANIA database was utilized to construct GGI
networks for the four identified biomarkers to investigate their
linkages (Figure 6A). The four biomarkers and the top 20 related
genes were associated with cysteine-type peptidase activity,
ubiquitin-like protein-specific protease activity, and cysteine-type
endopeptidase activity. Subsequently, GSEA was performed to
explore the signaling pathways. The results indicated that these
pathways involved E2F targets, G2M checkpoints, KRAS signaling
upregulation, and inflammatory responses, all associated with the
four biomarkers (Figure 6B).

3.10 Immune infiltration and
correlation analysis

The CIBERSORT algorithm was employed to calculate the
proportions of 25 infiltrating immune cell types, aiming to
analyze the differential immune cell types between the groups
(Figure 7A). The analysis identified eight differential immune
cells between the cutitis and control groups: plasma cells, naive
B cells, memory B cells, activated CD8 T cells, M0 macrophages,
naive CD4 T cells, resting NK cells, and activated dendritic cells
(DCs) (Figure 7B). In contrast, the cutitis and treatment groups

showed five differential immune cells: mast cells, M0 macrophages,
Th17 cells, resting NK cells, and monocytes (Figure 7C).

The correlation analysis of immune cells indicated that
M0 macrophages were positively correlated with activated DCs,
follicular CD4 T cells, and activated CD8 T cells, while negatively
correlated with Th17 cells, naive CD4 T cells, and M1 macrophages.
Resting NK cells were negatively correlated with memory
CD8 T cells and naive B cells (Figure 7D). Furthermore, Ddit4,
Sbf2, and Zfp777 showed significant positive correlations with
M0 macrophages and significant negative correlations with
resting NK cells, whereas Senp8 exhibited the opposite
correlations (Figure 7E; Supplementary Figure S8).

Immunofluorescence co-localization results demonstrated that
Ddit4 co-localization with the marker CD56 of resting NK cells was
significantly higher in the disease group compared to the control
group and lower in the treatment group compared to the disease
group (Supplementary Figure S9). Similarly, Ddit4 co-localization
with the marker CD68 in M0 macrophages followed the same
pattern (Supplementary Figure S10).

3.11 Regulatory network of biomarkers

First, 827 TFs were obtained from the TRRUST database.
Analysis of TFs related to the four biomarkers yielded 37 TFs.
The intersection of these 37 TFs with the DEGs from the cutitis
group versus the control group identified 21 candidate TFs
(Figure 8A). A TF–mRNA network containing 25 nodes and
56 edges is presented in Figure 8B. Additionally,
580 differentially expressed long non-coding RNAs (DE-
lncRNAs) (295 upregulated and 285 downregulated) were
identified in the cutitis group versus the control group
(Figure 8C). Among these, 46 lncRNAs related to the four
biomarkers were mined and 37 were selected by overlapping
with the 580 DE-lncRNAs (Figure 8D). An lncRNA–mRNA
network consisting of 31 nodes and 51 edges was constructed
(Figure 8E). Finally, a comprehensive TF–mRNA–lncRNA
network based on the four biomarkers, 21 candidate TFs, and
37 candidate lncRNAs was established, comprising 52 nodes and
107 edges (Figure 8F).

3.12 Drug–gene network analysis

Human homologous genes corresponding to the four
biomarkers were identified. Using the DGIDB database, 20 drugs/
compounds targeting Senp8 were predicted, while no potential
drugs were identified for the other biomarkers. A drug–gene
network comprising 21 nodes and 21 edges was constructed
(Figure 9), highlighting compounds such as CHEMBL1504679,
CHEMBL584668, IPRIFLAVONE, and CHEMBL484663 as
potential targets for SENP8.

3.13 Expression validation of biomarkers

As shown in Figures 10A,B, expressions of Ddit4, Sbf2, and
Zfp777 were upregulated in the cutitis group compared to the
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control and treatment groups. Conversely, Senp8 expression was
downregulated in the cutitis group relative to the control and
treatment groups. Reverse transcription–quantitative PCR (RT-
qPCR) further validated these findings, showing significantly
higher expressions of Ddit4, Sbf2, and Zfp777 in the cutitis
group (Figure 10C). However, Senp8 expression, due to
sample heterogeneity, did not align with the transcriptome
sequencing data.

4 Discussion

Variants of functional genes at most identified loci contributing
to AD heritability remain unclear. However, these genomic regions
are known to harbor multiple genes involved in various immune
responses, including type 2 differentiation, T-cell activation, and
innate immunity, as well as the epidermal differentiation complex,
which is crucial for skin barrier function (Weidinger et al., 2018).

FIGURE 8
Construction of a regulatory network for biomarkers. (A) Venn diagram of 50 candidate transcription factors (TFs). (B) Network of TF-mRNA. Red
graphics represent mRNAs, and blue graphics represent TFs. (C) Volcano map of differentially expressed long non-coding RNAs (DE-lncRNAs). (D) Venn
diagram of 200 lncRNAs related to biomarkers. (E)Network of lncRNA–mRNA. Red graphics represent mRNAs, and green graphics represent lncRNAs. (F)
Network of TF–mRNA–lncRNA. Red graphics represent mRNAs, green graphics represent lncRNAs, and blue graphics represent TFs.
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FIGURE 9
Potential drug prediction for biomarkers. Red graphics represent mRNAs, and green graphics represent drugs/compounds.

FIGURE 10
Analysis and validation of biomarker expression. (A, B) Expression of biomarkers in control, cutitis, and treatment groups. ****p< 0.0001.
(C) Validation of biomarkers by reverse transcription–quantitative PCR (RT-qPCR).
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The heritability gap may be due to additional unidentified loci or
heritable epigenetic effects. Therefore, identifying new markers is
essential for a better understanding of disease occurrence and
developing appropriate treatment options.

In this study, expressions of Ddit4, Sbf2, and Zfp777 were
upregulated, while Senp8 was downregulated in the cutitis group
compared to the control and treatment groups. These four
biomarkers are implicated in cysteine-type peptidase activity,
ubiquitin-like protein-specific protease activity, and cysteine-type
endopeptidase activity. They are also involved in the pathways of
E2F targets, G2M checkpoint, KRAS signaling upregulation, and
inflammatory response.

Ddit4 (also known as Dig2, RTP801, and regulated in development
and DNA damage response 1 (REDD1)) is a highly conserved stress
response gene upregulated by various cellular stressors, including
hypoxia, DNA damage, energy stress, nutrient depletion, and
endoplasmic reticulum stress. Notably, Ddit4 protects dividing cells
from hypoxia or H2O2-induced apoptosis but sensitizes differentiated
cells to stress. A small increase in Ddit4 is beneficial; however, chronic
and sustained increases are detrimental to neurons (Canal et al., 2014).
Ddit4 upregulation occurs during T-cell activation, and its absence
reduces the proliferation of PHA-stimulated T cells and decreases the
survival of stimulated and unstimulated T cells. However, it does not
appear to significantly affect T-cell activation (Reuschel et al., 2015).
Additionally, Ddit4 regulates Th17 cell differentiation (Zhang et al.,
2018). SET binding factor 2 (SBF2, also known as MTMR13) functions
as a membrane-associated complex regulating phosphoinositide (PI)
levels and activating Rab GTPase, essential for vesicle transport and
membrane trafficking. This regulation influences Schwann cell receptor
trafficking through endosomes, and homozygous MTMR13 mutations
have well-characterized pathological effects on human nerves (Mammel
et al., 2022). Krüppel-associated box-containing zinc-finger proteins
(KRAB-ZFPs) play crucial roles in cell proliferation, apoptosis, and
differentiation, acting as potent transcriptional repressors. Zinc-finger
protein 777 (ZFP777), a KRAB-ZFP family member, localizes to the
nucleus and regulates cell proliferation depending on cell density (Yuki
et al., 2015). SUMOpeptidase familymember, Nedd8-specific (SENP8),
also known as Nedd8 protease 1 (NEDP1), primarily acts on non-
Cullins Neddylation-modifying substrates and regulates various
physiological processes, such as cell growth, cell cycle, oxidative
stress, and DNA damage repair (Chan et al., 2008). Nedd8 plays a
role in forming various ubiquitinated inclusions via the
ubiquitin–proteasome system (Mori et al., 2005). SENP8 is essential
for inflammatory activation of the NF–κB signaling pathway (Yan et al.,
2017). Neddylation modifications affect immune cell functions, such as
macrophages, by modulating CRL (Cullin-RING ligase) substrate
activity, including TFs like NF–κB (Huang et al., 2015). In a mouse
model with UBA3 (ubiquitin-like modifier activating enzyme 3) and
Nedd8 specifically knocked out in T cells, Neddylation promoted CD4+

T-cell activation, expansion, and Th1 cell protective responses while
ensuring CD4+ T-cell survival post-activation (Cheng et al., 2018). HIF-
1α-induced oxidative stress-related inflammatory responses also
partially depend on SENP8’s deneddylation function (Curtis et al.,
2015). These findings suggest SENP8 as a potential therapeutic target
for inflammatory diseases.

Precise regulation of cellular proliferation is essential for tissue
homeostasis and development as its misregulation leads to diseases
resulting from either excessive proliferation or cell loss. The E2F

family, primarily known for its pivotal role in the cell cycle, also
influences various cancer-related processes including angiogenesis,
metabolic reprogramming, metastasis, and DNA repair. E2Fs can
promote apoptosis or cell survival in response to genotoxic stress,
depending on cell type and the source and dose of DNA damage
(Castillo et al., 2015; Rennhack and Andrechek, 2020). Aberrant
mitosis and mitotic catastrophe result from bypassing the G2-M
checkpoint, leading to the accumulation of DNA damage and
subsequent apoptosis (Barnum and O’Connell, 2014). G2/M cycle
arrest can cause fibrosis in various organs, resulting in poor
prognosis; thus, reversing G2/M cycle arrest could be a potential
target for anti-fibrotic therapy (Oshima and Fujiu, 2019). RAS
proteins act as binary switches, cycling between ON and OFF
states during signal transduction. The prevalence of RAS
mutations in human cancer has long been recognized, with
KRAS being the most frequently mutated gene, accounting for
85% of all RAS-driven cancers (Simanshu et al., 2017). RAS-
mutant cancers exhibit increased macropinocytosis and
autophagy. In mouse models, ablation of RAS oncogenes results
in dramatic tumor regression (Papke and Der, 2017).

AD, a chronic inflammatory disease with a heterogeneous profile,
involves the type 2 immune pathway (Th2) in adults and Th17, Th22,
and Th2 cells in children (Weidinger and Novak, 2016). Various
immune cells, including dendritic cells, macrophages, neutrophils,
NK cells, innate lymphoid cells, inflammatory epidermal dendritic
cells (IDECs), basophils, and eosinophils, infiltrate AD lesions.
Evaluating the infiltration of these immunocytes and identifying
their diverse constituents are crucial for understanding the molecular
mechanisms underlying AD.

Five types of differential immune cells—mast cells,
M0 macrophages, Th17 cells, resting NK cells, and
monocytes—were identified in both the cutitis and treatment
groups. Ddit4, Sbf2, and Zfp777 showed significant positive
correlations with M0 macrophages and significant negative
correlations with resting NK cells. The role of mast cells in AD
pathogenesis has been extensively studied. In mice, allergen-
provoked acute itch is mediated by the mast cell–histamine axis
during the steady state; however, AD-associated inflammation
renders this pathway dispensable, and histamine-induced itch
treatment in AD is largely ineffective (Fan and Mishra, 2022).
Compared to AD patients of American or European descent, those
of Asian descent exhibit more robust Th17 cell activation (Noda et al.,
2015). The roles ofmacrophages, Th17 cells, andNK cells in AD are not
fully understood. Macrophages, as tissue-resident or infiltrated immune
cells, are crucial for host defense, tissue repair, and anti-inflammation,
with their reprogramming being responsible for disease development or
regression (Watanabe et al., 2019). Macrophages exhibit remarkable
plasticity, sensing various endogenous or exogenous signals and
responding rapidly (Mosser et al., 2021). They play roles in acne
vulgaris (Do et al., 2022; Liu et al., 2023), hidradenitis suppurativa,
scar formation (Smith et al., 2023), and vital organ damage in
autoimmune diseases such as dermatomyositis (Huang et al., 2022),
anti-MDA5 antibody-associated interstitial lung disease (Gono et al.,
2022), and lupus nephritis (Valiente et al., 2022). Increased Mac2 levels
have been observed in AD skin compared to healthy skin, with a decline
in Mac2 and EASI after 12 weeks of methotrexate treatment (Reynolds
et al., 2021). Significant differences were noted in local macrophage
infiltration before and after Runfuzhiyang powder treatment.
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Immunofluorescence co-localization showed higher co-localization of
Ddit4 with the marker CD68 in M0 macrophages in the disease group
compared to the control group, which decreased after Runfuzhiyang
powder treatment. Further investigation is needed to determine if AD
pathogenesis is related to macrophage proliferation and polarization
caused by key genes or the pathways through which Runfuzhiyang
powder affects macrophage polarization. NK cells produce cytokines
and chemokines such as IFN-γ, TNF-α, and IL10, serving an
immunoregulatory function that influences both innate and adaptive
immune systems (Cooper et al., 2001). Full activation of restingNK cells
requires co-engagement of distinct activating receptors (Bryceson et al.,
2006; 2009). NK cell-mediated immunomodulation may play a role in
immune dysregulation observed in AD. Enrichment of lesional skin
with activated NK cells could be a counter-regulatory response to type
2 skin inflammation (Mack et al., 2020). The co-localization of
Ddit4 with the marker CD56 of resting NK cells was significantly
higher in the disease group compared to the control group and
decreased after Runfuzhiyang powder treatment. Notably, the full
functions of NK T cells and macrophages in the AD immune
system remain to be elucidated.

Rather than being a stable entity with well-defined components,
the skin immune system comprises a network of highly flexible
cellular players capable of adjusting their functions, according to
environmental needs and challenges. This study is the first to explore
the diagnostic value of Ddit4, Sbf2, Zfp777, and Senp8 in AD and
their relationship with skin immune infiltrating cells. The findings
suggest that Runfuzhiyang powder may treat AD by regulating the
proliferation, activation, and apoptosis of immune cells such as
macrophages, NK cells, and Th cells through modulation of these
key genes, thereby altering the inflammatory process. Additionally,
pathways related to metabolism, oxidative stress, and ubiquitination
might also play a role. These hypotheses warrant further
investigation to elucidate the intricate interplay between genes
and immunocytes.

Despite the promising findings, this study has several
limitations. First, the expression and role of the genes in AD at
the protein level require further investigation. Second, the candidate
genes identified in our study were based on the MC903-induced AD
model. Although topical MC903 induces AD-like inflammatory
phenotypes that closely resemble human AD, there remains a
gap between the model and the human condition due to AD’s
heterogeneity. Therefore, the diagnostic value of the identified
signatures is limited. Finally, all mechanistic analyses in our
study were descriptive. To better understand and treat AD,
further research is necessary, such as examining the differences
in protein expression levels of these biomarkers (e.g., via Western
blot) to explore the distinctions between the disease and controls.
Additionally, constructing transgenic mice through gene editing will
help further investigate the specific mechanisms of these
biomarkers in AD.
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