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1 Introduction

Next-generation sequencing (NGS) is transforming clinical applications from prenatal
testing to tumor profiling and early cancer diagnosis, greatly improving our ability to
identify novel disease-causing genetic mutations and conduct comprehensive diagnostic
testing in the clinic (Reid et al., 2014; Merino et al., 2020). Whole-exome sequencing (WES)
is a commonly used method that captures most coding regions from the genome for
sequencing since these regions contain the majority of disease-causing mutations
(Consortium, 2005). In 2011, the US Food and Drug Administration awarded Helix as
a WES platform for a direct-to-consumer genetic risk test (Allyse et al., 2018). WES is
becoming a rapid, cost-effective molecular diagnostic tool for patients with genetic diseases
(Gahl et al., 2012; Gilissen et al., 2012; Linderman et al., 2014; Ombrello, Sikora, and
Kastner, 2014). As the demand for WES increases and the cost of NGS decreases, WES, as a
technique, requires a generous understanding of how experimental design can improve data
interpretation and thus improve biological outcomes (Cherukuri et al., 2015).

In recent years, sequencers and corresponding in silico software have also been
continuously updated (Hu et al., 2021). From the analysis perspective, processing steps
mainly include quality assessment, read alignment, variable identification, and annotation.
Various combinations of tools in each of the above sections lead to different performances
among pipelines, ultimately affecting the interpretation of variation calling (Barbitoff et al.,
2022). Therefore, in this study, we selected seven popular analysis pipelines to evaluate the
influence of these pipelines on WES results.

NGS technology has significantly impacted the field of genomics since its first release in
2005 (Ben Khedher et al., 2022). Since then, many different NGS platforms have been
developed (Pervez et al., 2022). Among them, NGS machines based on the Illumina
sequencing by synthesis (SBS) method have dominated the sequencing market. NovaSeq
6000, the latest instrument, now generates 6 TB of sequence data per run, costing 10 USD/
GB (Juhasz, 2021). The NextSeq 550 platform is also a prevailing WES sequencing platform
(Hu et al., 2021). Although its cost is higher than that of the NovaSeq 6000, it affects its
market share to a certain extent.

Recently, GeneMind Biosciences Company Limited launched a new sequencing
instrument (GenoLab M™) based on their previous work on the GenoCare™ single-
molecule sequencer (Li et al., 2022), a promising sequencing platform with high
performance and low cost. The GenoLab M sequencer employs SBS and reversible
termination approaches, which promise to deliver high-quality sequencing data faster

OPEN ACCESS

EDITED BY

Manuel Corpas,
University of Westminster, United Kingdom

REVIEWED BY

Claudia Calabrese,
Illumina, United States
Jared C. Roach,
Institute for Systems Biology (ISB), United States

*CORRESPONDENCE

Lei Sun,
sunlei@genemind.com

Yongfeng Liu,
liuyongfeng@genemind.com

†These authors have contributed equally to this
work

RECEIVED 06 November 2023
ACCEPTED 30 April 2024
PUBLISHED 16 May 2024

CITATION

Sun Y, Zhao X, Fan X, Wang M, Li C, Liu Y, Wu P,
Yan Q and Sun L (2024), Assessing the impact of
sequencing platforms and analytical pipelines
on whole-exome sequencing.
Front. Genet. 15:1334075.
doi: 10.3389/fgene.2024.1334075

COPYRIGHT

© 2024 Sun, Zhao, Fan, Wang, Li, Liu, Wu, Yan
and Sun. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Data Report
PUBLISHED 16 May 2024
DOI 10.3389/fgene.2024.1334075

https://www.frontiersin.org/articles/10.3389/fgene.2024.1334075/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1334075/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1334075/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1334075/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1334075&domain=pdf&date_stamp=2024-05-16
mailto:sunlei@genemind.com
mailto:sunlei@genemind.com
mailto:liuyongfeng@genemind.com
mailto:liuyongfeng@genemind.com
https://doi.org/10.3389/fgene.2024.1334075
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1334075


and at lower prices than Illumina’s sequencing instruments. The
GenoLab M now generates 300 GB of sequence data in a single run,
costing 6 USD/GB (Liu et al., 2021). The previous study has shown
that GenoLab M can achieve results comparable to the Illumina
platform in the transcriptome, but there are few relevant studies on
WES (Li et al., 2022). In this study, we selected two market-proven
platforms with high market share and one newly launched
sequencing platform to study the impact of different sequencing
platforms on WES results.

Horizon Discovery Group plc has announced that it has added a
golden standard genotype dataset (sample HD832) published by the
Horizon consortium that can be used to test the WES variants.
Nevertheless, few studies on sample HD832 have been published so
far. The reference standard HD832 contains over 380 variants across
152 essential cancer genes, and every batch of formalin-fixed
paraffin-embedded (FFPE) has 25 variants confirmed by ddPCR.
Therefore, we focused on the comparison results of SNPs and InDels
of high-confidence variants, 24 variants confirmed by ddPCR, and
then expanded all variants in this study. Unfortunately, there were
no benchmarking variation sets as the gold standard sets of HD832.
Therefore, this study selected HD832 as the test sample, providing a
meaningful dataset.

WES has seen a marked increase in the application for detection
of genetic diseases in recent years (J.-Y. Nam et al., 2016). For
instance, in cases of intellectual disability, NGS technologies have
markedly improved the identification of both established and novel
genes implicated in such conditions. When combined with CNV
analysis, WES can pinpoint a pathogenic variant in approximately
30% of patients (J. Wang et al., 2017). The current diagnostic success
rates support the use of WES as a primary diagnostic tool, allowing
for early diagnosis in intellectual disability or autism spectrum
disorder patients and ultimately improving the quality of life for
affected families (L.P. Bruno et al., 2021). The application of WES
has also significantly bolstered the diagnostic accuracy for fetuses
presenting with ultrasound abnormalities (Bianchi, 2019). In light of
these advancements, we have included the standard HG001 sample
in our WES analysis for genetic disease research.

In this study, our goal was to investigate the influence of the
sequencing platform and pipeline on WES results and discover
essential factors affecting WES by comparing the consistency of
biological and technical replicates across different datasets.

2 Materials and methods

2.1 Library preparation and sequencing

Total DNA was extracted from the FFPE scroll of HD832 using
the SEQPLUS FFPE DNA Isolation kit according to the
manufacturer’s instructions. The FFPE product of HD832 was
purchased from Mingma Technologies Co., Ltd., China. Then,
200 ng of genomic DNA was sheared using the Covaris
LE220 ultrasonicator (Covaris) to the target of 150–200 bp
average size. DNA libraries were prepared using the SureSelectXT
Low Input reagent kit and SureSelectXT HS2 DNA reagent kit
(Agilent). After the purification of beads, the pre-capture libraries
containing exome sequences were captured using the SureSelect
Human All Exon V8 kit (Agilent). Finally, the same library was split

and loaded into NovaSeq 6000, GenoLab M, and NextSeq 550 using
the PE150 sequencing mode. We used two HD832 standard samples
(R1 and R2) to be sequenced on three sequencing platforms,
respectively, and the standard sample R2 was repeated for
sequencing three times on the GenoLab M and NovaSeq
6000 platforms. For the normal standard HG001, we used
SureSelect Human All Exon V6 kit to construct one library.
Then, the library was split and loaded into five platforms
NextSeq 550, FASTASeq 300, NovaSeq 6000, GenoLab M, and
SURFSeq 5000.

2.2 Read alignment and variant calling

The raw reads of nine data were filtered and trimmed by fastp
using default parameters. The filtered reads were aligned to
hg19 via “Sentieon BWA” of Sentieon software v202112.04,
and sorting was performed using the “sort” utility tool. Then,
“LocusCollector” and “DeDup” tools were used to remove
duplicate reads, and the de-duplicated BAM files were used
for calling variants. Quality metrics were generated from these
BAM files using the FastQC and bamdst tools. We screened out
several of the most used pipelines for variant calling (Table 1).
Variants were identified by seven variant calling pipelines:
SAMtools–VarScan2 (v1.10 and v2.3.9) (Koboldt et al., 2009;
Koboldt, Larson, and Wilson, 2013), SNVer (v0.5.3) (Wei et al.,
2011), Sentieon-TNscope (Freed, Pan, and Aldana, 2018),
GATK-HaplotypeCaller (v4.2.6.1) (Ren, Bertels, and Al-Ars,
2018), bcftools-mpileup (v1.14) (Lefouili and Nam, 2022),
Strelka2 (v2.9.7), (Kim et al., 2018), and GATK-Mutect2
(v4.2.6.1) (Kiniwa et al., 2019). For the VarScan2, TNscope,
and HaplotypeCaller pipeline, the variants were filtered using
FPfilter, FilterMutectCalls, and VQSR tools, respectively. For all
pipelines, the parameters DP ≥ 20 and AD ≥ 3 were applied. For
the GATK-HaplotypeCaller algorithm, following the best
practice guidelines, raw variants were filtered by GATK
VariantRecalibrator using the 1,000 G, HapMap, Omni,
dbSNP, and Mills InDels datasets. We focused on the usage of
the tumor-only model for the Mutect2 pipeline. For other five
pipelines, we used default parameters to call variants, excepted -b
0.1 for SNVer. For HG001, we aligned the sequencing reads using
BWA-MEM to the hg19 reference genome, and Picard (v2.27.5,
https://broadinstitute.github.io/picard/) was used to mark
duplicates in the BAM files. Quality metrics were generated
from these BAM files by the fastQC and bamdst tools.

2.3 Comparison of results with truth sets and
ddPCR sets

The truth sets and the ddPCR sets of HD832 were downloaded
from https://horizondiscovery.com/en/reference-standards/
products/oncospan-gdna. There are 234 SNPs and 23 InDels in
Agilent V8 regions, and 24 variants are in the ddPCRs sets. The
variants’ AF ranges from 1% to 100%. This dataset was designed as a
truth set for following benchmarking analyses to evaluate all
variation sets. Precision, recall (sensitivity), and F-score were
calculated. The following formulas were used.
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Precision: TP/ TP + FP( ),
Sensitivity: TP/ TP + FN( ).

F-score: 2*Sensitivity*Precision/(Sensitivity + Precision).
TP, true positive; FN, false negative; FP, false positive.
For HG001, five variants’ callers, which included SNVer,

Strelka2, VarScan2 (filtered by FPfilter), GATK-HaplotypeCaller
(filtered by VQSR), and bcftools-mpileup, were used to detect
SNVs and InDels with default parameters. All VCF files were
compared against the GIAB benchmark dataset (v4.2.1) using
hap.py v0.3.15 for accuracy evaluation.

2.4 Performance comparison of all SNP and
InDel sets for HD832

To reduce false-positive calls, we filtered the variants. For the
VarScan2, TNscope and HaplotypeCaller pipelines, the variants were
filtered by FPfilter (with--min-var-count 3), FilterMutectCalls, and
VQSR (best practice guideline parameters) tools, respectively. For all
pipelines, the parameters read depth (DP) ≥ 20, allele depth (AD) ≥ 3,
and allele frequency ≥0.05 were applied. The mutation results from the

VarScan2 and SNVer pipelines were compared. All the samples,
including sample R1 (GL_R1 and NV_R1) and sample R2 (NV_
R2.1, NV_R2.2, and NV_R2.3), were biologically replicated samples.
Then, the performances of variants were assessed across three platforms
(GL: GenoLabM, NS: NovaSeq 6000, and NX: NextSeq 550), where the
variants of GL and NS platforms, respectively, took the intersection of
repeated samples as their own variant sets. Furthermore, the variants
were annotated for impact prediction using ANNOVAR software. We
filtered the common mutations which were recorded by the four-
frequency databases (Genome Aggregation Database (gnomAD),
1000 Genomes Project (1000G), Exome Aggregation Consortium
(ExAC), and Exome Sequencing Project v6500 (ESP6500)) with the
minor allele frequency (MAF) greater than 0.1%.

3 Results

3.1 Data quality check

We obtained nine WES datasets by sequencing gDNA from
HD832. The average rates of quality scores above Q30 in GenoLab
M, NovaSeq 6000, and NextSeq 550 were 91.48%, 92.26%, and

TABLE 1 Lists of variant callers used in this study.

ID Tool Version Main property Literature
citation

Link Sample

1 VarScan2 v2.3.9 Applying a heuristic algorithm determines the
genotype for normal and tumor samples

independently based on adjustable minimum
thresholds for coverage, base quality, variant allele
frequency, and statistical significance. VarScan 2 is
used for the detection of somatic mutations and copy

number alterations in exome data

4,533 https://varscan.sourceforge.
net/

HD832–
HG001

2 SNVer v0.5.3 Calling common and rare variants in analyzing
pooled or individual NGS data. It formulates variant
calling as a hypothesis testing problem and uses a
binomial–binomial model to test the significance of
observed allele frequency against the sequencing

error

317 https://snver.sourceforge.
net/

HD832–HG001

3 Sentieon-TNscope v202112.04 In the ICGC-DREAM Somatic Mutation calling
challenge, TNscope is the leader in accuracy for

SNPs and InDels, by combining the improvements
in the variant caller with machine learning

40 https://support.sentieon.
com/appnotes/tnscope_ml/

HD832

4 GATK-Mutect2 v4.2.6.1 Mutect2 is a somatic variant caller that uses local
assembly and realignment to detect SNPs and

InDels. Mutect2 supports the normal-tumor mode
and tumor-only mode

323 https://github.com/
broadinstitute/gatk/releases

HD832

5 GATK-
HaplotypeCaller

v4.2.6.1 A popular set of programs for discovering and
genotyping variants from NGS data

22,657 https://github.com/
broadinstitute/gatk/releases

HD832–HG001

6 bcftools-mpileup v1.14 SAMtools implements various utilities for post-
processing alignments in the SAM format, such as
indexing, variant caller, and alignment viewer. In

particular, SAMtools mpileup (now Bcftools
mpileup) was previously the most widely used

variant caller

48,024 https://samtools.github.io/
bcftools/howtos/index.html

HD832–HG001

7 Strelka2 v2.9.7 Strelka2 introduces a novel mixture-model-based
estimation of insertion/deletion error parameters
from each sample, an efficient tiered haplotype-

modeling strategy. Strelka2 software is claimed to be
time-efficient, which is a very important aspect of

clinical usage

872 https://github.com/
Illumina/strelka

HD832–HG001
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93.15%, respectively. GenoLab M had a minor performance gap
compared to NovaSeq 6000 and NextSeq 550 (Supplementary Table
S1). The mapping rates for all samples were above 98%. However,
the duplication rate in GenoLab M was less than one-third of that in
NovaSeq (8.18% VS 21.54%). Furthermore, the target coverage over
30X in NovaSeq 6000 and NextSeq 550 was higher than that in
GenoLab M, while the coverage depth was relatively similar in the
three sequencing platforms.

3.2 Performance comparison of high-
confidence variants in HD832

First, the detection numbers of high-confidence variants on
three platforms via seven pipelines were obtained. Four tools
with the best results were selected for display because they were
able to detect more high-confidence variants. It was found that,

under the same software, the difference in the number of detected
variants among different platforms was very negligible (Figures 1A,
B). Under the pipeline VarScan2, the average SNP detection
numbers on the three platforms were 233, 232, and 234,
respectively. Although all platforms were not able to detect all
high-confidence variants, we calculated the F-score and Recall of
all samples under different analysis tools (Supplementary Table S2).
At the same time, the results show that there are large differences in
high-confidence variants among tools. For example, the same
dataset detected 193 SNPs in Strelka2, but 234 SNPs were
detected in VarScan2. It is similar in the set of variants
confirmed by ddPCR (Figure Figure1C). Since the number of
InDels given by the high-confidence variants was small, the
difference between platforms was 1–2 InDels (Figure 1B), but the
difference among tools was up to 7 InDels. In addition, SNVer and
VarScan2 performed best in the detection rate of high-confidence
variants. We further collected a set of novel variants through the

FIGURE 1
Comparative analysis of the performance of high-confidence variants for three platforms: (A) comparison of high-confidence variants in SNP; (B)
comparison of high confidence variants in SNP; (C) comparison of variants confirmed by ddPCR in all datasets (red dashed lines represent the number of
truth sets); (D) SNP sets of SNVer in the GenoLab M platform; (E) SNP sets of VarScan2 in the GenoLab M platform; (F) SNP sets of SNVer in the NovaSeq
6000 platform; (G) SNP sets of VarScan2 in the NovaSeq 6000 platform; (H) upset diagram of SNP calling results by SNVer pipeline analysis of nine
datasets; and (I) upset diagram of SNP calling results by VarScan2 pipeline analysis of nine datasets. Note: GATK-HC, GATK-HaplotypeCaller; NS, NovaSeq
6000; GL, GenoLab M; NX, NextSeq 550.
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intersection of our 63 datasets (Supplementary Table S3), which
potentially cause significant impacts, beyond the truth sets published
by HD832. Given that these novel variants are consistently detected
across various sequencing platforms and software, they present
themselves as promising candidate variants. Once they were
verified by Sanger sequencing, it is advisable to incorporate them
into the true set. This integration would enrich the dataset with
verified loci, thereby enhancing the accuracy and reliability of future
genetic analyses.

3.3 Performance comparison of all SNPs and
InDels in HD832

In comparing the results of the high-confidence variant set, the
platform has a minor influence on the WES results. The small number
of reference sets might have an impact, so all the variants were
calculated. All nine datasets were used for calling variants via the
two outstanding SNVer and VarScan2 pipelines to explore the effects of
biological and technical replicates on WES results. The number of
overlapping mutations in the nine datasets was 29,303 in SNVer and
36,900 in VarScan2 (Supplementary Figures S1A, S1B). The number of
mutations detected by two software applicationswas quite different, and
the proportion of overlap in each sample was also quite different. For
example, the sample proportion of NV-R1 was 55.67% in SNVer, and
the proportion in VarScan2 was 70.78% (Supplementary Figure S1). It
was consistent with the results of the high-confidence variant set.
Moreover, the sample with the smallest overlap mutation was NV-
R1, with only 55.67%, while the highest proportion was 71.35%
(SNVer). For InDel results, the situation was even worse, and the
sample with the highest proportion of overlap was only 55.77%
(Supplementary Figure S2). These results indicated that the
agreement among the nine datasets was poor in SNPs and InDels.

3.4 Comparison of technical and biological
replicates in HD832

To further explore the reasons for the differences among the
nine samples, we separately counted the overlap variants of the
sequencing platform. Eight datasets from the GenoLab M and
NovaSeq 6000 platforms were chosen for subsequent analysis. In
this, R1 and R2 were biological replicates derived from two standard
HD832 libraries, while R2.1, R2.2, and R2.3 were technical replicates
derived from three sequencing results of the same library. For the
SNVer pipeline, the proportion of shared SNPs between the
biological replicates was only 69.39% in GenoLab and 70.61% in
NovaSeq, while the proportion of technical replicates was only 75%–

81% (Figures 1D–G). For InDels, the proportion of shared
mutations between biological replicates was 61.77% and 65.2%.
In comparison, the proportion of shared mutations between
technical replicates ranged from 65% to 70.81% (Supplementary
Figure S3). The consistency of technical replicates was higher than
that of biological replicates. The results of VarScan2 were slightly
better than those of SNVer, especially in the results of the NovaSeq
platform, in which the ratio of the overlapping sites of SNPs exceeds
87% between biological replicates and technical replicates,
respectively. The proportion of overlapping sites in InDels also

exceeded 71%. However, the ratio of overlapping sites in InDels on
the GenoLabM sequencing platform decreased to 57%–61%. On the
contrary, the proportion of SNPs increased to 80.6%–86.16%
(Figures 1D–G). The results showed that there were still
differences between the sequencing results of the biological
replicates and the technical replicates from the standard
sample HD832.

3.5 Comparing differences across
sequencing platforms in HD832

To further study the impact of sequencing platforms on WES
results, the intersection of the data on four samples from the same
sequencer was taken. It showed that the results after taking the
intersection were improved compared with the results of the nine
samples. The concordance of SNPs on the GenoLab and NovaSeq
platforms reached 88.67% and 78.84% in SNVer and 89.03% and
80.67% in VarScan2, respectively (Figures 1H, I). The consistency of
InDels reached 69.76% and 53.93% in VarScan2, and 78.73% and
71.05% in SNVer, respectively. In the NextSeq platform, owing to
the lack of biological replicates, SNPs accounted for only 66.52% in
SNVer and 70.96% VarScan2, respectively (Supplementary Figure
S4). These results suggest that biological replicates could improve
the result accuracy.

3.6 Comparing differences across
sequencing platforms in HG001

To further validate our findings in genetic disease, we conducted
a study to investigate the impact of analysis software onWES results
in comparison to sequencing platforms. Our results indicated
minimal variation in F-values across platforms (Supplementary
Figure S5). Two newly launched sequencing platforms, namely,
FASTSeq 300 and SURFSeq 5000, were incorporated, and two
tools that were more suitable for tumor detection were phased
out (Supplementary Figure S6). The results underscore that
under the identical analysis pipeline, the disparity in SNP
detection among various sequencing platforms is minimal.
Specifically, for mpileup, the F-score across platform ranged from
0.8738 to 0.8856 (Supplementary Table S4). Nevertheless, a more
pronounced divergence was observed in the detection of InDels.
Illustratively, the underperforming SNVer pipeline reported an
average F-score of a mere 40%, in stark contrast to the superior
Strelka2 pipeline, which boasted an average F-score of 76%. These
insights suggest that the choice of the sequencing platform exerts a
negligible influence on the WES outcomes for the HG0001 sample.
Conversely, the analysis software application, while having a muted
effect on SNP detection, significantly impacts InDel identification.
In contrast to the HD832 tumor detection, SNVer performed worst
and Strelka2 was best in HG001.

4 Discussion

This study used the standard sample HD832 forWES to produce
multiple datasets by three sequencing platforms, seven analysis
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pipelines, and HG001 for genetic disease to produce multiple
datasets by five sequencing platforms and five analysis pipelines.
By comparing these datasets, it was found that the analysis pipeline
had a greater influence on the WES results than the sequencing
platform. At the same time, there were still differences between the
technical replicates of the same sequencing platform. Biological
replicates have worse concordance results than technical
replicates. This study provides the following suggestions for
improving the accuracy of WES results: first, it is essential to
select an appropriate analysis pipeline for WES projects; second,
the sequencing platforms have little impact on WES results; in
addition, biological replicates are necessary for WES research and
should be considered in addition to adding technical replicates of
critical samples. Unfortunately, this study failed to use more
sequencing platforms for comparison, such as BGI, PacBio, and
Nanopore (Jeon et al., 2021). Since HD832 only has small
benchmarking variant sets, we could not compare the differences
between the three sequencing platforms using statistical methods
such as F1-score. It is recommended that future studies consider
using the inheritance state consistency analysis (ISCA) method to
enhance the reliability of results (J.C. Roach et al., 2010).
Nevertheless, this study aims to initially explore the potential
factors affecting the results of WES. In the subsequent research,
we will collect more samples and use sequencing platforms to
explore these impact factors in depth.

As costs continue to decline, more and more researchers and
clinicians are using NGS to analyze clinical samples (Schwarze et al.,
2018). Currently, several sample processing protocols, library
preparation methods, sequencing technologies, and
bioinformatics pipelines have been used to identify cancer-
associated mutations (Xiao et al., 2021). In addition, samples
arriving at the testing laboratory may be in a different state
(FFPE or fresh samples), and the amount of DNA input may be
variable in clinical settings. Tumor purity rarely varies consistently
across samples, posing enormous challenges for sequence analysis,
instrumentation, and analytical tools (Xiao et al., 2021). Previous
studies have found differences in the detection of SNPs and InDels
between different pipelines (Hwang et al., 2015; Torkamaneh,
Laroche, and Belzile, 2016; Xiao et al., 2021). Therefore, we used
seven pipelines for variant calling. However, the result via the
Genome Analysis Toolkit (GATK) has not yet exhibited in this
study, owing to its worse result than VarScan2, SNVer, or Sentieon.
Nevertheless, optimizing analytical pipelines and polishing
sequencing platforms can improve WES results (Xiao et al.,
2021). Therefore, developing new sequencing platforms and
analyzing pipelines would benefit WES research.

Previous studies have shown differences between WES
biological replicates of the same sample (Shi et al., 2018; Xiao
et al., 2021). A few studies on the technical replicates of
sequencing platforms were performed (Chen et al., 2019; Kim
et al., 2021). However, we found differences between technical
replicates, suggesting that the stability of current sequencing
platforms still needs improvement. Encouragingly, GenoLab M, a
newly released sequencing platform, had a small gap in terms of
sequencing stability compared to NovaSeq. For NovaSeq, after
several years of upgrading (Modi et al., 2021), the consistency of
the platform can reach 87% under a specific analysis pipeline.
Various factors can affect the accuracy of WES data, such as the

target enrichment kits used, target sequence GC bias, PCR
amplification bias, duplications and spurious genes, and other
experimental design variables (Cherukuri et al., 2015; Tian et al.,
2016). These factors directly and systematically affect the sensitivity
ofWES. Although developmental versions of exome enrichment kits
continue to address these biases, the impact of experimental design
on engineered replication in lineage-basedWES still needs to be fully
understood. Therefore, technical replication was emphasized while
we focused on the sequencing platform. The results showed a great
relationship between the technical duplication of the platform and
the analytical pipeline, so the technical duplication of essential
samples should be enrolled while increasing the analytical
pipeline. For example, the number of technical replicates was
expanded for reference negatives and critical family samples.
Finally, we consider our method and results consistent with other
studies that have noted benefits with replicate comparisons for
variant detection and variant calling accuracy (Zhang et al., 2014;
Cherukuri et al., 2015).

5 Conclusion

In summary, through comparative analysis of multiple datasets,
we found that the analysis pipeline had a greater influence on the
results of WES for HD832 and HG001 than the sequencing
platform. SNVer and VarScan2 can obtain the best analysis
results among the seven pipelines in HD832. Strelka2 can obtain
the best analysis results among the five pipelines in InDel calling of
HG001. In addition, we provided multiple practical reference
datasets for the new sequencing platform and the standard HD832.

Data availability statement

The datasets presented in this study can be found in online
repositories. Accession numbers are CNP0003701 (https://db.cngb.
org/search/project/CNP0003701/) and CNP0005581 (https://db.cngb.
org/search/project/CNP0005581/) in CNGBdb database.

Ethics statement

Ethical approval was not required for the studies on humans in
accordance with the local legislation and institutional requirements
because only commercially available established cell lines were used.

Author contributions

YS: project administration and writing–review and editing. XZ:
writing–original draft and writing–review and editing. XF:
methodology and writing–original draft. MW: software, supervision,
validation, and writing–original draft. CL: data curation and
writing–original draft. YL: writing–original draft and writing–review
and editing. PW: funding acquisition, resources, and writing–original
draft. QY: funding acquisition, resources, and writing–original draft. LS:
funding acquisition, methodology, project administration, resources,
and writing–review and editing.

Frontiers in Genetics frontiersin.org06

Sun et al. 10.3389/fgene.2024.1334075

https://db.cngb.org/search/project/CNP0003701/
https://db.cngb.org/search/project/CNP0003701/
https://db.cngb.org/search/project/CNP0005581/
https://db.cngb.org/search/project/CNP0005581/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1334075


Funding

The authors declare that this study received funding fromGeneMind
Biosciences Company Limited. The funder was not involved in the study
design, collection, analysis, interpretation of data, the writing of this
article, or the decision to submit it for publication.

Acknowledgments

The authors would like to thankMingma Technologies Co., Ltd., for
providing the standard sample HD832 in this study, Mingma company
is also responsible for the library construction and sequencing of the
samples. They would also like to thank the company for providing the
standard sample HD832 in this study, and the company is also
responsible for the library construction and sequencing of the samples.

Conflict of interest

Authors YS, XZ, MW, CL, YL, PW, QY, and LS were employed
by GeneMind Biosciences Company Limited.

The remaining authors declare that the research was
conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their
affiliated organizations, or those of the publisher, the
editors, and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by
the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2024.1334075/
full#supplementary-material

References

Allyse, M. A., Robinson, D. H., Ferber, M. J., and Sharp, R. R. (2018). Direct-to-
consumer testing 2.0: emerging models of direct-to-consumer genetic testing. Mayo
Clin. Proc. 93, 113–120. doi:10.1016/j.mayocp.2017.11.001

Barbitoff, Y. A., Abasov, R., Tvorogova, V. E., Glotov, A. S., and Predeus, A. V. (2022).
Systematic benchmark of state-of-the-art variant calling pipelines identifies major
factors affecting accuracy of coding sequence variant discovery. BMC genomics 23
(1), 155–217. doi:10.1186/s12864-022-08365-3

Ben Khedher, M., Ghedira, K., Rolain, J.-M., Ruimy, R., and Croce, O. (2022).
Application and challenge of 3rd generation sequencing for clinical bacterial studies.
Int. J. Mol. Sci. 23 (3), 1395. doi:10.3390/ijms23031395

Bianchi, D. W. (2019). Turner syndrome: new insights from prenatal genomics and
transcriptomics. Am. J. Med. Genet. Part C Seminars Med. Genet. 181, 29–33. doi:10.
1002/ajmg.c.31675

Bruno, L. P., Doddato, G., Valentino, F., Baldassarri, M., Tita, R., Fallerini, C., et al.
(2021). New candidates for autism/intellectual disability identified by whole-exome
sequencing. Int. J. Mol. Sci. 22, 13439. doi:10.3390/ijms222413439

Chen, J., Li, X., Zhong, H., Meng, Y., and Du, H. (2019). Systematic comparison of
germline variant calling pipelines cross multiple next-generation sequencers. Sci. Rep. 9
(1), 9345–9413. doi:10.1038/s41598-019-45835-3

Cherukuri, P. F., Maduro, V., Fuentes-Fajardo, K. V., Lam, K., Adams, D. R., Tifft, C.
J., et al. (2015). Replicate exome-sequencing in a multiple-generation family: improved
interpretation of next-generation sequencing data. BMC genomics 16 (1), 998–1010.
doi:10.1186/s12864-015-2107-y

Consortium, I. H. (2005). A haplotype map of the human genome.Nature 437 (7063),
1299–1320. doi:10.1038/nature04226

Freed, D., Pan, R., and Aldana, R. (2018). TNscope: accurate detection of somatic
mutations with haplotype-based variant candidate detection and machine learning
filtering. Biorxiv 250647. doi:10.1101/250647

Gahl, W. A., Markello, T. C., Toro, C., Fajardo, K. F., Sincan, M., Gill, F., et al.
(2012). The national institutes of health undiagnosed diseases program: insights
into rare diseases. Genet. Med. 14 (1), 51–59. doi:10.1038/gim.
0b013e318232a005

Gilissen, C., Hoischen, A., Brunner, H. G., and Veltman, J. A. (2012). Disease gene
identification strategies for exome sequencing. Eur. J. Hum. Genet. 20 (5), 490–497.
doi:10.1038/ejhg.2011.258

Hu, T., Chitnis, N., Monos, D., and Dinh, A. (2021). Next-generation sequencing
technologies: an overview. Hum. Immunol. 82 (11), 801–811. doi:10.1016/j.humimm.
2021.02.012

Hwang, S., Kim, E., Lee, I., and Marcotte, E. M. (2015). Systematic comparison of
variant calling pipelines using gold standard personal exome variants. Sci. Rep. 5 (1),
17875–17878. doi:10.1038/srep17875

Jeon, S. A., Park, J. L., Park, S.-J., Kim, J. H., Goh, S.-H., Han, J.-Y., et al. (2021).
Comparison between MGI and Illumina sequencing platforms for whole genome
sequencing. Genes and Genomics 43 (7), 713–724. doi:10.1007/s13258-021-01096-x

Juhasz, Z. (2021). Quantitative cost comparison of on-premise and cloud
infrastructure based EEG data processing. Clust. Comput. 24 (2), 625–641. doi:10.
1007/s10586-020-03141-y

Kim, H.-M., Jeon, S., Chung, O., Jun, J. H., Kim, H.-S., Blazyte, A., et al. (2021).
Comparative analysis of 7 short-read sequencing platforms using the Korean reference
genome: MGI and Illumina sequencing benchmark for whole-genome sequencing.
GigaScience 10 (3), giab014. doi:10.1093/gigascience/giab014

Kim, S., Scheffler, K., Halpern, A. L., Bekritsky, M. A., Noh, E., Källberg, M., et al.
(2018). Strelka2: fast and accurate calling of germline and somatic variants. Nat.
methods 15 (8), 591–594. doi:10.1038/s41592-018-0051-x

Kiniwa, Y., Yasuda, J., Saito, S., Saito, R., Motoike, I. N., Danjoh, I., et al. (2019).
Identification of genetic alterations in extramammary Paget disease using whole exome
analysis. J. dermatological Sci. 94 (1), 229–235. doi:10.1016/j.jdermsci.2019.03.006

Koboldt, D. C., Chen, K., Wylie, T., Larson, D. E., McLellan, M. D., Mardis, E. R., et al.
(2009). VarScan: variant detection in massively parallel sequencing of individual and
pooled samples. Bioinformatics 25 (17), 2283–2285. doi:10.1093/bioinformatics/btp373

Koboldt, D. C., Larson, D. E., andWilson, R. K. (2013). Using VarScan 2 for germline
variant calling and somatic mutation detection. Curr. Protoc. Bioinforma. 44 (1),
15.14.1–17. doi:10.1002/0471250953.bi1504s44

Lefouili, M., and Nam, K. (2022). The evaluation of Bcftools mpileup and GATK
HaplotypeCaller for variant calling in non-human species. Sci. Rep. 12 (1),
11331–11338. doi:10.1038/s41598-022-15563-2

Li, C., Fan, X., Guo, X., Liu, Y., Wang, M., Zhao, X. C., et al. (2022). Accuracy
benchmark of the GeneMind GenoLab M sequencing platform for WGS and WES
analysis. BMC genomics 23 (1), 533–611. doi:10.1186/s12864-022-08775-3

Linderman, M. D., Brandt, T., Edelmann, L., Jabado, O., Kasai, Y., Kornreich, R., et al.
(2014). Analytical validation of whole exome and whole genome sequencing for clinical
applications. BMC Med. genomics 7 (1), 20–11. doi:10.1186/1755-8794-7-20

Liu, Y., Han, R., Zhou, L., Luo, M., Zeng, L., Zhao, X., et al. (2021). Comparative
performance of the GenoLab M and NovaSeq 6000 sequencing platforms for
transcriptome and LncRNA analysis. BMC genomics 22 (1), 829–912. doi:10.1186/
s12864-021-08150-8

Merino, D. M., McShane, L. M., Fabrizio, D., Funari, V., Chen, S.-J., White, J. R.,
et al. (2020). Establishing guidelines to harmonize tumor mutational burden
(TMB): in silico assessment of variation in TMB quantification across
diagnostic platforms: phase I of the Friends of Cancer Research TMB
Harmonization Project. J. Immunother. cancer 8 (1), e000147. doi:10.1136/jitc-
2019-000147

Frontiers in Genetics frontiersin.org07

Sun et al. 10.3389/fgene.2024.1334075

https://www.frontiersin.org/articles/10.3389/fgene.2024.1334075/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2024.1334075/full#supplementary-material
https://doi.org/10.1016/j.mayocp.2017.11.001
https://doi.org/10.1186/s12864-022-08365-3
https://doi.org/10.3390/ijms23031395
https://doi.org/10.1002/ajmg.c.31675
https://doi.org/10.1002/ajmg.c.31675
https://doi.org/10.3390/ijms222413439
https://doi.org/10.1038/s41598-019-45835-3
https://doi.org/10.1186/s12864-015-2107-y
https://doi.org/10.1038/nature04226
https://doi.org/10.1101/250647
https://doi.org/10.1038/gim.0b013e318232a005
https://doi.org/10.1038/gim.0b013e318232a005
https://doi.org/10.1038/ejhg.2011.258
https://doi.org/10.1016/j.humimm.2021.02.012
https://doi.org/10.1016/j.humimm.2021.02.012
https://doi.org/10.1038/srep17875
https://doi.org/10.1007/s13258-021-01096-x
https://doi.org/10.1007/s10586-020-03141-y
https://doi.org/10.1007/s10586-020-03141-y
https://doi.org/10.1093/gigascience/giab014
https://doi.org/10.1038/s41592-018-0051-x
https://doi.org/10.1016/j.jdermsci.2019.03.006
https://doi.org/10.1093/bioinformatics/btp373
https://doi.org/10.1002/0471250953.bi1504s44
https://doi.org/10.1038/s41598-022-15563-2
https://doi.org/10.1186/s12864-022-08775-3
https://doi.org/10.1186/1755-8794-7-20
https://doi.org/10.1186/s12864-021-08150-8
https://doi.org/10.1186/s12864-021-08150-8
https://doi.org/10.1136/jitc-2019-000147
https://doi.org/10.1136/jitc-2019-000147
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1334075


Modi, A., Vai, S., Caramelli, D., and Lari, M. (2021). The Illumina sequencing
protocol and the NovaSeq 6000 system. Methods Mol. Biol. 2242, 15–42. doi:10.1007/
978-1-0716-1099-2_2

Nam, J.-Y., Kim, N. K., Kim, S. C., Joung, J.-G., Xi, R., Lee, S., et al. (2016). Evaluation
of somatic copy number estimation tools for whole-exome sequencing data. Briefings
Bioinforma. 17, 185–192. doi:10.1093/bib/bbv055

Ombrello, M. J., Sikora, K. A., and Kastner, D. L. (2014). Genetics, genomics, and their
relevance to pathology and therapy. Best Pract. Res. Clin. rheumatology 28 (2), 175–189.
doi:10.1016/j.berh.2014.05.001

Pervez, M. T., Abbas, S. H., Moustafa, M. F., Aslam, N., and Shah, S. S. M. (2022). A
comprehensive review of performance of next-generation sequencing platforms.
BioMed Res. Int. 2022, 3457806. doi:10.1155/2022/3457806

Reid, J. G., Carroll, A., Veeraraghavan, N., Dahdouli, M., Sundquist, A., English, A.,
et al. (2014). Launching genomics into the cloud: deployment of Mercury, a next
generation sequence analysis pipeline. BMC Bioinforma. 15, 30–11. doi:10.1186/1471-
2105-15-30

Ren, S., Bertels, K., and Al-Ars, Z. (2018). Efficient acceleration of the pair-
hmms forward algorithm for gatk haplotypecaller on graphics processing
units. Evol. Bioinforma. 14, 1176934318760543. doi:10.1177/
1176934318760543

Roach, J. C., Glusman, G., Smit, A. F., Huff, C. D., Hubley, R., Shannon, P. T., et al.
(2010). Analysis of genetic inheritance in a family quartet by whole-genome sequencing.
Science 328, 636–639. doi:10.1126/science.1186802

Schwarze, K., Buchanan, J., Taylor, J. C., and Wordsworth, S. (2018). Are
whole-exome and whole-genome sequencing approaches cost-effective?

A systematic review of the literature. Genet. Med. 20 (10), 1122–1130. doi:10.
1038/gim.2017.247

Shi, W., Ng, C. K., Lim, R. S., Jiang, T., Kumar, S., Li, X., et al. (2018). Reliability of
whole-exome sequencing for assessing intratumor genetic heterogeneity. Cell Rep. 25
(6), 1446–1457. doi:10.1016/j.celrep.2018.10.046

Tian, S., Yan, H., Kalmbach, M., and Slager, S. L. (2016). Impact of post-alignment
processing in variant discovery from whole exome data. BMC Bioinforma. 17, 403–413.
doi:10.1186/s12859-016-1279-z

Torkamaneh, D., Laroche, J., and Belzile, F. (2016). Genome-wide SNP calling
from genotyping by sequencing (GBS) data: a comparison of seven pipelines and
two sequencing technologies. PloS one 11 (8), e0161333. doi:10.1371/journal.pone.
0161333

Wang, J., Al-Ouran, R., Hu, Y., Kim, S.-Y., Wan, Y.-W., Wangler, M. F., et al. (2017).
MARRVEL: integration of human and model organism genetic resources to facilitate
functional annotation of the human genome. Am. J. Hum. Genet. 100, 843–853. doi:10.
1016/j.ajhg.2017.04.010

Wei, Z., Wang,W., Hu, P., Lyon, G. J., and Hakonarson, H. (2011). SNVer: a statistical
tool for variant calling in analysis of pooled or individual next-generation sequencing
data. Nucleic acids Res. 39 (19), e132. doi:10.1093/nar/gkr599

Xiao, W., Ren, L., Chen, Z., Fang, L. T., Zhao, Y., Lack, J., et al. (2021). Toward best
practice in cancer mutation detection with whole-genome and whole-exome
sequencing. Nat. Biotechnol. 39 (9), 1141–1150. doi:10.1038/s41587-021-00994-5

Zhang, Y., Li, B., Li, C., Cai, Q., Zheng, W., and Long, J. (2014). Improved variant
calling accuracy by merging replicates in whole-exome sequencing studies. BioMed Res.
Int. 2014, 319534. doi:10.1155/2014/319534

Frontiers in Genetics frontiersin.org08

Sun et al. 10.3389/fgene.2024.1334075

https://doi.org/10.1007/978-1-0716-1099-2_2
https://doi.org/10.1007/978-1-0716-1099-2_2
https://doi.org/10.1093/bib/bbv055
https://doi.org/10.1016/j.berh.2014.05.001
https://doi.org/10.1155/2022/3457806
https://doi.org/10.1186/1471-2105-15-30
https://doi.org/10.1186/1471-2105-15-30
https://doi.org/10.1177/1176934318760543
https://doi.org/10.1177/1176934318760543
https://doi.org/10.1126/science.1186802
https://doi.org/10.1038/gim.2017.247
https://doi.org/10.1038/gim.2017.247
https://doi.org/10.1016/j.celrep.2018.10.046
https://doi.org/10.1186/s12859-016-1279-z
https://doi.org/10.1371/journal.pone.0161333
https://doi.org/10.1371/journal.pone.0161333
https://doi.org/10.1016/j.ajhg.2017.04.010
https://doi.org/10.1016/j.ajhg.2017.04.010
https://doi.org/10.1093/nar/gkr599
https://doi.org/10.1038/s41587-021-00994-5
https://doi.org/10.1155/2014/319534
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1334075

	Assessing the impact of sequencing platforms and analytical pipelines on whole-exome sequencing
	1 Introduction
	2 Materials and methods
	2.1 Library preparation and sequencing
	2.2 Read alignment and variant calling
	2.3 Comparison of results with truth sets and ddPCR sets
	2.4 Performance comparison of all SNP and InDel sets for HD832

	3 Results
	3.1 Data quality check
	3.2 Performance comparison of high-confidence variants in HD832
	3.3 Performance comparison of all SNPs and InDels in HD832
	3.4 Comparison of technical and biological replicates in HD832
	3.5 Comparing differences across sequencing platforms in HD832
	3.6 Comparing differences across sequencing platforms in HG001

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


