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Dry bean is a nutrient-dense food targeted in biofortification programs to
increase seed iron and zinc levels. The underlying assumption of breeding for
higher mineral content is that enhanced iron and zinc levels will deliver health
benefits to the consumers of these biofortified foods. This study characterized a
diversity panel of 275 genotypes comprising the Yellow Bean Collection (YBC) for
seed Fe and Zn concentration, Fe bioavailability (FeBio), and seed yield across
2 years in two field locations. The genetic architecture of each trait was
elucidated via genome-wide association studies (GWAS) and the efficacy of
genomic prediction (GP) was assessed. Moreover, 82 yellow breeding lines
were evaluated for seed Fe and Zn concentrations as well as seed yield,
serving as a prediction set for GP models. Large phenotypic variability was
identified in all traits evaluated, and variations of up to 2.8 and 13.7-fold were
observed for Fe concentration and FeBio, respectively. Prediction accuracies in
the YBC ranged from a low of 0.12 for Fe concentration, to a high of 0.72 for
FeBio, and an accuracy improvement of 0.03 was observed when a QTN,
identified through GWAS, was used as a fixed effect for FeBio. This study
provides evidence of the lack of correlation between FeBio estimated in vitro
and Fe concentration and highlights the potential of GP in accurately predicting
FeBio in yellow beans, offering a cost-effective alternative to the traditional
assessment of using Caco2 cell methodologies.
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Introduction

Dry bean is the most important legume for human consumption worldwide (FAO et al.,
2022) providing high levels of protein, dietary fiber, and micronutrients such as iron (Fe)
and zinc (Zn) (Uebersax et al., 2022). Dry beans are also an appealing crop choice for
biofortification because of their low environmental footprint, ability for symbiotic nitrogen
fixation, and long shelf life that minimizes food waste (Willett et al., 2019). Biofortification
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initiatives since 2005 have focused on increasing dry bean Fe and Zn
concentrations through breeding as a means to improve the
nutritional status of humans with Fe and Zn deficiencies (Beebe,
2020). Iron concentrations in beans are projected to decrease in
climate change scenarios of rising CO2 (Smith et al., 2017).
Combatting climate change necessitates a shift toward plant-
based diets, which, though beneficial for the environment,
typically offer lower iron bioavailability compared to animal-
based alternatives (van Wonderen et al., 2023). This transition is
likely to exacerbate human iron deficiency issues in the future
(MacDiarmid and Whybrow, 2019). Consequently, emphasizing
iron and its bioavailability in bean breeding programs becomes
crucial to mitigate this nutritional concern.

As bean breeders have worked for the last 2 decades to biofortify
beans by increasing minerals concentrations, major efforts have
been made to understand the genetic architecture of seed Fe and Zn
accumulation (Cichy et al., 2009; Blair et al., 2011; Blair and
Izquierdo, 2012; Blair et al., 2013; Mahajan et al., 2017; Caproni
et al., 2020; Delfini et al., 2021; Gunjača et al., 2021; Cichy et al., 2022;
Nazir et al., 2022). Ameta-QTL (MQTL) analysis identified 12 stable
MQTLs over different genetic backgrounds and environments
(Izquierdo et al., 2018). While there has been a push towards
breeding for increased seed micronutrient concentration, multiple
studies have also underscored the value of breeding for enhanced Fe
bioavailability (Katuuramu et al., 2018; Glahn et al., 2020;
Katuuramu et al., 2021). These studies have indicated that Fe
concentration and Fe bioavailability are not necessarily positively
correlated. Increased Fe levels are often associated with increased
amounts of polyphenols and phytate in the seed and both
compounds form complexes with Fe that can pass through the
human small intestine undigested, thereby negating the potential
benefit of the higher Fe concentration (Tako et al., 2015).

Seed Fe and Zn concentrations are quantitative traits controlled
by many loci across the genome in dry beans (Izquierdo et al., 2018)
and are strongly influenced by the environment (Katuuramu et al.,
2021). Although Fe bioavailability is also a quantitative trait, a study
reported across nine locations in Uganda found it to be stable across
environments (Katuuramu et al., 2021). The Caco-2 cell bioassay is
the most cost-effective and practical method for assessment of Fe
bioavailability from foods; however, the model requires highly
trained technicians and laboratory resources that are often out of
reach for most breeding programs (Glahn et al., 1998). One study in
common bean has dissected the genetic architecture of Fe
bioavailability through genome-wide association studies (GWAS),
identifying five SNP associations distributed on chromosomes 6, 7,
and 11 with phenotypic variability explained by the associated
markers ranging from 8% to 13% (Katuuramu et al., 2018).

Genomic prediction uses genotype and phenotype from training
datasets to estimate the phenotypes of new lines within a testing
dataset, thereby reducing the need for extensive phenotyping and
increasing selection intensity (Bernardo, 2020). This approach
predicts phenotypes using all genetic markers collectively
(Meuwissen et al., 2001), and the accuracy, often represented as
the Pearson correlation of observed vs predicted phenotypes,
depends on several factors. These include the heritability of the
trait, linkage disequilibrium (LD) with causal loci, and the size of the
population. The Genomic Best Linear Unbiased Predictor (GBLUP)
is a widely employed parametric linear model that captures the

additive relationships between lines. However, semiparametric
models like the Reproducing Kernel Hilbert Space (RKHS) can
potentially identify non-additive effects, thereby potentially
enhancing prediction accuracy (Gota and Gianola, 2014; Cuevas
et al., 2016). Another critical aspect of genomic prediction is the
genetic relationship between the training and testing datasets (Voss-
Fels et al., 2019). The composition of the training data set and its
relationship with the new lines to be predicted are crucial for
maximizing prediction accuracy (Isidro et al., 2021; de los
Campos et al., 2013). While several approaches have been
proposed to optimize the training population, most of them have
the assumption that one training is optimal for all individuals in the
testing dataset (Lopez-Cruz et al., 2022). Considering that a high
level of genetic heterogeneity is plausible in breeding programs,
using only one optimal population may include individuals distantly
related to the individuals in the testing dataset, reducing predictive
ability (Lorenz and Smith, 2015). Recently, a sparce selection index
(SSI) was proposed to identify a training set for each individual in
the testing set (Lopez-Cruz and de los Campos, 2021). The use of this
approach has increased prediction ability in multigeneration data up
to 10% and 17% in wheat and maize, respectively, compared to the
GBLUP (Lopez-Cruz et al., 2021; Lopez-Cruz et al., 2022).

Large genetic variability exists for Fe and Zn concentration,
as well as for Fe bioavailability, both among and within market
classes (Katuuramu et al., 2021). This variability provides
evidence that achieving genetic gain in these traits is feasible.
However, due to the complex genetic architecture of these traits,
the use of genomics approaches is necessary to identify causative
alleles and to evaluate prediction models. These approaches are
essential for enhancing genetic gain in these traits, thereby
increasing the nutritional value of new cultivars. Furthermore,
there is a lack of information in the literature about the
performance of prediction models trained on diversity panels
when implemented in breeding lines. To address these
challenges, we utilized Single Nucleotide Polymorphism (SNP)
markers to identify genomic regions associated with Fe and Zn
concentration and Fe bioavailability in a Yellow Bean Collection
(YBC). Additionally, we evaluated the prediction accuracy of
genomic prediction in the YBC and investigated whether the
inclusion of SNP markers as fixed effects improves prediction
accuracy. Finally, we assessed the predictive ability of models
trained using the YBC on advanced yellow lines, exploring the
potential of using genomic prediction to enhance nutritional
quality in the yellow bean market class.

Materials and methods

Plant material

The yellow bean collection (YBC) comprised of 275 Phaseolus
vulgaris L. accessions was grown at the Michigan State University
Montcalm Research Farm in Entrican, MI, and at University of
Nebraska field sites in Scottsbluff and Mitchell, Nebraska, during
2018 and 2019 growing seasons, respectively. A detailed
description of each accession in the YBC is provided by
Sadohara et al. (2022). In all years and locations, the YBC was
grown in a randomized complete block design with two
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replications. Additionally, 82 F5 yellow bean breeding lines were
planted at the Montcalm Research Farm in 2019. These lines
originated from biparental crosses involving seven Andean
accessions, six of which are part of the YBC, as parents. These
accessions were chosen for breeding due to their agronomic
characteristics, stable yield across seasons, desirable seed color,
short cooking times, and high iron bioavailability. The YBC
planted in both years was used as the training set, while the
82 lines evaluated in 2019 were used as the prediction set to
simulate the implementation of GP using a pre-breeding
population. The local standard agricultural practices were
followed for research plot scale dry bean production
(Sadohara et al., 2022). Seed weight (SW) and yield (YD) were
collected after harvest. SW (g) was obtained from weighing
100 seeds, and YD (kg ha−1) was calculated based on the plot
size and corrected to the moisture content in the seed of 18%.

Mineral concentrations (Michigan
and Nebraska)

The protocol described by Glahn et al. (2020) was used to
measure Fe and Zn concentration from raw seeds in the YBC
grown in Michigan (MI) and Nebraska (NE) in 2018 and
2019 and the breeding lines grown in MI in 2019. Briefly, seeds
were rinsed and cleaned with distilled water to remove dust and
debris. The cleaned seeds were lyophilized and milled, and 0.50 g of
the powder was predigested in boro-silicate glass tubes with
concentrated ultrapure nitric acid and perchloric acid mixture
(60:40 v/v) for 16 h at room temperature. Samples were then
placed in a digestion block and heated incrementally over 4 h to
a temperature of 120°C with refluxing. After incubating at 120°C,
ultrapure nitric acid was subsequently added to each sample before
raising the digestion block temperature to 145°C for an additional
2 hr. The temperature was then raised to 190°C for 10 min to
evaporate remaining acid before cooling to room temperature.
Digested sample was re-suspended in 20 mL of ultra-pure water
before analysis using ICP-AES (inductively couple plasma atomic
emission spectrometry; Thermo iCAP 6500 Series, Thermo
Scientific, Cambridge, United Kingdom) with quality control
standards following every 10 samples. All samples were digested
and measured with 0.5 µg/mL of Yttrium (final concentration)
purchased from High Purity Standards (10 M67-1) as an internal
standard to ensure batch-to batch accuracy.

Fe bioavailability (Michigan only)

The YBC grown in MI in 2018 and 2019 was cooked using an
automatedMattson cooker, as reported previously (Sadohara et al.,
2022). The cooked samples were lyophilized and milled, and 0.50-g
of powder was subjected to an in vitro digestion/Caco-2 cell culture
model for the determination of Fe bioavailability, as described
previously by Glahn et al. (1998). Fe uptake is measured as the
increase in Caco-2 cell ferritin production (ng ferritin per
milligram of total cell protein) after exposure to simulated
gastric and intestinal digest. Fe bioavailability is expressed as a
percentage score of Caco-2 cell ferritin formation that is relative to

a cooked/lyophilized/milled white kidney bean (Snowdon). The white
kidney bean reference control was run with each bioassay to index the
ferritin/total cell protein ratios of the Caco-2 cells over the course of
multi-year experiment. The Snowdon white kidney bean was used as a
reference control because this cultivar is commercially produced in
North America and has high Fe bioavailability due to the lack of
polyphenols that inhibit the absorption of iron (Wiesinger et al.,
2019). The mean ferritin formation values of Snowdon across assays
were 19.71 and 15.78 ng ferritin/mg total cell protein in 2018 and
2019, respectively. Fe bioavailability was not measured in the
82 breeding lines.

Statistical analyses

The rows and columns from the field were used as random
effects to fit a linear mixed model for SW and YD using the functions
“SpATS” and “SAP” for the R package SpATS (Rodríguez-Álvarez
et al., 2018). The effect of the genotype on the phenotype was fitted
as fixed to obtain the best linear unbiased estimator (BLUE) of SW
and YD. The mineral concentrations were collected in one field
replication in Michigan and Nebraska during two growing seasons
(2018–2019), while Fe bioavailability was collected in one field
replication only in Michigan during two growing seasons
(2018–2019). The mean of two technical replications was used as
the mineral concentration and Fe bioavailability for each
environment and year. The variance component analysis was
conducted using the R package statgenGxE, adopting a factorial
structure of locations per year (StatgenGxE, 2023). In this mixed
linear model, terms for year, location and location:year were treated
as fixed effects, while the effects of genotype, genotype:year, and
genotype:location were treated as random.

Genotypic data

DNAwas extracted from trifoliate leaves using NucleoSpin Plant
II Kit (Macherey–Nagel, Duren, Germany) following the “Genomic
DNA from plants” protocol as described previously by Sadohara
et al. (2022). DNA concentration was measured using Quant-iTTM
PicoGreenTM dsDNA Assay Kit (Invitrogen, Waltham, MA,
United States), and 10 ng/lL of DNA was used for GBS library
preparation with a single restriction enzyme, ApeKI. Each plate of
96-wells was sequenced in a lane of an Illumina HiSeq platform
using single-end reads. The libraries were demultiplexed using
NGSEP (v3.1.2) (Tello et al., 2019). Adapters and low-quality
bases from the raw sequencing data were trimmed using
Cutadapt v 1.16, and the processed reads were aligned to the
reference genome of P. vulgaris v2.1 G19833 (Schmutz et al.,
2014) using Bowtie2 (v2.2.30) (Langmead and Salzberg, 2012)
with default parameters. The SNP calling was carried out by
using NGSEP software following the recommended parameters
for GBS data (Perea et al., 2016). The merged genotypic matrix
was filtered with NGSEP for variants that were in the predicted
repetitive regions of the common bean genome (Lobaton et al.,
2018), non-biallelic, genotype quality above 30, a maximum
observed heterozygosity of 0.05 per SNP, more than 50% of
missing data per site, and minor allele frequency (MAF) above
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0.05. Besides, SNPs in linkage disequilibrium above 0.9 using a
window of 500 SNPs were removed using Bcftools (Li, 2011). The
resulting genotype matrix was imputed using Beagle V5.4 with
default parameters (Browning et al., 2018).

Genome-wide association study (GWAS)

The GWAS was conducted using the Fixed and Random Model
Circulating Probability Unification (FarmCPU) method, as
implemented in GAPIT v3 (Wang and Zhang, 2021). The YBC
accessions from each year and location were used for this analysis.
FarmCPU iteratively adjusts for fixed (individual SNP markers) and
random effects (polygenic background and population structure),
enhancing true association detection. A Shapiro-Wilk test was
carried out on the phenotypic data, and traits not considered
normal (p-value <0.05) were transformed using the rank-based
inverse normal transformation (INT). Subsequently, GWAS was
conducted on both transformed and untransformed phenotypes.
Significant associations were identified using a Bonferroni-corrected
threshold of α = 0.05.

Genomic prediction

Four predictionmodels were assessed in the YBC: The Reproducing
Kernel Hilbert Space (RKHS) regression, sparse selection indices (SSI),
and RKHS and SSI using QTN identified through GWAS as fixed
variables. The RKHS regression was implemented using the kernel
averaging (KA) approach (de los Campos et al., 2010) with kernels
estimated using extreme bandwidth parameters (0.2, 1, 5) (González-
Camacho et al., 2012). The Gaussian kernels utilize a positive-definite
kernel represented by: K = exp (-θ d2ij), where K represents the kernel, θ
is the bandwidth parameter, and d2ij represents the scaled squared
Euclidean distance between individuals i and j based on their SNPs
(Lopez-Cruz et al., 2021).

The SSI was obtained by imposing an L1-penalty on a selection
index using additive genomic relationships (GSSI) (Lopez-Cruz and de
los Campos, 2021). To optimize the penalization value λ in SSI, 10-fold
cross validation was carried out in the training subset, and SSI was
derived over a grid of 100 values of λ. The accuracy measured as the
Pearson correlation between SSI and each trait was used to identify the
value of λ that maximized accuracy in each cross validation. The optimal
value of λwas defined as the average value of λ that maximized accuracy
across each cross-validation and was used to predict the validation
subset. The training-validation procedure described above for KA and
SSI was repeated 100 times by randomly assigning samples from the
training set into training and validation subsets and was implemented
using the R packages SFSI and BGLR (Lopez-Cruz et al., 2020; Pérez-
Rodríguez and de Los Campos, 2022). The prediction ability for all
models is expressed as a Pearson correlation coefficient between the
observed and predicted values in the validation subset.

Prediction set

To simulate the implementation of GP, 82 breeding lines from
2019 were included as the prediction set, as previously described.

The YBC was employed to train the KA and SSI models. Given that
the breeding lines are derived from crosses between Andean
accessions, the models were trained with two distinct YBC
datasets: one encompassing all accessions and another restricted
to Andean accessions. Additionally, to train the models, different
proportions of individuals of each bi-parental family (0%, 10%, 20%,
30%) were randomly assigned to the training sets. The procedure
described above was repeated 100 times and was implemented using
the R packages SFSI and BGLR (Lopez-Cruz et al., 2020; Pérez-
Rodríguez and de Los Campos, 2022).

Results

Phenotypic data

The YBC was grown in field locations in MI and NE in 2018 and
2019 and was evaluated for seed yield, seed weight, Fe and Zn
concentration in MI and NE 2018–2019, and FeBio was evaluated in
Michigan 2018–2019. The YBC exhibits large variability for
agronomic and nutritional quality traits (Table 1 and
Supplementary Figures S1, S2). The FeBio distribution was
bimodal in the two growing seasons measured in Michigan. The
concentration of Fe ranged from 43 to 118 μg/g in Michigan 2018,
39–106 μg/g in Michigan 2019, 28–76 μg/g in Nebraska 2018, and
36–72 μg/g in Nebraska 2019 (Table 1). Four genotypes had
concentrations above 100 μg/g in Michigan, three in 2018
(YBC050, YBC136, and YBC279) and one in 2019 (YBC171).
The concentration of Zn ranged from 20 to 41 μg/g in Michigan
2018, 17–41 μg/g in Michigan 2019, 19–37 μg/g in Nebraska 2018,
and 21–43 μg/g in Nebraska 2019 (Table 1). FeBio values in
Michigan varied from 11% to 151% in 2018 and from 13% to
118% in 2019, compared to the reference control Snowdon (Table 1).
Twenty-seven genotypes had higher FeBio values than the high
FeBio check variety, Snowdon, in 2018 and 2019.

The variance component analysis revealed a significant effect of
genotype on the agronomic and nutritional quality traits assessed in
the current study (Supplementary Table S1). The most important
source of variation for Fe concentration was the location followed by
the Year:Location, while genotype explained most of the variation in
Zn concentration and FeBio. Indeed, the genotype explained 93%,
5%, and 37% of the phenotypic variation in FeBio, Fe, and Zn
concentration, respectively. The large effect of the genotype on the
variability of FeBio is supported by the high h2 of FeBio found in
2018 (0.85) and 2019 (0.91).

Despite the differences between location and years, the
measurements of all traits were positively correlated across years
(Figure 1). The correlation between Fe concentration and yield was
not significant in any environment, ranging from −0.05 inMichigan in
2018 to 0.10 in Nebraska in 2019, while the correlation between yield
and Zn concentration was negative in both locations and years. Fe and
Zn concentrations were positively correlated, ranging from r = 0.32
(p < 0.001) in Nebraska in 2018 to r = 0.58 (p < 0.001) in Michigan in
2019. Both Fe and Zn concentrations were negatively correlated with
seed weight in both locations and years. The most stable trait across
years (2018–2019) was FeBio, with a correlation between years of 0.93
(p < 0.001) in Michigan. FeBio was negatively correlated with yield in
2018 (r = −0.13, p = 0.05) and 2019 (r = −0.31, p = 0.001).
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TABLE 1 The mean and the range of yield, seed weight, Fe bioavailability, Fe and Zn concentration of the YBC grown in MI and NE in 2018 and 2019.

Trait MI 2018 MI 2019 NE 2018 NE 2019

Mean (SD) Range Mean (SD) Range Mean (SD) Range Mean (SD) Range

Yield (kg/ha) 2111 (394) 1171–3299 1649 (477) 536–3065 1974 (647) 653–5,275 686 (372) 52–2124

SW (g) 38 (8) 18–60 40 (10) 18–73 35 (7) 15–54 30 (1) 26–35

Fe (μg/g) 69 (12) 43–118 65 (9) 39–106 45 (9) 28–76 51 (6) 36–72

Zn (μg/g) 29 (4) 20–41 28 (4) 17–41 25 (3) 18–37 27 (3) 21–43

FeBio (% of control) 54 (31) 11–151 51 (30) 13–118 - - - -

FIGURE 1
Pearson’s correlation coefficients between agronomic traits (Seed weight (SW), yield (YD), mineral concentration (Fe, Zn), and Fe bioavailability
(FeBio). Significance of correlations indicated as ***: p < 0.001; **: p < 0.01; *: p < 0.05.
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Population structure

In total, 18,357 SNP markers were retained after filtering in the
275 YBC and 82 breeding lines. The genomic relation matrix revealed
two groups with strong genetic relationships, representing the
germplasm from the two gene pools in P. vulgaris (Figure 2A). As
expected, the breeding lines included in 2019 were clustered in the
same gene pool as their founders (Andean) (Figure 2A). Genetic
diversity was evaluated through principal component analysis (PCA).
The first two principal components explained 53.1% of the variance
(Figure 2B). PC1 separated the Andean and Middle American gene
pools as reported by Sadohara et al. (2022). However, the variance
explained by PC1 (48.6%) in this study differs from the PC1 (63.8%)
reported by Sadohara et al. This difference is due to different filters
applied to the genotype matrix and the addition of the 82 breeding
lines in the present study. Additionally, a Principal Component
Analysis (PCA) conducted on the Andean accessions revealed that
the parents used in the biparental crosses are closely related genetically
(Supplementary Figure S3).

GWAS

Marker-trait associations were evaluated using the multi-marker
approach, FarmCPU. In total, 24 SNP associations were identified in
the untransformed phenotypic data, and 14 in the INT data, all with
significance surpassing the threshold established by the Bonferroni
correction (2.72 × 10−6) (Supplementary Table S2). Three genomic
regions on chromosomes 7, 10, and 11 were consistently associated
with FeBio in Michigan across years using the untransformed
phenotypes (Supplementary Figure S4). However, when analyzing
the normalized, transformed phenotypes, these genomic regions on
chromosomes 7, 10, and 11 showed associations in at least 1 year. In
contrast, no consistent associations were identified for Fe and Zn

concentrations or yield between years or locations. Notably, the
association with FeBio on chromosome 7 exhibited the highest SNP
effect, represented as the difference between homozygous genotypes,
over the two evaluated years. (Figure 3; Table 2).

Genomic prediction–training set

In total, 100 partitions were used to assess the prediction accuracy
for the KA and SSI models in the training set composed of 275 YBC.
The prediction accuracies of KA and SSI models for Fe and Zn
concentrations and seed yield are presented in Figure 4 and
Supplementary Table S3. The prediction accuracy was affected by
trait heritability, and no significant differences were observed across
models. KA models used all the genotypes in the training subset to
train the model, while SSI used a penalization to select the individuals
in the training subset to maximize the prediction ability. The average
number across locations and years of individuals that support
predictions using the SSI ranged from 34% to 95% of individuals
in the training subset from Fe concentration and yield, respectively
(Supplementary Table S3). The lowest prediction accuracy found in
this study was detected in Fe concentration in Nebraska in 2018. Soil
analysis revealed a pH of 8.0 at this location. The h2 (0.05, 0.20) and
prediction ability <0.17 for Fe and Zn concentration were likely
affected by the alkaline soil of this location which causes reduced
iron availability for plant uptake. Average prediction accuracy in
2018 and 2019 for yield ranged from 0.33 to 0.65 in Michigan and
0.51 to 0.65 in Nebraska, respectively (Figure 4).

Utilizing the 100 partitions previously described, the prediction
accuracy of both the KA and SSI models was evaluated for FeBio
prediction by incorporating the major QTN identified on
chromosome 7 (Table 1). While there was no discernible
difference in prediction accuracy between the KA and SSI models
without QTN information, the inclusion of the major QTN

FIGURE 2
Genetic structure of the YBC and advanced yellow breeding lines with 18,357 SNPs. (A) Heatmap of the genomic relationship matrix. The blue and
green color represent the genotypes in the training and prediction sets, respectively. (B) The principal component analysis shows the location of each
genotype defined by the eigenvectors of the first and second principal components. The color represents the gene pool determined by Sadohara
et al. (2022).
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enhanced the predictive capability of the KA model. Conversely, the
SSI model’s prediction accuracy remained unchanged with the
addition of the QTN (Figure 5, Supplementary Table S3).

Genomic prediction–prediction set

To simulate the implementation of GP with a diversity panel
where some lines were used for breeding, a set of 82 breeding lines
was grown in Michigan in 2019 and used as a prediction set. The
prediction accuracy of KA and SSI models, which used all the YBC
accessions and included varying proportions (from 0% to 30%) of
the prediction set for model training is presented in Figure 6 and
Supplementary Table S4. For the traits measured in the prediction
set (seed yield and Fe and Zn concentrations), the prediction
accuracy of Fe concentration was not improved when breeding
lines were added to train themodel. However, the accuracy tended to
increase for seed yield and Zn concentration by adding genotypes
belonging to the same families in the prediction set. Additionally, the
SSI model showed lower accuracy compared to KA for Fe and Zn
concentration, and SSI resulted in higher predictions for seed yield

(Figure 6). Although the prediction accuracy obtained using SSI was
overall lower compared with KA, the prediction is provided by, on
average, <21% of the individuals used to train the model for Fe and
Zn concentrations. For yield, the prediction is provided by, on
average, <83% of the individuals used to train the model
(Supplementary Table S4). Similar results were observed when
only accessions from the Andean gene pool were used to train
the models (Supplementary Table and Figure 5). However,
prediction accuracy was consistently lower when the training
population was reduced through the exclusion of non-Andean
accessions.

Discussion

Biofortification is an important goal included in many breeding
programs of dry beans. Three assumptions are used to release
biofortified cultivars worldwide: i) Fe concentration is stable
across environments, ii) the average Fe concentration in
nonbiofortified dry beans is ~50 μg/g, iii) Fe bioavailability is
positively correlated with Fe concentration (Glahn and Noh,
2021). In this study, we found that none of these assumptions
are valid in the YBC. Although Fe concentration showed a positive
correlation within and between locations in the two growing
seasons, those correlations were < r = 0.3. In both years, beans
planted in Nebraska showed a lower Fe concentration (~48 μg/g)
compared to Michigan (~67 μg/g), and the reasons for this
difference may be attributed to the alkaline soil (pH = 8) found
in the Nebraska location used in this study. Values of pH greater
than 7 have been related to iron chlorosis and zinc deficiency in
plants (Westfall and Bauder, 2011). Additionally, the Fe and Zn in
soil available for plant uptake is related to the concentration of these
microelements in seeds (Katuuramu et al., 2021). The complex
genetic architecture of Fe and Zn concentration was described in

FIGURE 3
Phenotypic effect of SNP at chromosome 7 (29,2 Mb) associated with FeBio in 2018 (A) and 2019 (B).

TABLE 2QTN for FeBio identified by genome-wide association analysis over
years using FarmCPU model.

Chr Position p-value Year SNP effect

7 29,169,848 4.43E-07 2018 45.2

7 29,169,848 1.75E-08 2019 46.9

10 42,422,135 5.90E-11 2018 3.3

10 42,422,135 2.67E-17 2019 3.9

11 3,626,904 4.75E-08 2018 9.3

11 3,626,904 6.77E-08 2019 8.0
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a meta-QTL analysis in seven populations of dry beans, and
candidate genes related to the process of uptake, transport, and
accumulation of these minerals were identified (Izquierdo et al.,
2018). Due to the interactions with environmental factors and the
complex genetic architecture of Fe and Zn concentrations, achieving
a stable concentration of these microelements across environments

presents challenges. Our results found no correlation between Fe
concentration and in vitro Fe bioavailability and similar results have
been reported in dry beans (Katuuramu et al., 2018; Glahn et al.,
2020; Katuuramu et al., 2021), which suggests that increases in the Fe
concentration do not translate to higher FeBio in yellow beans. For
this absence of relationship, Glahn & Noh (Glahn and Noh, 2021)

FIGURE 4
Prediction accuracy in the training data set of Fe-Zn concentration and yield using KA and SSI. The distribution of boxplots represents 100-fold
cross-validations in the training set.

FIGURE 5
Prediction accuracy in the training data set of FeBio using KA, SSI, and QTN as fixed effect. The distribution of boxplots represents 100-fold cross-
validations in the training set.
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proposed to change the focus of biofortification from Fe
concentration to FeBio in dry beans. There are two big
advantages of breeding for FeBio over Fe concentration, higher
heritability and delivery of absorbable Fe. We observed that FeBio
was stable across years (r = 0.93), with a heritability >0.85, which was
2-fold the heritability of Fe concentration presented for both
growing seasons in Michigan.

The high phenotypic variability and heritability of FeBio in this
study suggest that genetic improvement is feasible. However, we
observed a strong relationship between seed type and FeBio, which
could limit the genetic gain of FeBio in some market classes
(Supplementary Figure S6). The seed types Manteca, Mayocoba,
and white showed high FeBio values, and we consider that these
three market classes should be used as priority in programs seeking
to identify and develop varieties that deliver more bioavailable Fe.
Interestingly, using data reported by Sadohara et al. (2021), we
identified that lighter color seeds from the YBC tend to have shorter
cooking times. Fast-cooking time has been associated with high
FeBio and with more retention of nutrients in dry beans (Wiesinger
et al., 2016), which means that the use of Manteca, Mayocoba, and
white seed types have the potential to yield high FeBio and nutrients
in fast-cooking genotypes, traits that are appealing for nutrition and
customer acceptance.

GWAS

A strong environment effect was observed for yield, and Fe and
Zn concentrations; and no consistent associations were identified for
these traits on the YBC. The complex architecture of these traits and
the GxE interaction has yielded hundreds of marker-trait
associations across locations and populations (Izquierdo et al.,
2018; Izquierdo et al., 2023), and the usage of strategies such as
marker-assisted selection or GWAS-assisted genomic prediction
does not appear promising for these traits (Keller et al., 2020).

FeBio exhibited large variability across different years and
among individuals, with genetics playing a significant role in this
variation. The bimodal distribution observed in FeBio likely stems

from the trait governed by major QTNs. A particular SNP on
chromosome 7 at 29.2 Mb is associated with features such as
light-colored seed, hilum ring, corona, and resistance to
darkening in the YBC (Sadohara et al., 2021). This SNP is
proximal to the P gene (Phvul.007G171333) at 28.8 Mb, a
transcription factor essential for flavonoid biosynthesis. This
gene’s dominant allele, P, is necessary for seed coat color
expression, while its recessive genotypes result in a white seed
coat (McClean et al., 2018). This region on chromosome 7 was
previously associated with FeBio in the Andean Diversity panel
(Katuuramu et al., 2018). Furthermore, dark-colored bean seeds are
observed to exhibit lower FeBio values (Wiesinger et al., 2018).

This finding further substantiates the relationship between seed
color and FeBio. While the precise nature of the connection between
seed color and FeBio remains elusive, several factors might explain
it. Firstly, darker seeds typically have thicker seed coats. From ~6 to
39% of seed iron in dry beans is found in seed coats (Moraghan,
2004), a tissue known to contain high levels of antinutrients that can
bind to and chelate iron (Ariza-Nieto et al., 2007). Given that i) the
SNP effect on chromosome 7 (Table 2) was close to the population
mean for FeBio in both years (Tables 1, 2), ii) the association was
consistent across years, and iii) the association with FeBio has been
reported in other genetic backgrounds, such as the Andean Diversity
panel, this region might be indicative of a major QTN for FeBio.

Genomic prediction

In this study, we considered KA and SSI models to assess the
accuracy of genomic prediction in the YBC. Across all traits, we
found consistent results between the models, with prediction
variations correlating with the heritability of each trait. While
both models yielded comparable outcomes for the YBC, the
specific individuals supporting the prediction of each line in the
testing set differed. KA models used in each partition all the
genotypes in the training subset, while SSI selected a particular
set of support points as the optimal training set for each genotype in
the testing set. The average number of supporting points selected by

FIGURE 6
Prediction accuracy of Fe and Zn concentration and seed yield (YD) in the 2019 prediction set comprised of 82 additional breeding lines. Themodels
were trained using the entire Yellow Bean Collection (YBC) and varying proportions of the prediction set (0%, 10% = 8, 20% = 16, 30% = 25) to train the
models. The distribution of boxplots represents 100-fold cross-validations.
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the SSI model was related to the complexity of each trait, ranging
from 34% (FeBio) to 95% (yield).

In a multi-generational wheat dataset spanning 8 years, the SSI
model demonstrated superior prediction accuracy compared to
GBLUP (Lopez-Cruz et al., 2022). As Lopez-Cruz and de los
Campos (Lopez-Cruz and de los Campos, 2021) highlighted, SSI
tends to achieve higher accuracies than GBLUP, especially in larger
datasets. Nevertheless, the margin of increased prediction accuracy
of SSI over GBLUP is typically slight (less than 0.05) and is strongly
influenced by both the diversity of the dataset and the size of the
training set. Although the YBC represents a diverse population that
might benefit from SSI, its training set consists of fewer than
185 individuals. This is in contrast to the thousands of
individuals used in the training models by Lopez-Cruz and de los
Campos (2021) and Lopez-Cruz et al. (2022).

To assess the implementation of genomic prediction using
the YBC and a subset of the Andean accession from the YBC as
training populations, 82 breeding lines were used as the
prediction dataset. By adding different percentages of each
breeding line from the same family, prediction accuracy
increased for seed yield and Zn. Moreover, SSI demonstrated
slightly better performance than KA in predicting seed yield. The
better performance of SSI compared to KA in seed yield could be
the result of differences in allele frequencies and LD patterns in
the families to be predicted compared to the YBC. Differences in
allele frequencies and LD may lead to suboptimal estimation of
breeding values using all sets of individuals to train the model
(Lopez-Cruz et al., 2022). Overall, prediction accuracies were
slightly lower when non-Andean accessions were excluded from
the training dataset. This reduction in prediction accuracy could
be attributed to the smaller size of the training population and
suggests that the inclusion of Middle American accessions
contribute to increased prediction accuracy in the
prediction dataset.

The traits studied here exhibited polygenic inheritance, as
evidenced by the continuous variation observed across locations
and years. However, incorporating a major QTN associated with
FeBio as a fixed variable in the KA model improved accuracy by an
average of 0.03 (2018) and 0.02 (2019) compared to the model
without fixed effects. It is worth noting that the improved predictive
ability from the fixed marker in this study is likely related to the
diversity in seed colors present in the YBC. Its positive impact might
diminish in germplasm with less varied seed types. However, even
without the inclusion of the fixed marker, the prediction accuracy
for FeBio remained high (>0.65) using both KA and SSI models,
suggesting the potential of genomic prediction for this trait in
dry beans.

Conclusion

This study underscores the need to shift from the traditional
biofortification strategy of merely increasing Fe concentration,
advocating for developing dry bean cultivars with greater Fe
bioavailability. The lack of correlation between Fe concentration
and Fe bioavailability in this study aligns with findings from
studies conducted in Africa and the United States (Katuuramu
et al., 2018; Katuuramu et al., 2021), suggesting that reallocating

resources in breeding programs centered on biofortification
would be beneficial. We discovered a robust association
between Fe bioavailability and seed coat color, pinpointing
that lighter seed colors like Manteca, Mayocoba, and White
often exhibit higher Fe bioavailability. These should be
prioritized to bolster the supply of bioavailable Fe for human
consumption. While Fe bioavailability’s significance is
undeniable, its measurement might be out of reach for many
breeding programs, and would thus require collaboration with
laboratories capable of doing so. Our results indicated that
genomic prediction offers high accuracy for Fe bioavailability,
presenting a potential solution to mitigate the expenses and
extensive duration associated with its measurement.
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SUPPLEMENTARY FIGURE S1
Bean plots of Fe, Zn in MI and Ne, and Fe bioavailability in MI. The trials were
carried out in 2018 and 2019 in MI and NE. Micronutrient traits were
collected in one field replication, and two technical replications were done
per sample. The mean of the two technical replications was used as a
measure for each environment and year.

SUPPLEMENTARY FIGURE S2
Bean plots of yield (YD) and seed weight (SW) of the yellow panel. The trials were
carriedout in 2018and2019 inMI andNE.Best linear unbiasedestimator (BLUEs)
were obtained for each trait and trial, adjusting for spatial effects in the field.

SUPPLEMENTARY FIGURE S3
Principal Component Analysis of Andean Accessions from the YBC and
Advanced Yellow Breeding Lines Using 18,357 SNPs. The corols represent
the six parental YBC Accessions in Biparental Crosses.

SUPPLEMENTARY FIGURE S4
Genome-wide association analysis of Fe bioavailability (FeBio). The red line
indicates the Bonferroni threshold at α = 0.05. The black dashed lines
highlight SNP-associated across years.

SUPPLEMENTARY FIGURE S5
Prediction accuracy of Fe and Zn concentration and seed yield (YD) in the
2019 prediction set comprised of 82 additional breeding lines. The models
were trained using the Andean accession from the Yellow Bean Collection
(YBC) and varying proportions of the prediction set (0%, 10% = 8, 20% = 16,
30% = 25) to train the models. The distribution of boxplots represents 100-
fold cross-validations.

SUPPLEMENTARY FIGURE S6
Boxplots of Fe-Zn concentration and Fe bioavailability (FeBio) in the nine
major seed types in the Yellow Bean Collection (YBC) in MI.

SUPPLEMENTARY FIGURE S7
Box plots of Fe, Zn, yield and seed weight (SW) of the yellow breeding lines
categorized by family, evaluated in MI 2019.

SUPPLEMENTARY TABLE S1
Analysis of variance.

SUPPLEMENTARY TABLE S2
QTN identified by genome-wide association analysis using the FarmCPU
model with a Bonferroni correction.

SUPPLEMENTARY TABLE S3
Prediction accuracy for micronutrient density and seed yield in the YBC using
RKHS and sparse selection indices (SSI).

SUPPLEMENTARY TABLE S4
Prediction accuracy for Fe-Zn concentration and seed yield in the prediction
set of 82 yellow breeding lines and the YBC using the RKHS and sparce
selection indices (SSI).

SUPPLEMENTARY TABLE S5
Prediction accuracy for Fe-Zn concentration and seed yield in the prediction
set of 82 yellow breeding lines and the Andean accession of the YBC using
RKHS and sparce selection indices (SSI).

SUPPLEMENTARY TABLE S6
Shapiro-Wilk test results for phenotypic data in the Yellow Bean Collection.
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