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Cell-cell interaction (CCI) plays a pivotal role in cellular communicationwithin the
tissue microenvironment. The recent development of spatial transcriptomics (ST)
technology and associated data analysis methods has empowered researchers to
systematically investigate CCI. However, existing methods are tailored to single-
cell resolution datasets, whereas the majority of ST platforms lack such
resolution. Additionally, the detection of CCI through association screening
based on ST data, which has complicated dependence structure, necessitates
proper control of false discovery rates due to themultiple hypothesis testing issue
in high dimensional spaces. To address these challenges, we introduce RECCIPE,
a novel method designed for identifying cell signaling interactions acrossmultiple
cell types in spatial transcriptomic data. RECCIPE integrates gene expression data,
spatial information and cell type composition in a multivariate regression
framework, enabling genome-wide screening for changes in gene expression
levels attributed to CCIs. We show that RECCIPE not only achieves high accuracy
in simulated datasets but also provides new biological insights from real data
obtained from a mouse model of Alzheimer’s disease (AD). Overall, our
framework provides a useful tool for studying impact of cell-cell interactions
on gene expression in multicellular systems.
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1 Introduction

The biological function of an organ or tissue in a multicellular organism is the result of
the concerted action of many cells, each carrying out their own specialized tasks.
Understanding of the fundamental principles of how cells interact with each other
would have a profound impact on knowing the molecular basis for disease initiation
and progression. Powered by the recent development of spatial transcriptomics (ST)
technologies, researchers can now simultaneously dissect the complex cell state-specific
transcriptomic landscape while preserving the spatial context. As such, these technologies
offer an unprecedented opportunity to comprehensively study the molecular mechanisms
driving or being driven by interactions between cells and their tissue environment, a crucial
aspect for unraveling developmental processes of various human diseases.
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A key task in ST analysis is to identify gene expression changes
relating to cell-cell interactions (CCI). While several methods have
been previously developed (Browaeys, Saelens, and Saeys, 2020;
Cang and Nie, 2020; Yuan and Bar-Joseph, 2020; Li et al., 2023),
existing methods typically demand single-cell resolution. In
contrast, common transcriptome-wide ST data generation
platforms, such as Spatial Transcriptomics (Stahl et al., 2016),
Visium by 10X Genomics (Maynard et al., 2021), Slide-seq
(Rodriques et al., 2019), and DBiT-seq (Liu et al., 2020), do not
have single-cell resolution. Consequently, there arises a necessity for
innovative strategies capable of incorporating cell type composition
information when assessing CCI within datasets produced by
these platforms.

In addition, previous studies have primarily focused on
identifying interactions between ligand-receptor pairs (Cang and
Nie, 2020; Pham et al., 2020; Yuan and Bar-Joseph, 2020; Li et al.,
2023). While the initial interaction between ligands and receptors
serves as the primary mechanism through which one cell can
influence another, the activated or inhibited receptor typically
initiates a cascade of biological signaling events within the
respective cell subsequently. The comprehensive gene profiles
obtained from spatial transcriptomics (ST) data provide a
valuable tool for characterizing not only the receptor itself but
also the molecular changes downstream that are elicited by cell-
cell interactions (CCI). For example, a recent study using single cell
ST data (Browaeys, Saelens, and Saeys, 2020) successfully
demonstrated the impact of ligand-receptor interaction patterns
on downstream gene expressions, and showed that re-wiring of
cellular signaling due to CCI can be cell type specific. As such, new
methods are needed to support transcriptome-wide CCI analysis for
datasets without single-cell resolution. A key challenge for
transcriptome-wide analysis is the difficulty in controlling the
false discovery rate (FDR) under the high dimensional space.
While several established methods (Miller, 1966; Y; Benjamini
and Hochberg, 1995; Benjamini and Yekutieli, 2005; Stephens,
2017) address this concern by modifying the significance of tests
for multiple comparisons in various fields, these assumptions might
not be applicable within the context of CCI analysis based on ST
data. This is primarily due to the complicated correlation structure
in the ST data, which results in severe collinearity among variables.

To overcome the aforementioned challenges, we propose a new
CCI analysis pipeline: RECCIPE, short for the REgression
framework evaluating CCI on ST data within the context of sPot
nEighborhoods). RECCIPE utilizes a multivariate regression
framework to model the dependence of gene expression changes
in each ST spot (grid) on the concentration of different cell types in
their immediate neighbor regions, and at the same time accounting
for the cell type composition’s heterogeneity within the ST spot. For
estimating cell type composition, RECCIPE employs customized
deconvolution tools tailored specifically to ST datasets. To screen for
significant CCI-driven genes across the entire genome, RECCIPE
employs a local false discovery rate (FDR) control method (Efron,
2007), which is capable of handling data with strong
dependence structure.

RECCIPE can be applied to any ST dataset regardless of its
spatial resolution. To demonstrate its efficacy, we conducted a
comprehensive evaluation of RECCIPE’s performance using
synthetic ST datasets. In addition, we applied RECCIPE to a ST

dataset derived from mouse brains (W.T. Chen et al., 2020), and
successfully identified CCIs that are unique to Alzheimer’s disease
(AD) samples, underscoring its potential as a valuable tool in
deciphering complex CCI from ST data.

2 Materials and methods

2.1 Overview of RECCIPE

When CCI occurs between two distinct cell types, T1 and T2, it is
expected that the gene expression within a cell of type T1 may exhibit
up- or downregulation in response to an increased presence of cells
of type T2 in its vicinity. RECCIPE is designed to identify these
association patterns between gene expressions in one cell type and
the concentrations of other cell types within their respective
neighborhoods. The workflow of the RECCIPE pipeline is
illustrated in Figure 1. Briefly, RECCIPE takes the ST dataset
derived from one biological sample as input (Figure 1A). For
each ST spot (grid) in the data set, RECCIPE firstly defines its
immediate neighboring spots based on physical distances between
spots on the tissue slice (Figure 1B). It then applies the spatial
deconvolution method (spatialDWLS) (Dong and Yuan, 2021) to
estimate the cell type proportions in the tissue spot. Consequently,
cell type composition of the neighbor-region is calculated as the
average of cell type compositions from all the spots in the neighbor-
region. RECCIPE then screens for associations between gene
expressions in one spot and the concentrations of different cell
types in its neighbor-region using a multivariate regression
framework (Figure 1C). In the end, RECCIPE determines the
statistically significant gene—cell type associations by applying
the local fdr control method (Efron, 2007) on estimates from all
genes (Figure 1D). Below we elaborate these steps one by one.

2.2 Neighborhood identification and cell
type decomposition

RECCIPE utilizes a Spatial Transcriptomic toolbox Giotto (Del
Rossi et al., 2022) for the ST data preprocessing, including data
normalization, neighborhood identification and cell type
decomposition. Briefly, RECCIPE first normalizes expression
matrix of the ST experiment using the standard approach in
Giotto to remove technical variation across spots or genes.
RECCIPE then defines the immediate neighbors of each spot
through constructing a spatial network among all measured spots
using Delaunay triangulation network (Del Rossi et al., 2022). The
Delaunay network, which has been adopted in various fields of
biology (Goltsev et al., 2018), provides a flexible selection of
neighbors when the spots are not on the regular grids of the
space. Neighborhood of one spot is then naturally defined as the
spots directly connected to it (Figure 1A). Note that, when the spots
are regularly distributed on the 2-dimensional slices (such as for
10X), this procedure is equivalent to defining neighbors using a
distance cutoff. Moreover, RECCIPE applies the Spatial
deconvolution method, spatialDWLS (Dong and Yuan, 2021), to
estimate the cell type proportions in each tissue spot according to a
cell type signature reference matrix. This method is an extension of
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dampened weighted least squares combining a recently developed
cell-type enrichment analysis method (Del Rossi et al., 2022) to
enhance specificity.

In the end, after the spatial neighborhood is identified and cell
type compositions of each spot are estimated, RECCIPE further
determines the cell type proportions for each neighborhood. Denote
ws

t as the estimated proportion of cell type t in spot s, the proportion
of cell type t for the neighborhood of spot s is then defined as the
average of the proportions of this cell type across all spots in the
neighborhood: vs,t � 1

|Bs |∑
u ∈ Bs

wu
t , where Bs is the set of neighbors

of spots.

2.3 Multiple regression model on CCI

In ST experiments conducted at the multi-cellular resolution,
gene expression measurements of a single spot (grid) can be
conceptualized as a weighted average of the gene expressions of
individual cell types within that spot. These weights can be
proportionally determined by the respective percentages of each
cell type present in the spot. Denote the gene expression
measurement of gene g in spot s as Yg

s , we have:

Yg
s � ∑

t∈T
ws

t × Yg
s,t,

FIGURE 1
Workflow of RECCIPE: (A) RECCIPE starts from defining the physical neighborhood of each spot from ST data. (B) Cell type compositions of each
spot and the corresponding neighboring region are derived from the ST data using the deconvolution method. (C) Regression models are used for
screening for associations between the gene expression changes in a given spot and the percentages of different cell types in the spot and its
neighborhood. (D) Transcriptome-wide screening for significant associations between gene expressions in the index spot and density of relevant
cell type pairs are obtained with proper FDR control.
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where Yg
s,t denotes the expression value of gene g in cell type t within

the spot s; ws
t is the proportion of cell type t within spot s; and T

denotes the set of all possible cell types in the experiment.
Additionally, in the presence of CCI, the gene expression in a

particular cell type t within the spot can be influenced by the
presence or abundance of another cell type in the neighboring
region of the spot (Figure 1). We then model Yg

s,t using the
below equation:

Yg
s,t � βgt +∑tj!�t

tj ∈ T
γgt,tj × vs,tj + Ɛg

s,t, (1)

where βgt denotes the mean expression level of gene g in cell type t;
vs,tj is the proportion of cell type tj in the neighborhood around spot
s; and γgt,tj represents the strength of the CCI influence from cell type
tj on gene g in cell type t. Combine the above two equations, we have:

Yg
s � ∑

t∈T
βgt × ws

t +∑
t∈T

∑
tj!�t
tj ∈ T

γgt,tj × vs,tj × ws
t + egs , (2)

where egs is an independent random error term.
Note, since ∑ vs,tj = 1, to ensure the model identifiability, we

chose to keep the intercept term but omit the vs,t term in Equation 1.
This decision aims to prevent the simultaneous inclusion of both the
ws

t and vs,t × ws
t terms in model (2). Because ws

t and vs,t × ws
t are

derived from multicellular ST data, commonly exhibit high
correlation, the inclusion of both terms could result in substantial
variation in the coefficient estimates. For example, based on the real
datasets analyzed in the paper,ws

t and vs,t × ws
t exhibiting an average

Spearman correlation of 0.86 (sd = 0.038). This high collinearity
greatly hampers the power to detect dependence of gene expressions
on neighborhood cell type proportion (vs,t), which is an intrinsic
limitation of multicellular ST data. To prevent singularity due to
high collinearity, we opted to focus on detecting CCIs between
different cell types, thereby excluding the term vs,t × ws

t from the
RECCIPE regression model. This strategic exclusion aims to
enhance the stability of the coefficient estimates.

In RECCIPE, we fit the above linear regression model for each
gene using data from all the spots and obtained the estimates of the
CCI effect {γgt,tj} for all possible pair of (t, tj).

2.4 Controlling false discovery rate
with Locfdr

Based on the above model, detecting biologically meaningful
CCI corresponds to identifying nonzero estimates of γgt,tj. Since ST
data usually involves thousands or tens of thousands of genes,
proper FDR control for the inference of {γgt,tj} is crucial.
Particularly, the independence or weak-dependence assumptions
used by many existing multiple comparison correction methods,
such as BH (Y. Benjamini and Hochberg, 1995) and FWER (Miller,
1966), do not apply here. This is because, not only ST expression
data {Yg

s } has complicated correlation structure, the cell type
composition matrix of spots (W = {ws

t}) and neighborhoods (V =
{vstj}) also present high correlations. Thus, the estimates of {γgt,tj}
possess a complex/strong dependence structure, which poses
challenges in proper FDR control.

To tackle this challenge, we adopted an empirical Bayesian based
local fdr adjustment method: Locfdr (Efron, 2007) (R package:
locfdr). Specifically, for a given pair of source cell type tj and

target cell type t, we apply Locfdr to the test statistics of γgt,tj for
all genes from all the regression models. Since theoretical null
distribution is often distorted in the presence of high dependence
structure, Locfdr re-calibrates the null distribution based on the
empirical distribution of the test statistics (Efron, 2007). Briefly,
Locfdr assumes that the majority in the middle sector of the
empirical distribution of the test statistics should come from the
null component. It then employs a parametric fit (i.e., Gaussian) to
derive the calibrated null distribution based on the selected middle
sector. Consequently, in the tail region, FDR can be estimated using
the ratio between the density function of the calibrated null and that
of the observed test statistics across all genes. As illustrated in our
simulation experiments (next section 3.1), this strategy effectively
controls the FDR at the targeted level.

2.5 Reference data sets used in the
simulation experiments.

We employed a ST data set of mouse cortex obtained through
seqFISH + technology (Eng et al., 2019) as a reference for our
simulation experiments. In this dataset, gene expressions were
measured for 523 cells of 12 cell types from 5 closely situated
fields of views (FOV). The expression data contains 10 k genes
across all cells. To prevent computational instability issues arising
from the minority cell types with extremely low cell counts, we
grouped the 5 cell types with the smallest cell numbers into a
single category.

3 Results

3.1 Simulation experiment

3.1.1 Synthetic data generation
Synthetic datasets were generated to assess the performance of

RECCIPE. We started with simulating single-cell-level ST data and
subsequently aggregated cells within the neighborhood to generate
spot-level multicellular ST data. Single-cell location were specified
by adding Gaussian perturbations in both the horizontal and vertical
directions to equally spaced grids on squared slides. To assess the
influence of tissue architecture and ST data resolution on
RECCIPE’s performance, we examined various combinations of
different domain structure settings and spot sizes.

We implemented two domain structures with different spatial
arrangements of cell types: a homogeneous case and a heterogeneous
case. In the homogeneous setup (Figure 2A), cell types were
randomly assigned across the entire tissue slice, utilizing
proportions derived from a publicly available seqFISH + dataset
of mouse brain which has single-cell resolution (Eng et al., 2019) (see
Section 2.5). In the heterogeneous case (Figure 2B), the tissue space
was divided into two sections of equal size. Cell types were randomly
generated within each section, adjusting the proportions based on
estimates from the single-cell resolution ST data (Eng et al., 2019).
The specific cell type proportions utilized in the simulation can be
found in the (Supplementary Table S1).

When cells were grouped into pseudo spots, we considered
different spot sizes to mimic different resolutions of ST technologies.
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Specifically, we designed a high-resolution setting approximating
spot size of 55 μm in Visium experiments by 10X Genomics, and a
lower-resolution setting for 100 μm in Spatial Transcriptomics
(Stahl et al., 2016) (Supplementary Table S2). We ensured that
the variability of cell numbers per spot in the simulated data closely
mirrors that in the real datasets, as demonstrated in Supplementary
Figure S1. Note, we leveraged the same seqFISH + dataset (Eng et al.,
2019) to evaluate the variability in cell numbers across ST spots of
either 55 or 100 μm (Stahl et al., 2016). In addition, when
aggregating cells into pseudo spots, we organized the spots using

regularly spaced grids both horizontally and vertically with
prespecified distances.

To generate gene expression in each cell, we first derived mean
expression profiles of 10,000 genes for each cell type using the
aforementioned seqFISH + dataset (Eng et al., 2019). Then, we
introduced CCIs effects for 500 randomly selected genes using
specific combinations of source and target cell type pairs, as
shown in Supplementary Table S3. The interaction effect values
were determined by the product of randomly signed Gaussian effect
sizes (γgt,tj) and the proportion of the source cell type (v0s,tj) within

FIGURE 2
Cell type and spatial neighborhood generation in the simulation study: (A) An illustration of the spatial distribution of different cell types in the
simulated cell-level ST data under the homogeneous simulation setting. The pie plot further summarizes the cell type proportions. (B) An illustration of
the spatial distribution of different cell types in the simulated cell-level ST data under the heterogeneous simulation setting. The pie plots further
summarize the cell type proportions in the two different domains. (C) An illustration of the index cell and its neighborhood region in the simulation.
(D) An illustration of the index spot and its neighborhood region after cell-level data is aggregated to the spot-level.
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the neighborhood. We considered second-degree-neighborhood in
the Delaunay network in the high-resolution setting (Figure 2C,
corresponding to spot size of 55 μm), and fourth-degree-
neighborhood in the low-resolution setting (corresponding to
spot size of 100 μm). Probabilities of positive and negative effect
sizes were set to be equal (1⁄ 2). To emulate co-expressed patterns
among genes, correlated Gaussian residuals were simulated for each
cell. The correlation pattern was determined based on the estimated
correlation matrix from the real data (Eng et al., 2019). As a result,
single-cell gene expression profiles were synthesized by summing
three components: cell type mean expression profiles, CCI effects,
and the correlated residuals, as indicated in Eq. 1. In the end, based
on the cell membership to pseudo spots, we aggregated the cell-level
expression values to generate the spot-level expression profiles.

Furthermore, to understand the performance of the proposed
regression framework on CCI signal strength, we considered
different signal-to-noise ratio (SNR) levels in the above
simulation. Here, SNR refers to the ratio of variance of CCI
terms vs. the variance of the total expressions (Yg

s ). We adjusted
the size of CCI coefficients (γgt,tj) to control the final SNR at different
levels (0.25, 0.5, 1, and 1.5).

In addition, to assess the robustness of RECCIPE to the
violation of the working model specified in Eqs 1, 2, for each
simulation setting on Slide 1, we considered two variations for
specifying the CCI effects. Specifically, instead of using cell type
proportions in the spot neighborhood (v0s,tj ) in Eq. 1, we used the
count of cells of type tj in the spot neighborhood or the log-
transformed cell count.

RECCIPE was then applied to the various gene expression
matrices of pseudo spots to identify cell-cell interactions. Note,
while w0

s,tj and v0s,tj (Figure 2C) was used in the simulation to
generate CCI effects, the estimates of ws,tj and vs,tj based on the
spot-level data could be biased due to the reduced spatial resolution
of spots/grids compared to single cells (Figure 2D). This was to
mimic the challenging situation in the real ST data sets.

3.1.2 Multiple testing correction methods for
comparison

In the RECCIPE model, the total number of parameters of
interest {γgt,tj} is |G|x (|T|-1)2, where |G| is the total number of
genes and |T| is the total number of cell types considered in the
analysis. As mentioned earlier, FDR control is a challenging task
here due to both the large number of tests and complicated
correlation structures among the ST data. Thus, in the simulation
experiment, we benchmarked the performance of using Locfdr vs.
other popular multiple hypothesis testing adjustment approaches
in the RECCIPE framework. Specifically, we considered
Bonferroni correction, Benjamini–Hochberg (BH) adjustment,
Benjamini-Yekutieli (BY) procedure and a more recently
developed empirical Bayesian correction method called “ash”
(Stephens, 2017). Bonferroni correction aims to control the
family-wise error rate (FWER), which involves multiplying the
p-value of each individual test by the total number of tests
(Miller, 1966). The Benjamini–Hochberg (BH) correction, a
popular FDR control strategy, assumes all the testing to be
independent (Y. Benjamini and Hochberg, 1995). The
Benjamini-Yekutieli (BY) procedure is a variation of the BH
method but can accommodate some (arbitrary) dependence

among different tests (Benjamini and Yekutieli, 2005). In the
end, the “ash” method employs an empirical Bayes approach and
utilizes effect sizes and their standard errors from the test instead
of marginal p-values for adjustment (Stephens, 2017).

In each simulation setting, we applied all aforementioned FDR
control methods separately to identify CCI markers and
summarized the performance accordingly.

3.1.3 Performance evaluation in simulated data
To evaluate the performance, we assessed the power and true

FDR for the CCI detection at a targeted FDR level of 0.1. Power was
defined by the proportion of true CCI pairs (gene A in cell type t1 vs.
cell type t2) being identified by the model, while true FDR was the
proportion of falsely detected signals by the model.

The performance of RECCIPE under various simulation settings
is presented in Figure 3. Firstly, Locfdr is the only method that
successfully controls the false detections below the targeted FDR
level across all the simulation settings (Figure 3). All other methods
showed flawed FDR controls, with BH displaying the most inflated
FDR across all simulation settings. Interestingly, except for Locfdr,
there exists an increasing trend in the (inflated) type-I error rates of
the FDR correction methods as the SNR increases. This suggests the
presence of groups of (false) features that are highly correlated with
the true signals, which may be attributed to the extensive inter-gene
and spatial correlations inherent in the ST data.

Moreover, when comparing results between the heterogeneous
and homogeneous settings, most of the correction methods exhibit
worse fdr control in the data sets from the homogeneous simulation.
This observation implies that, when analyzing data from real tissue
sections characterized by heterogeneous distribution of local cell
type proportions, the task of maintaining FDR control in CCI
screening could be considerably more challenging. This
underscores the necessity of employing appropriate inference
strategies, such as the one proposed here.

As to the power assessment, as expected, the power of RECCIPE
increases with the SNRs (Figure 3). Especially, for the high-
resolution setting, when the SNR is 0.5 or higher, the power of
RECCIPE-Locfdr is over 90% under both the homogeneous and
heterogeneous settings. In the contrast, the power of RECCIP on the
low-resolution data has a 28% drop on average. This change is
partially due to the decrease of sample size of spots in the low-
resolution data.

In the exercise investigating robustness of RECCIPE against
violations of model assumptions, the proposed model (RECCIPE-
Locfdr) successfully controlled FDR across various settings
(Figure 4). When the CCI effects were simulated using cell
counts instead of the cell type proportion in the neighborhood,
the powers of RECCIPE (blue bars) are comparable to that based on
the correct model (orange bars) (Figures 4A,B). However, if the CCI
effects were simulated based on log cell count (green bars), the
power is about ~20% lower than that based on the correct model
(Figures 4A,B). Note, obtaining precise estimates of cell numbers
from multicellular ST data poses a significant challenge. In
addressing this challenge within the RECCIPE framework, we
chose to utilize cell proportion estimates in the regression
models. The results presented above suggest that this strategic
choice provides sensible and robust results, even in the face of
model mis-specification.
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3.2 Real data analysis

We applied RECCIPE to an ST dataset of mouse brain on
Alzheimer Disease (AD) (W.T. Chen et al., 2020).

3.2.1 ST data, cell type deconvolution and
neighborhood construction

ST datasets were collected for 8 brain samples from 4mice at 18-
month-old age: 2 wild type (WT) and 2 AD mice (Figure 5A) (W.T.

FIGURE 3
Power and FDR of different multiple comparison correction methods across different SNR levels under the combination of resolution and domain
heterogeneity: (A). High resolution in homogeneous domain. (B). High resolution in heterogeneous domain. (C). Low resolution in homogeneous
domain. (D). Low resolution in heterogeneous domain.
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Chen et al., 2020) via Spatial Transcriptomics platform (Stahl et al.,
2016). Each ST dataset contains 510 spots on average, and the
number of identified genes range from 36,863 to 38,047.

We used Giotto (Del Rossi et al., 2022), an integrative analysis
and visualization tool for ST data analysis, to preprocess the mice ST
data sets. Specifically, we applied a standard approach from Giotto:
filtering out low expressed genes (on less than 50 spots) and spots
(with less than 1,000 genes); normalizing the expression values on
each spot with a scale factor of 5000 UMI counts. Scaled values of the
normalized UMI counts were used as the expression matrix input of
RECCIPE to detect CCI for each sample. After filtering, the average
number of genes of each sample decreased to 12,701.

We then applied the spatialDWLS deconvolution method to
estimate the cell type proportions in each spot using the Giotto
package (Del Rossi et al., 2022). Specifically, since there was no single
cell transcriptomic data set accompanied with the ST experiment for the
cell type registration, we used the default cell type reference matrix
provided by the Giotto package. Signatures from 21 distinct cell types
were included. Cell type proportion estimates from spatialDWLS were
further aggregated to 5 major cell types (see Supplementary Table S4 for
detailed cell type group definition). Deconvolution results were displayed
in Figures 5B,C and Supplementary Figure S2. Most of the cell types are
distributed similarly across different samples. Neuronal cells were the
dominant cell type across most spots in all 8 samples, particularly in the
isocortex region (Figure 5B). Astro-ependymal cells and
oligodendrocytes located mainly in the brain stem region in all
samples (Supplementary Figure S2). However, immune cells were

enriched in AD samples compared with WT samples (Figure 5C),
which is consistent with the mechanism of immune infiltration in AD
disease (Jorfi, Maaser-Hecker, and Tanzi, 2023).

To define the neighborhood of each spot, we constructed the
Delaunay network of spots based on their physical locations on the
tissue slices. Then for each spot, we defined its neighborhood as the
spots directly connecting to it in the Delaunay network. Cell type
proportions of each neighborhood region were then derived by
averaging the cell type percentages of individual spots in the region.
The design matrix for the regression models in RECCIPE was then
specified based on cell type proportions in individual spots (W) and
their neighborhood regions (V).

3.2.2 Identify cell-cell interaction in the
mouse brain

Finally, we applied RECCIPE-Locfdr to each of the 8 ST datasets
separately. Significant CCI pairs were declared at an FDR cutoff of
0.1. We referred to a gene as a CCI-gene (for a given sample) if the
gene belongs to one of the significant CCI pairs identified for that
sample. On average, we detected 240 CCI-genes per sample
(Supplementary Table S5, Figure 6A). The CCI cell-type pair
with the highest number of interactions are Astro-Neuron: 18.6%
of the CCI-genes exhibited expression changes in neurons in
response to alterations in the percentages of Astro-ependymal
cells within their neighborhood. In addition, 29 out of the
240 CCI-genes were detected in more than one WT sample,
while 58 CCI-genes were detected in more than one AD sample

FIGURE 4
FDR and power of RECCIPE on high-resolution datasets with different signal generation settings across different SNR levels under the
homogeneous setting (A) and the heterogeneous setting (B).
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(Figure 6A). These occurrences were significantly higher than those
from random selected genes with p-value <0.00001 (by permutation
test of 100,000 replicates).

Detected CCI-genes was showing different distribution
between AD and WT groups (Figure 6C), we then focused on
the clear patterns differing between the two groups. We selected

FIGURE 5
Illustration of themice ST data sets: (A) Illustration for the design of the ST experiment onmouse brainwith two groups (AD andWT) (W.T. Chen et al.,
2020). (B) Spatial distribution for Neuronal lineage proportion of each spot among 8 samples. (C) Spatial distribution for Immune cell proportion of each
spot among 8 samples.
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FIGURE 6
(A) Plot of identifiedCCImarker genes and the intersection among samples. Markers with at least 2 identifications across 8 samples are included. CCI
Categories by combination of target and source are annotated on the top. (B) Heatmaps illustrating associations between gene expressions of selected
genes in neuronal cells and cell type proportions of Astro-ependymal cells in the neighborhood. Significant associations are marked with dots in the
heatmap. (C) Distribution of uniquely identified CCI-genes in AD or WT samples. Number of CCI-genes was labeled in the location with
corresponding center spot cell type vs. neighborhood cell type. (D) Boxplots showing the distributions of Mef2c expressions in neuron-abundant spots
(>75%) stratified by the percentage of Astro-ependymal cell types (dichotomized by 18%) in its neighborhood. Significant contrasts (FWER <0.1) are
annotated with “*” in the plot.
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AD-specific or WT specific CCI-genes by screening for signals
identified in at least 2 samples in one group, while totally absent
in the other group. The group-specific markers were mainly
related to Astro-Neuron CCI, including 8 AD-specific CCI-
genes and 4 WT-specific CCI-genes Figures 6A,B.
Additionally, 3 AD-specific CCI-genes associated with the
Oligodendrocyte-Neuron CCI, and 4 AD-specific CCI-genes
associated with the Neuron-Astro CCI (Figure 6A).

Among the AD-specific Astro-Neuron CCI markers, Mef2c
exhibited high consistency across different samples. Specifically, in
3 out of the 4 AD samples, both genes exhibited decreased
expressions in neuronal cells when the density of Astro-ependymal
cells increased in the neighboring areas (Figure 6B). These associations
were further illustrated in Figure 6D, which shows the distributions of
Mef2c expressions in spots predominantly composed of neurons (with
neuron cell percentage >75%), both with or without enriched Astro-
ependymal cells (>18%) in the neighborhood. The enrichment cutoff at
18% is determined by the median value of Astro-ependymal cell
proportions among the neighborhoods of all neuron-predominant
spots for all samples. Notably, while significant mean shifts were
observed in AD group (2 samples have FWER <0.1, FWER stands
for Family Wise Error Rate), this pattern was absent in theWT samples
(all FWER >0.1). The FWER was calculated by multiplying the t-test
p-valuewith the total gene number. InterestinglyMef2c, as a gene known
for its high expression in the nervous system, plays a significant role in
neuron-development and inflammation regulation (Ren et al., 2022).
Recent research has underscored its neuron-protective function in AD
(Ren et al., 2022) and identified it as an key player for the epigenetic
impact on the neuron-glial cross talk in AD (Zhou et al., 2023). Our
analysis further suggests that Mef2c in neuron cells might be
downregulated through the interaction between Astro-ependymal
cells and neuron cells in brain tissue, which shed light on potential
mechanisms contributing to the etiology of AD disease.

Other AD-specific Astro-Neuron CCI markers have also
been reported to be relevant to AD. For example,
Igfbp4 plays a crucial role as a neuronal survival factor (Son
et al., 2019) and has been identified as a senescence marker of
astrocytes, linked to AD progression (Carvalho et al., 2023). The
chemerin/CMKLR1 axis participates in microglia migration and
recruitment to senile plaques, potentially offering a new avenue
for AD therapy (Y. Chen et al., 2022). Neuroserpin/Serpini1, a
key tissue plasminogen activator (tPA) inhibitor in the brain, is
upregulated in AD (Subhadra, Schaller, and Seeds, 2013), and its
polymerization is implicated in human dementia (Davis et al.,
1999). Cplx2-null mutant mice exhibit cognitive function loss in
conjunction with a minor brain lesion, representing a relevant
environmental risk (“second hit”) for schizophrenia (Begemann
et al., 2010). Zbtb18 is essential for cerebellum growth,
patterning, and neuron development (Baubet et al., 2012),
and de novo variants in ZBTB18 are linked to intellectual
disability (Cohen et al., 2017). TTR, known for
neuroprotection in AD, is the primary Aβ binding protein in
cerebrospinal fluid, naturally preventing Aβ aggregation and
toxicity (Cotrina et al., 2021). Experimental evidence also
suggests TTR’s role as a neuron-derived energy metabolism
activator in astrocytes (Zawislak et al., 2017). These results
confirmed that RECCIPE revealed biological and disease
relevant CCI signals from the ST data.

4 Discussion

ST experiments conducted at spot resolution lack the granularity
of individual cell information, making it challenging to explore
interactions between cells or cell types. To facilitate the CCI analysis
based on ST datasets without single-cell resolution, we propose a
new method called RECCIPE, which employs a multivariate
regression framework coupled with local FDR adjustment to
conduct transcriptome-wide screening for CCI. RECCIPE utilizes
a novel pipeline to extract cell type specific CCI effects by effectively
integrating both the spatial information and cell type composition
estimates from deconvolution analysis based on the spot-level ST
data. Moreover, RECCIPE directly takes the (bulk) expression data
of individual spots as inputs to the regression models and avoids
performing a super resolution step to partition each spot. This not
only streamlines the analysis process but also prevents the
introduction of additional variation during inferences. We
demonstrated the favorable performance of RECCIPE through
extensive simulation experiments. When applied to AD-mice
brain ST data, RECCIPE successfully identified biologically
relevant CCIs among neuron and other cell types.

Transcriptome-wide screening for CCI involves an extensive
number of tests, which posts difficulty on controlling FDR while
maintaining robust power. This challenge is due to not only
inherent correlation among gene expressions, but also the strong
dependency across cell type proportions in neighboring spots.
Through comprehensive investigations conducted on synthetic
datasets, we elucidated the issue of FDR inflation associated with
many commonly used FDR adjustment methods that assume
independence or weak dependence among variables. Specifically,
the assumption of FWER control on the approximation of
combined p-values with Bonferroni inequalities (Miller, 1966),
is only valid with a limited number of independent tests.
Consequently, when screening CCI across an extremely large
number of genes based on complicated ST data, FWER showed a
lack of power on the synthetic data sets with low signal strength,
while inflated type-I errors under settings of high SNRs. BH
correction (Y. Benjamini and Hochberg, 1995) and its variation
BY (Benjamini and Yekutieli, 2005) are both using a linear
rejection line to relate the quantiles of the observed
distribution of test statistics to that of the expected
distribution under the null hypothesis. Both methods can only
tolerate weak dependencies among tests, and thus result in many
false signals in the proposed CCI analysis. The empirical Bayesian
approach “ash” (Stephens, 2017) also suffers from inflated type-I
error in our investigation, due to the violation of the underlying
assumption of a unimodal distribution of the unobserved effect.
In contrast, the simulation results provide compelling evidence of
the effectiveness of the selected local FDR estimation approach,
Locfdr, in successfully controlling the false discovery rate. Briefly,
Locfdr is a data driven approach for estimating false discovery
rates in large-scale hypothesis testing problems with either no/
weak or strong correlations (Efron, 2007). This approach shows
better performance in CCI screening compared to other methods
across all simulation settings we considered.

To illustrate the application of RECCIPE, we applied it to ST
datasets from a mouse study focusing on Alzheimer’s disease (AD)
(W.T. Chen et al., 2020). Upon the successful identification of CCIs
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within each of the 8 samples (comprising 4 AD and 4WTmice brain
samples), we observed significant overlapping in the detected CCIs
across different samples. In addition, a subset of CCIs were
consistently detected in the AD samples while being notably
absent in the WT samples. Importantly, many of the genes
implicated in these CCI interactions were previously linked to
AD in the scientific literature (Ren et al., 2022; Zhou et al., 2023;
Son et al., 2019; Carvalho et al., 2023; Y; Chen et al., 2022; Subhadra,
Schaller, and Seeds, 2013; Davis et al., 1999; Begemann et al., 2010;
Baubet et al., 2012; Cohen et al., 2017; Cotrina et al., 2021; Zawislak
et al., 2017). These findings collectively reinforce the credibility of
the proposed CCI analysis through RECCIPE, and signify
meaningful intercellular communication between various cell
types within the context of AD.

Note, ST data of different biological samples often present non-
negligible batch effects arising from technique variations in different ST
experiment runs. To get around of this issue, in our analysis, we adopted
a strategy of deriving cell-cell interactions (CCIs) for each biological
sample (ST dataset) individually, followed by a joint interpretation of
the inference results. This approach ensures that distinct technique
variations in different ST experiments do not confound the CCI
inference in the RECCIPE model. By doing so, the common and
unique CCIs identified across different samples in WT mice or AD
mice can more accurately reflect biological heterogeneity.

Distinguished from current CCI analysis on ligand-receptor
spatial co-expression patterns (Cang and Nie, 2020; Pham et al.,
2020; Yuan and Bar-Joseph, 2020; Li et al., 2023), our approach
focuses on a broader trend of microenvironment impact. In our CCI
analysis of mouse brain data, we found a total of 1235 CCI genes,
and interestingly 94% of these genes were not previously recorded in
the mouse ligand-receptor genes database from “CellTalkDB” (Shao
et al., 2021). The finding highlights the valuable supplementary
insights alongside ligand-receptor signaling patterns. Moreover, the
flexibility of the regression framework allows for potential expansion
to include additional predictors, such as those describing ligand-
receptor interactions or other mechanisms. While RECCIPE was
initially designed for decomposing cell type-specific signals from
spot-level ST data, its adaptability extends seamlessly to similar
analyses for single-cell resolution ST data by substituting the
proportion of the center spot with a binary indicator denoting
the center cell type.

We want to note that the RECCIPE framework does not
support the detection of CCIs between cells of the same type,
despite the plausibility or even common occurrence of such
interactions. This design choice stems from the observation of
high correlations between the percentages of a given cell type
among neighboring spots in multicellular ST data. These
correlations result in predictors of high collinearity in the
regression models, posing challenges in discerning the CCI
signals between cells of the same type. To avoid the issue of
singularity due to high collinearity, we opted to focus on
detecting CCIs between different cell types in the RECCIPE
regression models, with the aim of ensuring the stability of the
coefficient estimates. Despite the inherent challenges associated
with multicellular ST data, our RECCIPE framework
demonstrates effectiveness in detecting CCI among different
cell types, as illustrated in simulation studies.
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SUPPLEMENTARY FIGURE S1
Distribution of cell count numbers per spot in both real and simulated
datasets.(A,C) illustrate the inferred cell count numbers for spots with
diameters of 55 μm and 100 μm, derived from a real SeqFish+ dataset.
(B,D) represent the distributions for simulated data under the low- and high-
resolution settings respectively.

SUPPLEMENTARY FIGURE S2
(A) Spatial distribution for Astro-Ependymal cell proportion of each spot
among 8 samples. (B) Spatial distribution for Oligodendrocyte lineage
and OEG proportion of each spot among 8 samples. (C). Spatial
distribution for Vasculature cell proportion of each spot
among 8 samples.
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