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Introduction: Pediatric sepsis (PS) is a life-threatening infection associated with
high mortality rates, necessitating a deeper understanding of its underlying
pathological mechanisms. Recently discovered programmed cell death
induced by copper has been implicated in various medical conditions, but its
potential involvement in PS remains largely unexplored.

Methods:We first analyzed the expression patterns of cuproptosis-related genes
(CRGs) and assessed the immune landscape of PS using the GSE66099 dataset.
Subsequently, PS samples were isolated from the same dataset, and consensus
clustering was performed based on differentially expressed CRGs. We applied
weighted gene co-expression network analysis to identify hub genes associated
with PS and cuproptosis.

Results: We observed aberrant expression of 27 CRGs and a specific immune
landscape in PS samples. Our findings revealed that patients in the
GSE66099 dataset could be categorized into two cuproptosis clusters, each
characterized by unique immune landscapes and varying functional
classifications or enriched pathways. Among the machine learning
approaches, Extreme Gradient Boosting demonstrated optimal performance
as a diagnostic model for PS.

Discussion: Our study provides valuable insights into the molecular mechanisms
underlying PS, highlighting the involvement of cuproptosis-related genes and
immune cell infiltration.
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Background

Sepsis, characterized by a combination of physiological,
pathological, and biochemical abnormalities triggered by an
infection., is a severe systemic condition characterized by the
presence of bacteria or toxins in the bloodstream. It constitutes a
life-threatening infection that requires immediate medical attention
(Singer et al., 2016). Recent statistical data highlight sepsis’ varying
incidence across regions, yet it remains a prevalent and challenging
global concern (Fleischmann et al., 2016a). Notably, sepsis displays a
prominent peak in both incidence and mortality within the
extremities of the age spectrum, with the highest risk observed
among neonates, pediatric patients, and the elderly population
(Angus et al., 2001; Fleischmann et al., 2016b; Agyeman et al.,
2017). A systematic review underscores a significant rise in
incidence among infants (516 cases per 100,000 infants) (Angus
et al., 2001). However, this incidence gradually declines as children
progress through the 0–19 years age range, reaching 89 cases per
100,000 children. Among children under 5 years old, sepsis and
infections have led to 6.3 deaths per 1,000 live births. Once
diagnosed, pediatric sepsis (PS) exhibits an estimated case-fatality
rate of 25% (Weiss et al., 2015). The pathological mechanisms of PS
involve a complex interplay of immune dysregulation, excessive
inflammation, release of microbial toxins, microcirculatory
dysfunction, and coagulation abnormalities. Infection-induced
immune system imbalance triggers a systemic inflammatory
response, while the release of microbial toxins and
microcirculatory disturbances further exacerbates the condition.
Additionally, coagulation abnormalities are common in PS
patients, increasing the risk of both thrombosis and bleeding.
These factors collectively contribute to the development of
multiple organ dysfunction syndrome, highlighting the intricacy
and clinical urgency of this condition (Singer et al., 2016; Schlapbach
and Kissoon, 2018). Recognizing sepsis’ significant impact, the
World Health Organization recently passed a resolution
emphasizing sepsis as a major causative factor for preventable
morbidity and mortality on a global scale (Singer et al., 2016).
Despite significant scientific progress and dedicated efforts, an
urgent need persists to enhance our understanding of
pathophysiological mechanisms, identify key risk factors, and
establish optimal management strategies for PS. By diligently
addressing these crucial facets, we aspire to improve treatment
outcomes and alleviate the distressing impact of PS on both
children and their families.

In recent years, remarkable advancements have been made in
comprehensively elucidating programmed cell death mechanisms,
given their significant implications in discovering diagnostic
biomarkers and therapeutic targets for diverse diseases (Bedoui
et al., 2020; Wang et al., 2023). In 2022, Tsvetkov et al. (2022)
made a significant discovery in cell biology, unveiling an
unprecedented mechanism of cell death induced by copper.
Termed “cuproptosis,” this distinct pathway differs from
established modes of programmed death, involving direct
interactions between copper and lipoylated components within
the tricarboxylic acid (TCA) cycle (Supplementary Figure S1).
This intricate interaction leads to lipoylated protein aggregation
and subsequent depletion of iron-sulfur cluster proteins,
culminating in severe proteotoxic stress and cellular demise

(Mayr et al., 2014; Solmonson and DeBerardinis, 2018). FDX1
and protein lipoylation have emerged as pivotal orchestrators
during copper ionophore-induced cell death. A significant
positive correlation exists between FDX1 abundance and
lipoylated proteins across a range of human tumors (Guo et al.,
2023; Zhou et al., 2023). Significantly, copper toxicity has been
associated with the interference of iron–sulfur (Fe–S)-containing
enzymes. In laboratory settings, copper has demonstrated the
inhibition of Fe–S cluster formation by impeding the function of
mitochondrial assembly proteins, thereby worsening copper-
induced toxicity. Ongoing research suggests that cuproptosis
mechanisms will affect multiple diseases, including cancers,
Alzheimer’s disease (Lai et al., 2022), heart failure (Yuan et al.,
2022a), and Crohn’s disease (Yuan et al., 2022c). Song et al. has
elucidated the enigmatic connections between cuproptosis and the
pathogenesis of sepsis-induced cardiomyopathy (Song et al., 2023).
However, the relationship between cuproptosis-related genes
(CRGs) and PS remains unexplored. Thus, unveiling the
molecular categorization and genomic heterogeneity of PS
cohorts, with a specific focus on cuproptosis and its associated
driver genes, holds great importance in significantly advancing our
comprehension of pivotal pathogenic mechanisms underlying PS
progression and onset.

In our study, our investigation began by examining the
expression profiles of CRGs to discern differential expression
between individuals afflicted by PS and healthy controls (HC).
Subsequently, we delved deeper into immune cell infiltration in
these samples. Further, we isolated PS samples from the training set
to perform consensus clustering based on the aforementioned
differentially expressed CRGs. Our findings revealed the ability to
classify patients into two distinct clusters associated with
cuproptosis, each exhibiting disparate immune landscapes,
functional classifications, and enriched pathways. Employing the
Weighted Gene Co-expression Network Analysis (WGCNA)
algorithm, we successfully identified pivotal genes linked to
cuproptosis clusters, which we intersected with genes associated
with PS, uncovering common genes shared between module-related
genes in PS and cuproptosis clusters. Subsequently, by comparing
various machine learning approaches, we developed a diagnostic
model for PS. To validate the model’s discrimination capabilities and
stability, we evaluated its performance using quantitative real-time
polymerase chain reaction (qRT-PCR) of peripheral blood from
both PS patients and HC, along with a nomogram, calibration plot,
decision curve analysis (DCA), and three independent
validation datasets.

Materials and methods

Data acquisition and sample information

We obtained four raw datasets from the Gene Expression
Omnibus database (https://www.ncbi.nlm.nih.gov/geo/). Using
the GSE66099 RNA-seq dataset, consisting of whole blood
samples from 229 patients with PS and 47 HC, we developed a
diagnostic model for PS. To assess the model’s predictive capacity,
independent validation datasets GSE13904, GSE26378, and
GSE26440 were utilized. These datasets encompass transcription
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profiles derived from whole blood samples of both PS patients and
HC individuals. Table 1 presents detailed dataset information.

Identification and analysis of differentially
expressed CRGs

We compiled a collection of 59 CRGs by reviewing previous
researches related to “cuproptosis” and conducting a comprehensive
search for “cuproptosis” with a relevance score threshold of 1.4, in
the GeneCards database (https://www.genecards.org/).
Subsequently, the R package “limma” (Ritchie et al., 2015) was
employed to perform differential expression analysis of CRGs
between PS patients and HC samples. Results were visualized
using the R packages “ggpubr” (https://cran.r-project.org/web/
packages/ggpubr/index.html) and “pheatmap” (https://cran.r-
project.org/web/packages/pheatmap/index.html). A correlation
visualization of heterogeneous CRGs was generated using the
“circlize” (Gu et al., 2014) package.

Consensus clustering and cuproptosis
patterns in the training set

The training set of PS samples underwent clustering analysis
using the “ConsensusClusterPlus” (Wilkerson and Hayes, 2010)
package based on CRG expression levels. Consensus matrix plots,
consensus cumulative distribution function (CDF) plots, and
trace plots were assessed to determine optimal clustering
numbers. Principal component analysis (PCA) was employed
to visually depict the distribution of cuproptosis-related
patterns in samples, focusing on the first two principal
components post-clustering.

Gene set variation analysis (GSVA)

Using the R package “GSVA,” an enrichment analysis was
conducted to explore biological processes and pathways
associated with different clusters (Hänzelmann et al., 2013). Two
gene sets, “c5.go.symbols” and “c2.cp. Kegg.v7.2.symbols,” were
obtained from the Molecular Signatures Database. (https://www.
gsea-msigdb.org/gsea/msigdb). Significant terms determined by a
Student’s t-test (p < 0.05), were represented in a barplot, displaying
upregulated pathways in blue and downregulated pathways
in purple.

Identification of hub genes via WGCNA
analysis of gene modules and disease traits

The WGCNA technique was employed to investigate
interconnections between gene modules and disease traits,
identifying hub genes closely associated with PS pathogenesis.
The process involved extracting genes exhibiting the highest 25%
variance from the GSE66099 dataset, hierarchical clustering of PS
samples, and Pearson’s correlation coefficient computation to
construct a similarity matrix. This matrix was then transformed
into an adjacency matrix using an appropriate soft threshold power,
followed by a topological overlap matrix. A dynamic tree-cutting
algorithm clustered genes into modules, with hub genes defined by
gene significance (GS) > 0.2 and module membership (MM) > 0.6.
The minimum module size threshold was set at 100 genes.

Analysis of immune cell infiltration

The “CIBERSORT” R package (https://github.com/Moonerss/
CIBERSORT), a widely used analytical tool, relies on a reference
gene expression signature matrix to estimate the relative proportions
of specific cell types within a mixture. Utilizing linear support vector
regression, a robust machine learning approach resistant to noise,
“CIBERSORT” involves a feature selection process where genes from
the signature matrix are adaptively chosen for effective
deconvolution of the given mixture. Subsequently, an empirically
determined overall P-value is calculated for the deconvolution
process (Newman et al., 2015). This analytical tool is employed
to determine the relative composition of 22 immune cells based on
their expression profiles in the analysis of GSE66099 samples.
Subsequently, we examined the relative compositions of these
immune cell types across different groups and their correlations
with CRGs. The “ggplot2” (https://cran.r-project.org/web/packages/
ggplot2/index.html) and “ggpubr” packages were used for
visualization.

Establishment and validation of the
diagnostic model for PS using various
machine learning algorithms

Following the intersection analysis of genes within the most
significant modules using WGCNA, we identified key genes with
specific diagnostic potential for PS. To determine the importance of
these genes, we employed four machine learning algorithms. The

TABLE 1 Detailed information on datasets used in the study.

Dataset Platform Sample size Sample
species

Sample
organism

Mean age of HC
(year)

Mean age of PS
(year)

GSE13904 GPL570 18 HC and 185 PS Homo sapiens Whole blood - -

GSE26378 GPL570 21 HC and 82 PS Homo sapiens Whole blood 3.9 3.7

GSE26440 GPL570 32 HC and 98 PS Homo sapiens Whole blood 2.4 3.4

GSE66099 GPL570 47 HC and 229 PS Homo sapiens Whole blood - -

HC, healthy control; PS, pediatric sepsis.
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“kernlab,” (https://cran.r-project.org/web/packages/kernlab/index.
html) “randomForest,” (https://cran.r-project.org/web/packages/
randomForest/) and “xgboost” (https://cran.r-project.org/web/
packages/xgboost/index.html) R packages were utilized for this
purpose. The “kernlab” package provides functions for Support
Vector Machines (SVM), a supervised learning algorithm used
for classification and regression analysis. The “randomForest”
package implements the Random Forest algorithm, an ensemble
learning method that constructs a multitude of decision trees during
training and outputs the class that is the mode of the classification or
mean regression of the individual trees. The “xgboost” package
implements the XGBoost algorithm, which is an efficient and
scalable implementation of gradient boosting. In our approach,
the disease phenotype served as the response variable, while the
genes identified through WGCNA were utilized as explanatory
variables. Model construction using the machine learning
algorithms was facilitated by the “caret” (https://cran.r-project.
org/web/packages/caret/index.html) R package. Subsequently, we
performed an exploratory analysis of the model using the “DALEX”
(https://cran.r-project.org/web/packages/DALEX/index.html) R
package’s explain function. This analysis involved generating
cumulative residual distribution maps and residual boxplots
using the plot function, aiding in the identification of the optimal
diagnostic model. Model performance evaluation was conducted
using the “pROC” (https://cran.r-project.org/web/packages/pROC/
index.html) package. Further analysis was carried out by selecting
the five most important features within the model. Additionally, the
diagnostic model’s validation was performed across multiple
validation sets.

qRT-PCR

Whole blood samples were collected from 8 HC and 8 PS
patients. Total DNA extraction from the samples was achieved
using the FastPure Blood DNA Isolation Mini Kit V2(Sangon,
Shanghai, CN). Start-up reagent: FastStart Essential DNA Green
Master (Roche, ShangHai, CN). We then utilized the LightCycler®
96 Instrument (Roche Diagnostics Gmbh, Switzerland) to carry out
PCR. For internal control purposes, the β-Actin primer pair was
utilized. The experimental protocol received ethical approval from
the Ethics Committee of the First Affiliated Hospital of Guangxi
Medical University. Informed consent was obtained from the legal
guardians of each pediatric patient involved in the study. Clinical
information for HC and PS patients used in the qRT-PCR is detailed
in Supplementary Table S1. Primer sequences are detailed in
Supplementary Table S2.

Enzyme-linked immunosorbent
assay (ELISA)

Serum protein levels were determined using human ELISA kits
following the manufacturer’s instructions. This double antibody
sandwich method ELISA kit facilitated the measurement of
serum protein concentrations. Accurate quantification was
achieved by measuring the absorbance (OD value) of the yellow-
colored solution at 450 nm using a microplate reader. The

concentrations of human serum proteins in the samples were
calculated using a standard curve. All the reagents used for
ELISA were sourced from mlbio (Shanghai, China) and were
listed in Supplementary Table S3.

Statistical analysis

The nonparametric Wilcoxon test was used to compare two
groups of data that did not follow a normal distribution, while the
Student’s t-test was used for normally distributed data. To explore
correlations, a Spearman correlation test was performed. All
statistical analyses were conducted using R software version 4.2.3,
considering p < 0.05 as indicative of statistical significance.

Results

Identification of various expression patterns
of CRGs in PS

The flow chart of the study is shown in Figure 1.We initiated our
study by compiling a collection of 59 CRGs obtained from public
databases, as described earlier. The role of 59 CRGs in the
cuproptosis pathway are listed in Supplementary Table S4. To
explore the expression patterns of these CRGs in PS, we analyzed
gene expression data from 229 whole blood samples from PS
patients and 47 samples from HC within the GSE66099 dataset.
Following logarithmic transformation, we made an intriguing
discovery: among the 59 CRGs, 27 were detectable and exhibited
differential expression in the PS samples. Specifically, we observed
significantly elevated expression levels of ATP7A, DLD, ATOX1,
CD274, NLRP3, VEGFA, NFE2L2, UBE2D1, SLC31A1, SLC31A2,
MAP2K2, MTF1, and ULK1 in PS samples. Conversely, reduced
expression levels were observed for SLC25A3, SOD1, LIPT1,
UBE2D2, COX11, DLAT, FDX1, PDHX, COX17, GLS, DBT, LIAS,
PDHB, and ULK2 in the PS samples (Figure 2A). A heatmap was
generated to visually represent the divergent expression of these
differentially expressed CRGs between PS patients and HC
individual whole blood samples (Figure 2B). Additionally,
Figure 2C illustrates the chromosomal locations of these CRGs,
while Figure 2D reveals varying degrees of correlation among the
differentially expressed CRGs (Figure 2D), suggesting potential
interactive regulatory relationships in PS.

The significance of innate and adaptive immune responses in
PS progression has gained increasing recognition. Distinct
variations are observed in pivotal immune cells within
neonatal immune responses. Notably, children exhibit reduced
levels of neutrophils, antigen-presenting cells, monocytes, and
dendritic cells (DC) (Willems et al., 2009; Mantovani et al., 2011),
rendering immune cells promising therapeutic targets. In our
study, the CIBERSORT algorithm was utilized to determine
relative immune cell abundances within GSE66099 dataset
samples, with visualization via a heatmap (Supplementary
Figures S2A). Subsequent correlation analysis, depicted in
Supplementary Figures S2B, revealed close associations
between differentially expressed CRGs and distinct immune
cell populations in the local environment. Striking correlations
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were observed, particularly between naive CD4+ T cells and CD8+

T cells, strongly linked to 24 immune cell subtypes. This
underscores the concurrent presence of CRGs and specific
immune cell subpopulations within the local blood
environment. Such correlation potentially contributes to
understanding the link between cuproptosis and PS onset,
progression, and treatment responsiveness. Importantly,
varying proportions of infiltrating immune cell types were
evident across different cohorts (Supplementary Figures S2C).
In summary, our findings emphasize the pivotal role of CRGs in
PS development and their profound impact on the immune
microenvironment.

Unsupervised clustering analysis of
differentially expressed CRGs in PS samples
and machine learning algorithm

To understand the diverse expression patterns of CRGs in PS,
we selected a subset of 229 PS samples from the training set. Our
analysis using the consensus clustering approach revealed two
distinct clusters as the most optimal outcome, as evident from
the consensus matrix plots (k = 2) (Figure 3A). The stability of
clustering was confirmed by minimal fluctuations in consensus
CDF curves at different consensus indexes (Figure 3B), and the
trace plot also demonstrated the stability of the clustering
(Figure 3C). Moreover, the consistency score for each cluster

exceeded 0.8, when k = 2 (Figure 3D). Consequently, we divided
the 229 PS samples into two clusters: Cluster 1 (C1) consisting
of 111 samples, and Cluster 2 (C2) comprising 118 samples.
Subsequent PCA distinctly demarcated these
clusters (Figure 3E).

In pursuit of comprehensive insight into molecular
characteristics within the distinct cuproptosis clusters, we
conducted systematic analyses. Differential expression of multiple
CRGs between C1 and C2 was observed, with 18 out of 27 CRGs
displaying differential expression (Figure 4A). A heatmap effectively
depicted the relative expression patterns of these 27 CRGs in PS
samples (Figure 4B). Moreover, GSVA highlighted the upregulation
of infectious-related pathways and immune signaling pathways in
C2, including leishmania infection, JAK-STAT signaling pathway,
chemokine signaling pathway, and natural killer cell-mediated
cytotoxicity. Conversely, C1 exhibited enrichment in metabolism-
related pathways such as nitrogen metabolism and selenoamino acid
metabolism (Figure 4C). Furthermore, the CIBERSORT algorithm
was utilized to estimate the proportions of infiltrating immune cells
in the two clusters. The barplot displayed relative immune cell
abundances (Supplementary Figures S3A), while the boxplot
illustrated comparisons of various infiltrating immune cell types
(Supplementary Figures S3B). Strikingly, significant differences in
relative abundance were observed among 12 infiltrating immune cell
types. This comprehensive analysis provided detailed insights into
differences between the two cuproptosis clusters, to gain further
insights into their underlying mechanisms.

FIGURE 1
The flow chart of the study.
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Application of WGCNA for identification of
key genes linked to PS and cuproptosis

To identify key genes associated with PS, we used the WGCNA
algorithm. After selecting genes with the top 25% variance and
excluding abnormal samples from the GSE66099 dataset, a scale-free
network was established with a soft threshold of 11, resulting in a
scale-free R2 value of 0.86 (Figure 5A). This approach identified nine
distinct co-expression modules (Figure 5B). Notably, the brown
module exhibited the highest correlation (r = 0.7) and significant
p-value (P = 2e−42) with PS (Figure 5C). Subsequently, 509 genes
within this module were subjected to further analysis, revealing a
significant positive correlation between the brown module and
corresponding genes (Figure 5D).

Subsequently, we aimed to identify key genes associated with
cuproptosis clusters in PS subjects in the GSE66099 dataset using the
WGCNA algorithm. Using a soft threshold of β = 8 and an R2 value
of 0.89, we successfully established a scale-free network
(Supplementary Figures S4A, B). Once again, the turquoise
module demonstrated the highest correlation (r = 0.54) and
significant p-value (P = 4e−19) with cuproptosis clusters
(Supplementary Figures S4C). Consequently, 480 genes within
this module were selected for further analysis, revealing a
significant correlation with the module (Supplementary
Figures S4D).

An intersectional analysis was performed on the key genes
obtained through WGCNA, revealing 231 shared genes between
module-related genes in PS patients and HC individuals, as well as
module-related genes in cuproptosis clusters (Supplementary

Figures S5A). Further Gene Ontology (GO) functional
enrichment analysis revealed the primary involvement of shared
genes in immune receptor activity, oxidative stress signaling
pathways, and regulation of the inflammatory response. This
emphasized their vital role in mitigating inflammation
progression, involving diverse immune cells, factors, and
oxidative stress responses within the human body
(Supplementary Figures S5B). Similarly, the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway signaling enrichment
analysis highlighted the participation of shared genes in pathways
such as MAPK signaling, Toll-like receptor signaling, and TNF
signaling (Supplementary Figures S5C).

Construction of diagnostic model for PS
using diverse machine learning approaches

To identify hub genes with diagnostic potential for PS among the
231 shared genes obtained from WGCNA, we employed four
machine-learning approaches (RF, SVM, XGB, and GLM) to
construct diagnostic models using 70% of the GSE66099 dataset
samples. Cumulative residual distribution maps (Supplementary
Figures S6A) and residual boxplots (Supplementary Figures S6B)
of these four algorithms revealed that XGB and SVM displayed
smaller residual values, indicating model reliability. Furthermore,
Supplementary Figures S6C shows the top ten variables ranked by
root mean square error (RMSE) for each model. The diagnostic
performance of these models was assessed using receiver operating
characteristic (ROC) curves with the remaining 30% of

FIGURE 2
Expression patterns of CRGs in PS. (A) Boxplot illustrating the differential expression of 27 CRGs between HC and PS samples. *p < 0.05, **p < 0.01,
***p < 0.001. (B) Heatmap displaying relative expression levels of 27 differentially expressed CRGs, *p < 0.05, **p < 0.01, ***p < 0.001. (C) Chromosomal
locations of the 27 differentially expressed CRGs. (D) Correlation analysis demonstrates relationships among the 27 differentially expressed CRGs, where
positive and negative correlations are indicated by red and green lines, respectively.
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GSE66099 samples (Supplementary Figures S6D). Impressively,
three models exhibited excellent discrimination capabilities, with
area under curve (AUC) > 0.99. Based on predictive ability and
reliability, XGB emerged as the optimal diagnostic model for PS. The
five most important variables in the model, IRAK3, SESN2, CD59,
SLC2A3, and GYG1, were identified as hub genes for
further analysis.

Moreover, a nomogram based on these hub genes (IRAK3,
SESN2, CD59, SLC2A3, and GYG1) was constructed
(Supplementary FigureS S7A). The calibration plot demonstrated
good predictive accuracy between actual and predicted probabilities
(Supplementary Figures S7B), and the DCA confirmed the model’s
clinical significance in decision-making (Supplementary Figures
S7C). In summary, our utilization of machine learning
algorithms yielded a diagnostic model for PS using shared genes
from WGCNA, with ROC analysis, calibration plots, and DCA,
collectively indicating its promising predictive efficiency for PS.

Validation of the 5-gene diagnostic model
using independent external cohorts

Next, we assessed the predictive potential of the 5-gene
diagnostic model using independent validation datasets,
GSE13904, GSE26378, and GSE26440. ROC analyses consistently

exhibited high AUC values: 0.985 in GSE13904 (Supplementary
Figures S8A), 1.000 in GSE26378 (Supplementary Figures S8B), and
0.981 in GSE26440 (Supplementary Figures S8C). These results
unequivocally demonstrated the excellent discrimination
performance and stability of our constructed model, highlighting
its promising clinical value. To demonstrate the absence of age bias
in the datasets included in the article, we performed a correlation
analysis between genes and age for the validation set GSE26378. The
results indicate that there is no statistically significant correlation,
with an R value consistently below 0.5 (Supplementary Figure S9).

Verification of hub genes in peripheral blood

qRT-PCR was conducted to validate the differential expression
of hub genes (IRAK3, SESN2, CD59, SLC2A3, and GYG1) in
peripheral blood samples from PS patients and HC individuals
(Figure 6A), consistent with RNA sequencing findings.

ELISA validation experiment assessed protein concentrations of
IRAK3, SESN2, CD59, SLC2A3, and GYG1 in serum samples from
PS patients and HC individuals (Figure 6B). Notably, significant
differences were observed: IRAK3 (335.1 ± 95.6 versus 196.7 ±
18.2 pg/mL, p = 0.010, SESN2 (387.4 ± 132.9 versus 239.9 ± 40.0 pg/
mL, p = 0.004), CD59 (422.8 ± 151.6 versus 224.4 ± 14.5 pg/mL, p <
0.001), SLC2A3 (497.4 ± 62.0 versus 287.9 ± 52.2 pg/mL, p < 0.001),

FIGURE 3
Cluster analysis of differentially expressed CRGs in PS samples. (A) Samples were divided into 2 distinct clusters when k = 2. (B)Consensus clustering
CDF for k = 2 to 9. (C) Trace plot displaying clustering results for each sample at varying k values. (2–9) (D) Consensus clustering scores are computed
when k values are systematically varied from 2 to 9. (E) PCA analysis visually represents the distribution of two identified unsupervised consensus
clustering cuproptosis clusters.
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and GYG1 (377.9 ± 107.6 versus 222.0 ± 22.5 pg/mL, p = 0.002)
using rank tests.

Discussion

Throughout history, the concept of sepsis has evolved from its
early microbiological theories, pioneered by figures like Semmelweis,
the renowned Hungarian physician who discovered the pathogen
responsible for puerperal fever, and Pasteur, to our contemporary
understanding as a systemic infection (Paul et al., 2014; Shankar-
Hari et al., 2016). Over time, extensive investigations from
pathological, clinical, and biological viewpoints have enhanced
our comprehension of sepsis pathophysiology (Weiss et al., 2014;
Balamuth et al., 2016). The most recent definition, commonly
known as sepsis 3.0, characterizes sepsis as a severe, life-
threatening condition marked by organ dysfunction due to a
dysregulated response to infection (Seymour et al., 2016; Matics
and Sanchez-Pinto, 2017). Despite significant advancements in
medical knowledge and clinical care, including the Sequential
Organ Failure Assessment (SOFA) score for assessing organ
dysfunction (Singer et al., 2016), our current scoring systems,
including SOFA, have not adequately accounted for the
variability in the sub-score criteria (Jhang et al., 2014; Sanchez-
Pinto and Khemani, 2016). This complexity underscores that our
grasp of sepsis remains intricate and continually evolving. The
heterogeneity of sepsis further contributes to diverse phenotypes

and treatment responses, posing challenges to clinical outcomes
(Seymour et al., 2019; Kellum et al., 2022). Despite ongoing research,
understanding underlying mechanisms, identifying PS subtypes,
and developing targeted interventions are pivotal for enhancing
patient outcomes. Therefore, addressing knowledge gaps and
classifying PS subtypes is an essential research and clinical priority.

Our study exploits a critical gap in the literature, offering a
comprehensive and systematic exploration of cuproptosis
transcriptomic profiles between PS patients and HC individuals.
This investigation unmasked significant aberrations in CRG
expression patterns within the realm of PS, affirming the
profound interplay between cuproptosis and disease pathogenesis.
Intriguingly, our analysis unveils distinct immunological landscapes
within the PS microenvironment, particularly highlighting
heterogeneous subtypes of T cells. These findings exhibited a
marked proclivity for significant heterogeneity when compared
with HC individuals, and unequivocally underscore T cells’
intimate involvement in PS progression. Specifically, PS samples
exhibit altered relative T cell abundances, notably increased T
follicular helper cells (Taylor et al., 2020), monocytes (Na et al.,
2020), M0 macrophages (Yin et al., 2021), and neutrophils (Qi et al.,
2021; Wang et al., 2021), while CD8+ T cells (Xie et al., 2019) and
DCs(Efron and Moldawer, 2003) are more abundant in HC
individuals. These trends were also manifest distinctly in animal
models. As frontline immune defenders, macrophages play a pivotal
role in PS pathophysiological (Yang et al., 2014). Their function
significantly influences septic patient prognosis, with metabolic

FIGURE 4
Expression patterns of CRGs in two unsupervised consensus clustering identified cuproptosis clusters. (A) Boxplots showing differentially expressed
CRGs between two ceproptosis clusters. (B) Heatmap showing relative expression levels of 27 CRGs within cuproptosis clusters C1 and C2. (C) GSVA
enrichment analysis based on the HALLMARK pathway between cuproptosis clusters C1 and C2 samples, ranked by t-value. *p < 0.05, **p < 0.01,
***p < 0.001.
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states directly influencing their immune functions (Karakike and
Giamarellos-Bourboulis, 2019). Yuan et al. provide compelling
evidence of KLF14’s essential role in modulating macrophage
immune function by repressing HK2 transcription during sepsis
(McConnell and Yang, 2010), affecting glycolysis and impacting
septic mice (Yuan et al., 2022b). Moreover, our identification of two

distinct cuproptosis clusters in PS patients using consensus
clustering revealed unique innate immunological milieus,
particularly involving T cells. Existing studies emphasize T cell
infiltration into the brain in septic mice during the acute phase.
Inhibiting T cell migration into the brain through the administration
of FTY720, yielded a sustained manifestation of anxiety-like

FIGURE 5
Construction and module analysis of WGCNA. (A) Network topology analysis conducted by varying soft-threshold powers. (B) Clustering
dendrogram illustrating hierarchical gene grouping by topological overlap, with assigned module color indicating different gene clusters. (C) Correlation
analysis examining relationships between distinct co-expression modules and clinical traits. (D) Relevance of brown module members to PS.

FIGURE 6
Validation of the hub genes in peripheral blood. (A) qRT-PCR verification of IRAK3, SESN2,CD59, SLC2A3, andGYG1 expression between PS patients
andHC individuals. (B) ELISA verification of IRAK3, SESN2, CD59, SLC2A3, andGYG1 protein levels in serum comparedwith HC individuals. *p < 0.05, **p <
0.01, ***p < 0.001.
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behavior in septic mice. This outcome cogently illustrates the pivotal
role y T cell infiltration plays in the eventual convalescence from
sepsis-associated encephalopathy and the concurrent amelioration
of mental impairments, particularly during the chronic phase (Saito
et al., 2021). These observations collectively signify a highly intricate
interplay facilitated by diverse immune cells within the
microenvironment, with innate and adaptive immunity assuming
the role of conductors. This phenomenon establishes a mechanistic
connection between aberrant immune responses in the immune
microenvironment and the disease manifestations of PS.

Recent times have witnessed remarkable progress in diagnosing
and treating diseases like PS through the integration of machine
learning algorithms with various phenotypes, including clinical test
results (Qin et al., 2022). This approach presents a valuable
opportunity to decipher the disease’s heterogeneity and implement
precise classifications, thereby significantly to the advancement of
precision medicine. Descriptive evidence notably suggests that
machine learning algorithms surpass traditional clinical approaches
in predicting severe PS (Le et al., 2019; Banerjee et al., 2021), defining
PS subgroups (Qin et al., 2023), and enabling early personalized anti-
inflammatory clinical treatments with improved accuracy and
efficiency in diagnosing PS (Qin et al., 2022). However, previous
studies in this field have been constrained by limitations such as
sample sizes, restricted validation cohorts, and reliance on a single
learning algorithm. Consequently, the reliability of constructed
diagnostic models has come under scrutiny, challenging the
original aspirations of researchers. In response to these limitations,
our present study is dedicated to constructing a robust diagnostic
model for PS by employing four distinct machine-learning
algorithms. Notably, among these algorithms, XGB has emerged as
the most stable and accurate performer, surpassing the others in
predictive power. To gain deeper insights, we identified the five most
important variables, which function as hub genes: IRAK3, SESN2,
CD59, SLC2A3, andGYG1. These hub genes were subjected to further
investigation to elucidate their essential roles in PS development. To
validate our findings, qRT-PCR analyses were conducted on
peripheral blood samples collected from both PS patients and
healthy individuals. The remarkable outcome is that the 5-gene
diagnostic model displayed excellent discrimination performance
and stability when subjected to testing against three independent
validation datasets. These findings not only confirm the promising
clinical value of the constructed model but also highlight the crucial
functions of the identified hub genes in the pathogenesis of PS.

The gene IRAK3, encoding interleukin-1 receptor-associated
kinase 3, plays a key role in immune response regulation (Nguyen
et al., 2022a). Sepsis is characterized by two distinct phases: an initial
hyper-inflammatory phase characterized by a remarkable surge in
potent cytokines like TNF-α and IL-6, followed by an
immunosuppression phase wherein inflammatory cytokines levels
significantly decrease (Hotchkiss et al., 2013).Meta-analyses of in vivo
studies substantiate the roles of IRAK3 during the
immunosuppression phase of sepsis (Nguyen et al., 2020; Nguyen
et al., 2022b). Notably, miR-539-5p exhibits potential significance in
the pathogenesis of LPS-induced sepsis by selectively targeting IRAK3,
suggesting its potential as a therapeutic target for treating LPS-
induced sepsis (Hu and Miao, 2022). SESN2, a stress-inducible
protein known as sestrin 2, plays a pivotal role in cellular stress
responses and inflammation regulation. While SESN2 research has

primarily focused on cancer and metabolic diseases (Lin et al., 2021;
Xu et al., 2023), emerging evidence suggests its relevance to sepsis
(Luo et al., 2020). Previous investigations have revealed that Sesn2-
deficient mice exhibited impaired mitophagy, resulting in heightened
inflammasome activation, and increased mortality in sepsis models
(Kim et al., 2016). Multiple lines of evidence have substantiated the
underlying mechanism, demonstrating that SESN2 safeguards
organismal and cellular homeostasis through the downregulation
of reactive oxygen species accumulation and mammalian target of
rapamycin protein kinase signaling (Peng et al., 2014). Additionally,
SESN2 suppresses DC ferroptosis in sepsis by downregulating the
ATF4-CHOP-CHAC1 signaling pathway, suggesting antioxidative
potential. In conclusion, SESN2 contributes to immune response
modulation and oxidative stress pathways central to sepsis
pathophysiology. CD59. or Cluster of Differentiation 59, is a cell
surface protein pivotal for inhibiting membrane attack complex
formation and protecting against complement-mediated damage.
Soluble CD59 (sCD59) levels correlate with organ damage severity
in sepsis patients, with elevated levels observed, particularly post-48 h
intensive care unit admission (Ahmad et al., 2022). CD59 has also
emerged as a potential guardian against muscle tissue damage during
sepsis (Wang et al., 2002), implicating its role in the complement
system and immune response dysregulation contributing to sepsis
pathogenesis. SLC2A3 (Solute Carrier Family 2 Member 3), also
referred to as GLUT3 encodes a glucose transporter protein (Wu
et al., 2021). While its direct role in PS remains uncertain, glucose
metabolism and energy expenditure alterations are common in septic
patients (Li andMukhopadhyay, 2020; Ferreira et al., 2022). Plausible
contributions of SLC2A3 to metabolic adaptations during PS are
conceivable. Further investigations are warranted to elucidate the
potential relationship between SLC2A3 and disease pathogenesis.
GYG1, encoding Glycogenin-1, participates in glycogen synthesis
(Fastman et al., 2022). Although its connection to PS remains
unexplored, glucose metabolism and glycogen utilization
disturbances are frequent in septic patients (Lu et al., 2022). GYG1
deficiency contributes to glycogen storage diseases and polysaccharide
myopathy (Visuttijai et al., 2020; Thomsen et al., 2022), hinting at its
potential involvement in metabolic dysregulation associated with the
disease. Extensive research is imperative to elucidate the specific
involvement of GYG1 in PS pathophysiology.

Despite our significant findings, there were limitations in this
study The reliance on data from public databases for disease
cohorts necessitates additional datasets to further validate the
robustness of the diagnostic models. Incorporating in vivo data is
essential for a comprehensive understanding of hub gene
mechanisms in PS pathophysiology The integration of diverse
datasets and experimental data holds promise for future
advancements in PS research. Moreover, conducting a
stratified analysis based on the sex, early or late stages of PS is
meaningful.

Conclusion

In this study, a comprehensive investigation of the expression
patterns of CRGs in both PS samples and HC was performed.
Leveraging the power of consensus clustering, we revealed
distinct cuproptosis-associated clusters within the diseased
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samples, each characterized by unique immune profiles.
Subsequently, we constructed a diagnostic model for PS based
on the XGB algorithm and identified five specific genes. The
model demonstrated robust performance, accurately classifying
samples across qRT-PCR and independent validation datasets.
Overall, our findings propose a novel diagnostic approach that
not only elucidates the intricacies of disease heterogeneity but
also provides insights into the immune
microenvironment within PS.
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