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Both overall survival (OS) and disease-specific survival (DSS) are significant when
determining a patient’s prognosis for breast cancer (BC). The effect of DSS-
related microRNAs on BC susrvival, however, is not well understood. Here, we
spotted differentially expressed miRNAs (DEMs) in the TCGA database of BC DSS,
identified eight DSS-relatedmiRNAs, and constructed a risk model. AUC values at
1, 3, and 5 years were 0.852, 0.861, and 0.868, respectively, indicating a risk
model’s excellent prognostic prediction ability. Then, we validatedmiRNA roles in
BCOS and finally definedmiR-551b as an independently prognosticmiRNA in BC.
According to function analysis, miR-551b is strongly linked with the emergence
and spread of cancer, including protein ubiquitination, intracellular protein
transport, metabolic pathways, and cancer pathways. Moreover, we confirmed
the low expression of miR-551b in BC tissue and cells. After miR-551b inhibition
or overexpression, cell function was either dramatically increased or diminished,
respectively, indicating that miR-551b could regulate BC proliferation, invasion,
and migration. In conclusion, we thoroughly clarified BC-related miRNAs on DSS
and OS and verified miR-551b as a crucial regulator in the development and
prognosis of cancer. These results can offer fresh ideas for BC therapy.
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1 Introduction

Breast cancer (BC) is known as the most common malignancy among women, with the
second-highest mortality rate in the world (Siegel et al., 2021). Although the 5-year survival
rate of BC is very high, the survival period will be greatly shortened if the patient has
metastasis or recurrence (Wang et al., 2019). Overall survival (OS) is relatively convenient
for assessing BC survival and is the most common index for prognostic assessment.
However, it cannot exclude the influence of non-tumor related deaths (Gourgou-Bourgade
et al., 2015). The disease specific survival (DSS) was defined as patients who died from a
specific disease in a period (Montazeri et al., 2016). Targeted response to clinical benefit,
DSS enhancement can well reflect the clinical benefit of specific diseases, and the death
caused by specific diseases is reduced or increased (Liu et al., 2018). Although the OS shows
significance in the prognosis assessment of cancer patients, DSS is also indispensable, which
enables our comprehensive monitoring of cancer development and deterioration to timely
intervention and treatment. However, the role of DSS in BC has been less studied.
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Non-coding RNA gene sequences make up over 98% of the
human genome, whereas coding RNA gene sequences make up
only 2%, indicating that protein transcription is tightly regulated
(Esteller, 2011; Iorio and Croce, 2012; Morris and Mattick, 2014).
MicroRNAs (miRNAs) were defined as highly conserved non-coding
RNAs about 20–24 nucleotides in length (Lee and Dutta, 2009;
Hombach and Kretz, 2016). Even though miRNAs cannot code for
proteins, miRNAs are deeply involved in biological processes via their
downstream gene. Themechanism ofmiRNA function is to formRNA
induced Silencing complex (RISC) and result in the degradation of
target gene, namely, Post-transcriptional Gene Silencing (PTGS)
(Tiwari et al., 2021). As a result, miRNAs can regulate all aspects of
tumor formation, cancer progression, and distant metastasis, especially
in breast cancer (He et al., 2020). Many reporters have confirmed
miRNA roles in BC prognosis, cancer proliferation, invasion,
angiogenesis, and metastasis (Bertoli et al., 2015; Xu et al., 2020).
Among them, some miRNAs function in BC cell adhesion, including
has-miR-33a, has-miR-198, has-miR-155, has-miR-21, and has-miR-
10b, etc.,; SomemiRNAs involved in tumormicroenvironment (TME),
for example, has-miR-593, has-miR-494, has-miR-320, has-miR-193b,
has-miR-181a, and has-miR-29b, etc.,; Some miRNAs promote breast
cancer stemness, including has-miR-183 has-let-7b, has-miR-140, has-
miR-221, and has-miR-30 (Fridrichova and Zmetakova, 2019; Flores-
Huerta et al., 2021). MiRNAs that serve as therapeutic targets for breast
cancer, such as has-miR-339-5p, has-miR-187, and has-miR-30c.
These studies indicate that miRNAs have powerful efforts in
regulating BC biological processes, so it is of great importance to
explore the role of miRNAs in BC prognosis and progression in a
comprehensive analysis.

In this study, through the breast cancer TCGA database, we
comprehensively analyzed the expression and prognostic
characteristics of DSS-related miRNAs in BC. By constructing a
prognostic model, we explored its prognostic predictive ability in BC
survival. The OS and DSS related miRNAs and their prognostic
relationships were further identified, and miR-551b was identified as
a prognosis miRNA of endpoint events. We further validated miR-
551b expression in BC tissues and cells and revealed its effect on
cancer proliferation, and invasive migration.

2 Materials and methods

2.1 Data selection and processing

The cohort of the TCGA Breast Cancer (TCGA_BRCA) dataset,
which contains a total of 1,202 samples, including 1098 BC samples
and 104 normal samples, was downloaded from the official UCSC
website (Goldman et al., 2020). Next, we annotated, normalized, and
standardized the data and calculated differentially expressed
miRNAs (DEMs) (Love et al., 2014). DEMs that met the
screening criteria were defined as log2 fold change (log2 FC)
greater than 0.5, with a p-value of less than 0.05, and chosen for
further validation. The overall survival (OS) and disease specific
survival (DSS) data were obtained from “survival data” (Weinstein
et al., 2013). By organizing the data, we deleted incomplete data and
cases with survival times of less than 15 days and obtained a total of
889 patients’ survival outcomes. These cases will be used for
subsequent analysis.

2.2 Prognostic modeling

We first calculated the hazard ratios (HR) of each DEM in the
TCGA DSS group (training group), and defined a p-value less than
0.05 as the screening condition. The miRNAs in the training group
that met these screening criteria were identified as prognostic
miRNAs, and their expression and prognosis were validated in
the TCGA_BRCA dataset. Additionally, we incorporated
variables from the multivariate Cox analysis and constructed a
prognostic risk model. Only miRNA with p-value less than
0.05 were included in multivariate Cox analysis.

The formula of risk score can be calculated in X1α1 + X2α2 + X3α3
+. . .+ Xnαn. Then, we categorized patients into high-risk groups and
low-risk groups based onmedian scores (Park, 2018). Also, we calculated
the AUC values of the 1-, 3-, and 5-year ROC curves to evaluate the risk
model’s capacity to predict outcomes, and the Kaplan-Meier analysis was
used to compare the differences in overall survival. Then, we constructed
a nomogram to intuitively display the weight of each DEM in the risk
model. The value between the model-predicted survival and the actual
one was assessed by the corrected curves, and the survival value of the
miRNAs was verified in the KM-plotter database. Due to the lack of
additional DSS databases, we split the TCGA_BRCAdatabase evenly and
randomly into two databases and used one of them as the validation
dataset. The prognosis of DSS-related DEMs was assessed by validation
dataset throughCox analysis, survival analysis andROCcurves. Similarly,
we validated the prognostic effect of DEMs in overall survival (OS) and
defined as TCGA_OS group. The prognosis of OS-related DEMs was
confirmed by univariate Cox analysis, Lasso regression, and multivariate
Cox analysis separately. Finally, we confirmed the prognostic effect of
DEMs in all three databases including the TCGA_DSS group, TCGA_OS
group, andDSS validation group, and selected DEMswith differences for
subsequent analysis.

2.3 Functional validation of miR-551b

We found the downstream genes of has-mir-551b (miR-551b)
through TargetScan (Agarwal et al., 2015) and miRNet (Chang et al.,
2020) database, respectively, and took the genes common to both
databases as their target genes. Then we explored the functions of
target genes in the Davaid database (Huang da et al., 2009) and
KOBAS database (Bu et al., 2021), including the gene ontology (GO)
function and KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway (Kanehisa and Goto, 2000), where the GO function
including GO_BP (Biological Process), GO_CC (Cellular
Component), GO_MF (Molecular Function) (Maag, 2018). The
functions and potential pathways of miR-551b enrichment were
mapped by “ggplot2” package (Gustavsson et al., 2022).

2.4 Tissue acquisition and cell culture

Twelve pairs of breast cancer and its paracancerous fresh tissues
were collected fromWuhan Third Hospital in 2021 and preserved in
liquid nitrogen. Postoperative pathology confirmed the diagnosis of
breast cancer, and none of them had been treated. This study was
admitted by the Ethics Committee of the Third Hospital of Wuhan
City (WQ20210274). We bought the normal breast epithelial cell
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line (MCF-10A) from Procell Biotechnology, while the BC cell lines
SKBR3, T47D, MCF-7, MDA-MB-231, and MDA-MB-468 were
purchased from the cell bank of the Chinese Academy of Sciences.
Cells were cultivated in a cell incubator at 37°C with 5% CO2 using
the following media: MCF7, MDA-MB-231, and MDA-MB-
468 were cultured in DMEM; SKBR3 was cultured in McCoy’s
5A medium; T47D was cultured in RPMI-1640 medium; and MCF-
10A was cultured in DMEM/F12 medium, all media were added
with 10% fetal bovine serum.

2.5 Real-time quantitative polymerase chain
reaction experiments

Using the TRIzol reagent, total RNA was extracted from tissues
and cells separately. Nano 50 was used to measure the concentration
and purity of the total RNA. The cDNA was synthesized in a two-step
process using the Reverse Transcriptase Kit (Novozymes, MR101-01)
according to the instructions. Afterwards, a cDNA was produced
under the following reaction conditions: reaction at 42°C for 2 min,
followed by cooling to room temperature. The ABI 7500 was used to
carry out the PCR quantitative amplification reaction under the
following conditions: 25°C for 5 min, 50°C for 15 min, and 85°C for
5 min. The following ingredients were used in the amplification
system: 2 μL cDNA, 0.4 μL mQ primer, 2 μL specific primer, 10 μL
SYBR, and finally, ddH2O to make 20 μL total. Amplification
conditions were performed according to the instruction manual
(Novozymes, MQ101-01). We set the U6 as the endogenous
reference, used the fusion curve to determine the primer specificity,
and calculated the relative expression according to the 2–ΔΔ CT
method. The following sequences were synthesized by Sangon
biotech to create the primers: U6: 5’ -CGC AAG GAT GAC ACG
CAA AT-3’ (Forward), 5′-CGG CAA TTG CAC TGG ATA CG-3’
(Reverse). Has-miR-551b-5p (miR-551) has the sequences 5′- CGG
AAA TCA AGC GTG GGT-3’ (forward) and 5′- AGT GCA GGG
TCCGAGGTATT-3’ (reverse). RT Primer: 5′- GTCGTA TCCAGT
GCA GGG TCC GAG GTA TTC GCA CTG GAT ACG GTC TC-3’.

2.6 Cell transfection and function
verification experiments

The miR-551bmimics (agomiR-551b) and inhibitor (antagomiR-
551b) were designed and synthesized by Suzhou Gemma Biologicals
and transfected as instructions. In 6-well plates, prepared cells were
counted and planted. Separate mixtures of the diluted Lipo 3,000 and
miR-551b were applied to 6-well plates at cells in 70% confluence.
After 20 min reaction at room temperature, cells were continued
culture and chosen for subsequent experiments.

For cell proliferation assay, transfection cells in satisfactory
development were digested and injected into 96-well plates for
the CCK-8 studies. 10 μL of CCK-8 reagent was added to each
well at 0, 24, 48, and 72 h after the cells had been in for 2 h.
Subsequently, in preparation for further study, we estimated the
absorbance of cells at 450 nm.

The matrix gel was first applied to the Transwell chamber and left
there to solidify. In the upper chamber, we added a medium devoid of
10% fetal bovine serum (FBS), while in the lower chamber, we added a

medium with 10% FBS. Then, cells were counted, put into the upper
chamber, and incubated for a total of 24 h. After being removed from
the top chamber, the cells were stained using hematoxylin-eosin, fixed
using 4% paraformaldehyde, and numbered beneath microscope.

The wound healing experiment went through the following
steps. A 6-well plate was inoculated with cells that had been
developed throughout the growth phase. After the cell confluence
reached 70%, we then scraped the cells with a 200 L sterile
tip. Microscopically, cell scratches changed in width at 0 and
24 h. The cell migration rate was estimated for further investigation.

2.7 Statistical analysis

The data was examined and processed using R and GraphPad
Prism 8.0. For comparing two groups, we utilized a t-test, and for
analyzing multiple groups, we used a one-way ANOVA. Kaplan-Meier
was used to compute the cumulative survival rate, and the log-rank
t-test was employed for statistical analysis. Every experimentwas carried
out thrice, and results were deemed as statistically significant at P 0.05.

3 Results

3.1 Identification of DSS-related miRNAs in
breast cancer

Disease specific survival (DSS) well reflects the clinical benefit of
specific diseases. But Less is known about the role of DSS in BC
miRNAs. In this research, we identifiedmiRNAs related toDSS andOS.
Through TCGA_DSS, TCGA_OS, AND DSS validation groups, we
confirmed the protective factor of miR-551b in BC prognosis. This
study included a total of 1,202 samples, including 104 normal samples
and 1,098 breast cancer samples. We categorized data as differentially
expressedmiRNAs (DEMs) if log2FCwas larger than 1 and p-value was
less than 0.05. PCAplot revealed a distinct distribution between patients
with tumors and healthy people (Figure 1A). The TCGA_BRCAdataset
had 197 DEMs in total, 105 of which were upregulated and 92 of which
were downregulated, and a volcano plot of theDEMswas demonstrated
(Figure 1B). Furthermore, we obtained a total of 889 patients with
complete follow-up data, and chose for subsequent analysis. Our results
identified 18 meaningful DSS DEMs in univariate Cox analysis
(Figure 1C). To increase the reliability of multivariate results, we
further analyzed their survival by Lasso analysis. As displayed in
Figures 1D, E, the Lasso analysis recognized 15 DEMs that qualified
for multivariate models. Next, the multivariate Cox regression indicated
a total of eight prognosis miRNAs, of which, has-mir-1247 had an HR
and 95% CI of 0.681 (0.543–0.856) with a p-value of 0.001 in the
multivariate Cox analysis. The hsa-mir-1468 had an HR and 95% CI of
1.350 (1.028–1.774) and a p-value of 0.031. The has-mir-203a had a
p-value of 0.002 and an HR and 95% CI of 1.303 (1.098–1.547). The
hsa-mir-205 had an HR and 95% CI of 0.805 (0.710–0.912) and a
p-value of 0.001. With a p-value of 0.049, the has-mir-29b.1 had an HR
and 95% CI of 0.718 (0.516–0.999). The has-mir-381 had an HR and
95% CI of 1.933 (1.374–2.718), with a p-value of 0.001. The has-mir-
449a had a p-value of 0.016 and an HR and 95% CI of 0.679
(0.496–0.929). The HR and 95% CI of hsa-mir-551b was 0.522
(0.324–0.844) with a p-value of 0.008 (Figure 1F). Additionally, we
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validated the expression and prognosis of 8DEMs inTCGA_DSS group
with p-value screening criteria. The findings revealed that high
expression of hsa-mir-381 and hsa-mir-410 had a lower survival
time in breast cancer, while hsa-mir-1247, hsa-mir-449a, hsa-mir-
551b, hsa-let-7b, hsa-mir-205 expression levels were associated with
a longer survival time (Figure 2). Finally, we validated 7DEMs related to
DSS outcome (Figures 2A–C; Supplementary Figures S1A–D), and
chose for further analysis.

3.2 Constructing a prognostic model on DSS

We constructed a prognostic model and evaluated its effect on the
DSS byROCanalysis, survival analysis and calibration curve. Initially, we
evaluated the prognosis of each DEM in BC DSS via univariate Cox
analysis. Eighteen DSS-related DEMs were identified with p-value less
than 0.05. To assess the qualified DEMs in multivariate analysis, we
removed DEMs that may be highly intercorrelated via Lasso Cox
analysis to avoid overfitting, which could confound the prediction
results. As displayed in Figures 1D, E, there are 15 DEMs qualified
in multivariate analysis. In multivariate Cox analysis, the risk score of
each patient was evaluated. And we assigned each patient a prognostic
risk score and divided them into high-risk and low-risk groups. Eight
DEMs were related to DSS of breast cancer both in univariate and
multivariate Cox analysis. Then, we developed a riskmodel with formula
as follows: (−0.38*hsa-mir-1247) + (0.30*hsa-mir-1468) + (0.26*hsa-
mir-203a) + (−0.21*hsa-mir-205) + (−0.33*hsa-mir-29b.1) + (0.66*hsa-
mir-381) + (−0.39*hsa-mir-449a) + (−0.65*hsa-mir-551b). The risk

model was able to distinguish between patients with high-risk and
low-risk conditions, according to the model distribution of death and
risk (Figure 2D). With a p-value of 0.01, the risk model significantly
differences in survival results between the high-risk group and low-risk
group, indicating an excellent DSS predictive capacity (Figure 2E). The
ROC curve results revealed that themodel’s predictive power at 1, 3, and
5 years was 0.852, 0.861, and 0.868, respectively (Figure 2F).
Additionally, a nomogram risk model was constructed based on the
expression of prognostic DEMs, which could predict BC prognosis at 1,
3, 5 years (Supplementary Figure S1E). The calibration curves showed
that the model’s capacity to predict for one, three, and 5 years was
compatible with the actual OS prognosis taking place (Supplementary
Figures S1F–H). These findings imply that our riskmodel can accurately
determine the DSS prognosis for BC.

3.3 Validation the overall survival of
prognostic model

The OS is an important prognostic outcome of BC.We assessed the
OS-related miRNAs using univariate Cox regression, Lasso regression,
and multivariate Cox regression, respectively. As shown in Figures
3A–B, there are 12 OS-related DEMs in univariate analysis, and
10 DEMs qualified in multivariate analysis. 5 DEMs were significant
inmultivariate analysis and enrolled in riskmodel (Figure 3C). The has-
let-7b had an HR and 95% CI of 0.730 (0.567–0.940) with a p-value of
0.015 in the multivariate Cox analysis. The hsa-mir-193a had an HR
and 95%CI of 1.544 (1.145–2.083) and a p-value of 0.004. The has-mir-

FIGURE 1
Identification of DSS-related DEMs of breast cancer (BC). (A) PCA demonstrating the distribution of tumor patients and normal patients in the TCGA_
BRCA database; (B) Volcano plot showing the differentially expressed miRNAs (DEMs) of disease specific survival (DSS); (C) Univariate Cox analysis
validating the prognostic effect of DSS-related DEMs in BC; (D, E) Lasso regression to optimize the univariate results and include the best variables into the
multivariate analysis; (F)Multivariate Cox analysis confirming qualified DEMs for risk model, in which hazard ratio (HR) greater than 1 is a risk factor,
and HR less than 1 is protective, with p-value < 0.05 as the screening threshold.
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431 had a p-value of 0.006 and an HR and 95% CI of 1.341
(1.089–1.652). The has-mir-449a had a p-value of 0.018 and an HR
and 95% CI of 0.831 (0.714–0.968). The HR and 95% CI of hsa-mir-
551b was 0.672 (0.488–0.924) with a p-value of 0.015. Subsequently,
using ROC analysis, survival analysis, and calibration curve, we created
a risk model and assessed its impact on OS (Figures 3D–F). With a
p-value of 0.01, the risk model dramatically different survival outcomes
from the high-risk group and low-risk group (Figure 3D). The
prognostic model was able to distinguish between individuals who
had high- and low-risk conditions, based on the model distribution of
death and risk (Figure 3E). ROC curves demonstrated that the OS
model’s accuracy of prediction at 1, 3, and 5 years were 0.697, 0.728, and
0.734 separately (Figure 3F). Additionally, we verified theOS of 18DSS-
relatedmiRNAs. As depicted in Supplementary Figure S3, 5DEMswere
identified in univariate analysis and 3 qualified DEMs in multivariate
analysis. And the risk model was excellent in survival identification and
ROC diagnosis with 1, 3, and 5 years of 0.654, 0.703, and 0.687. Due to
the lack of additional DSS databases, we split the TCGA_BRCA
database evenly and randomly into two databases and used one of
them as the validation group. There are a total of 445 patients enrolled
in the validation group.We verifiedDSS-relatedDEMs in the validation
group by Cox regression, Lasso regression, and riskmodel construction.
As displayed in Figures 4A, B, there are 11 DEMs in univariate analysis,
and 5 DEMs qualified in multivariate analysis, including has-mir-203a,
hsa-mir-205, hsa-mir-20b, hsa-mir-410, hsa-mir-551b without hsa-
mir-449a. We first validated their roles in prognosis (Figures 4C, D)
and then constructed a risk model, and verified the roles of survival and

their diagnosis in DSS validation group (Figures 4E–F). Inspiringly, the
risk model is not only significant in survival distinction, but also
superior in ROC diagnosis with 1, 3, and 5 years of 0.967, 0.868,
and 0.879. Those results indicated that our model was proficient in DSS
and OS prognosis. As mentioned above, hsa-mir-449a and hsa-mir-
551b were excellent in DSS and OS recognition. Only hsa-mir-551b
shown significance with p-value less than 0.05 among three groups
including TCGA_DSS, TCGA_OS, and DSS_validation. Except for our
databases, we proved their survival in KM Plotter database, which have
four miRNA databases including METABRIC, TCGA, GSE40267, and
GSE19783 datasets. So we validated the survival roles of hsa-mir-449a
and hsa-mir-551b. As shown in Supplementary Figure S4, both hsa-
mir-449a and hsa-mir-551b have survival significance in METABRIC
and TCGA datasets, which fit with our previous results. Altogether,
Only hsa-mir-551b showed significance among three groups. So we
confirmed hsa-mir-551b both related to DSS and OS outcome and
chosen for further analysis.

3.4 Functional validation results

As depicted in Figure 5, we annotated the functional role of miR-
551b. Targetscan and TarBase databases revealed that miR-551b has
a total of 124 target genes. Then, we explored the functions of target
genes in the Davaid database and KOBAS database with a cutoff
criterion of p < 0.05. Next, top ten most enriched GO terms and
KEGG pathways were displayed. We provided all the functional

FIGURE 2
Construction of a risk model related to disease specific survival (DSS). (A–C) Validating the prognostic effect of DSS-related DEMs, including hsa-
mir-1247, hsa-mir-449a, hsa-mir-551b, in the TCGA database, respectively. (D) The risk model classified BC patients into high and low-risk groups
according to DSS score. (E) KM survival analysis assessed the difference in survival between high- and low-risk patients. (F) ROC curves validated the
predictive ability of the risk model at 1, 3, and 5 years, respectively.
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FIGURE 3
Identification of OS-related DEMs of breast cancer (BC). (A) Univariate Cox analysis validating the prognostic effect of OS-related DEMs in BC; (B)
Lasso regression optimizing the univariate results and including the best variables into the multivariate analysis; (C) Multivariate Cox analysis confirming
qualified DEMs for risk model. (D) KM survival analysis assessed the difference in survival between high- and low-risk patients. (E)The risk model classified
BC patients into high and low-risk groups according to OS score. (F) ROC curves validated the predictive ability of the risk model at 1, 3, and 5 years,
respectively.

FIGURE 4
Assessing DSS-related DEMs in the validation group. (A)Univariate Cox analysis validating the prognostic effect of DSS-related DEMs in the validation
group; (B)Multivariate Cox analysis confirming qualified DEMs for risk model. (C, D)Validating the prognostic effect of hsa-mir-1247, hsa-mir-449a, and
hsa-mir-551b in the validation group. (E) KM survival analysis assessed the difference in survival between high- and low-risk patients. (F) ROC curves
validated the predictive ability of the risk model at 1, 3, and 5 years, respectively.
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results in Supplementary Table S3, and displayed top ten most
enriched GO terms and KEGG pathways in Figure 5. As the
DAVAID analysis demonstrated, miR-551b was engaged in
several biological processes in malignancies, for example, protein
ubiquitination, intracellular protein transport, regulation of mRNA
stability, endoplasmic reticulum membrane, enzyme binding, and
chromatin binding. It is also linked to a variety of pathways that are
associated with tumors, including RNA degradation, insulin
signaling, metabolic pathways, cancer pathways, sphingolipid
signaling, and pathways for insulin and cancer. These findings
imply a link between the miR-551b and the emergence of cancer.

3.5 miR-551b regulating BC progression

WeverifiedmiR-551b expression in BC tissues and cells, aswell as its
effects on cancer proliferation, invasion, and migration, to identify the
involvement of miR-551b in the expression and progression of BC.
Initially, we foundmiR-551b expression in the paired normal tissues and
BC tissues. Figure 6A demonstrates that miR-551b expression was
comparatively low in BC tissues and BC cells. This is in line with
our earlier findings genetically. Moreover, miR-551b expression is lower
in BC cells than it is in normal cells (Figure 6B). Additionally, we
transfected miR-551b mimics and antagonists into MDA-MB-231 cells
and used the CCK8 assay, Transwell assay, and scratch test to monitor
changes in the ability of cancer cells to proliferate, invade, and migrate

(Figures 6C–G). As shown in the results, the activity of cancer cells was
dramatically raised or lowered at 48 h and 72 h, after interfering with or
overexpressing miR-551b in MDA-MB-231 cells, respectively. It
indicated that interfering or overexpressing miR-551b could enhance
or inhibit the proliferation ability of cancer cells. The cell counts of
MDA-MB-231 crossing the matrix-gel were significantly elevated or
decreased after interfering or overexpressing miR-551b, indicating that
the invasive ability of cancer cells was significantly elevated or decreased
after miR-551b interference or overexpression (Figures 6D, E). After
miR-551b inhibition or overexpression, cell healing ability for the
migration assay was either dramatically increased or diminished,
respectively, indicating that miR-551b could regulate the migration
ability of cancer cells (Figures 6F, G). These findings reveal that miR-
551b affects BC proliferation, invasion, and migration.

4 Discussion

More than 60% of the mRNAs in the human genome are
regulated by miRNAs, and miRNA abnormalities play a key role
in the development and spread of tumors (Iorio and Croce, 2012).
On the one hand, miRNAs regulate target gene expression, which
has an impact on the development and spread of tumors. On the
other hand, cancer formation and occurrence are brought on by
miRNA alterations. MiRNAs, however, play a significant role in
metastasis, tumor invasion, cell cycle, and BC proliferation (Yang

FIGURE 5
Biological processes and enrichment pathways involved in miR-551b. (A) The bar plot of top10 KEGG pathway in miR-551b enrichment; (B–D) The
bar plot of top10 GO terms inmiR-551b enrichment, including GO_BP (Biological Process), GO_CC (Cellular Component), GO_MF (Molecular Function).
The number of gene counts represents correlation with the pathway, and log-transformed p-values mean significance.
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et al., 2017; Abdalla et al., 2020). Clarifying the dysfunction
mechanism of miRNAs in breast cancer is therefore required. For
the first time, the function of miRNAs in breast cancer and their
regulation mechanisms were thoroughly explained in this work.

Although there have been studies on the prognostic roles of
microRNAs, only a small number of miRNAs comprehensively
focus on breast cancer BC OS and DSS (Hill et al., 2018; Song et al.,
2022). The indispensable roles of DSS, enable us to monitor cancer
development and deterioration, to timely intervention and treatment
(Tahmassebi et al., 2019; Miao et al., 2020). In the present study, we
originally explored the effect of DSS on the BC prognosis, and
constructed a risk model based on miRNAs DSS, and validated it its
roles in BC OS. Notably, miRNAs constructed in each model differ in
survival outcomes, which highlighted the limitation of OS on prognosis

evaluation. Therefore, it is necessary to comprehensively evaluate BC
endpoint outcomes such as DSS and OS.

Through the comprehensive assessment of prognostic endpoint
events in BC, we finally confirmed that has-miR-551b was a
significant miRNA for BC prognosis. miR-551b is located on
chromosome 3q26.2 and participates in a variety of biological
processes, such as inflammatory reaction, carcinogenic,
chemoresistance (Chaluvally-Raghavan et al., 2014; Wei et al.,
2016; Zhang et al., 2018). In thyroid cancers, miR-551b
expression levels were correlated with lymph node metastasis,
and TNM stage (Dong et al., 2023). And miR-551b can be an
independent prognostic factor with lower overall survival and worse
prognosis of lung adenocarcinoma (Lin et al., 2016). In the
chemotherapy resistance of lung cancer, miR-551b promotes the

FIGURE 6
Effects of miR-551b on the proliferation, invasion, andmigration of breast cancer (BC). (A, B)miR-551b was relatively low expressed in breast cancer
tissues and cells; (C) CCK8 experiments showed that cell proliferation was significantly enhanced or inhibited at 48 h and 72 h after interfering or
overexpressing miR-551b in MDA-MB-231 cells, respectively; (D, E) Transwell experiments showed that the interference or overexpression of miR-551b
invasive ability of MDA-MB-231 cells was significantly enhanced or inhibited; (F, G) Scratch assay showed that the migration ability of breast cancer
cells was significantly enhanced or inhibited after interfering or overexpressing miR-551b in MDA-MB-231.
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sensitivity of cells to apoptotic toxicity induced by chemotherapeutic
agents by reducing the expression of cell catalase, inhibiting the
accumulation of reactive oxygen species and the expression of
MUC1 protein. Downregulation of miR-551b can upregulate the
expression of cellular catalase, promote the accumulation of reactive
oxygen species, and upregulate the expression of MUC1 protein, and
the miR-551b/catalase/ROS/MUC1 protein pathway can be used as
a target for treatment of acquired chemotherapy resistance
(Kharbanda et al., 2014; Xu et al., 2014). The miR-551b was
identified as downregulated miRNAs in gastric cancer (GC) the
microarray and validated in the research of Chen et al. (2014), Chen
et al. (2015). And the expression of miR-551b was low in GC cells,
which could regulate epithelial-mesenchymal transition and
metastasis via inhibiting ERBB4 expression (Song et al., 2017).
Moreover, miR-551b suppresses the expression of TRIM31,
thereby inhibiting the proliferation, migration, oxidative stress
and apoptosis of MDA-MB-231 cells (Yang et al., 2022).

In this research, we identified miRNAs related to DSS and OS.
Through TCGA_DSS, TCGA_OS, AND DSS validation groups, we
confirmed the protective factor of miR-551b in BC prognosis.
Additionally, we validated our results in METABRIC, TCGA, and
GSE19783 datasets. And tissue and cell verification also backen our
findings. These findings imply that miR-551b’s aberrant expression
plays a significant role in the development and spread of tumors. But
the research on miR-551b in BC is limited. Here, we comprehensively
investigated DEMs expression in BC and its prognostic impact. By the
validation of different endpoint event risk models, we identified miR-
551b as an independent protective factor for BC prognosis. Additional
research indicates that miR-551b is a viable target for BC treatment
because of it is effect on BC proliferation, invasion, and migration.
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Validation of the prognostic effect of DSS-related DEMs in breast cancer (BC).
(A–D) Validating the prognostic effect of DSS-related DEMs, including hsa-let-
7b, hsa-mir-205, hsa-mir-381, and hsa-mir-410, in the TCGA database,
respectively. (E) A prognostic-related nomogram was constructed by qualified
DEMs formultivariate analysis. (F–H)Correction curves assessing the theoretical
and practical predictive ability of prognostic risk at 1, 3, and 5 years.

SUPPLEMENTARY FIGURE S2
Prognostic evaluation of risk model involved in OS-related DEMs. (A–F)
Prognostic value of hsa-let-7b, hsa-mir-30a, hsa-mir-103a.1, hsa-mir-
449a, hsa-mir-551b, hsa-mir-1247, in BC-OS of TCGA database,
respectively.

SUPPLEMENTARY FIGURE S3
Identification of BC-related DEMs in the OS validation group. (A) Univariate Cox
analysis validating the prognostic effect of OS-related DEMs in OS validation
group; (B) Lasso regression optimizing the univariate results and including the
best variables into themultivariate analysis; (C)MultivariateCox analysis confirming
qualified DEMs for risk model. (D) KM survival analysis assessed the difference in
survival between high- and low-risk patients. (E)The risk model classified BC
patients into high and low-risk groups according to OS score. (F) ROC curves
validated the predictive ability of the risk model at 1, 3, and 5 years, respectively.

SUPPLEMENTARY FIGURE S4
Prognostic validation of final qualified miRNAs both in DSS and (A–C) OS
Prognostic value of hsa-mir-449a in OS of TCGA, METABRIC and
GSE40267, respectively. (D–F) Prognostic value of hsa-mir-551b in OS of
TCGA, METABRIC, and GSE19783 databases, respectively.

SUPPLEMENTARY TABLE S1
All the raw data of three groups including the DSS group, OS group, and DSS
validation group, respectively.

SUPPLEMENTARY TABLE S2
The code used in R software was provided in table.

SUPPLEMENTARY TABLE S3
Functional analysis of miR-551b.
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